

A New Frontier of QCD Physics

Holger Stöck University of Florida

Holger Stöck

CLEO-c Program

2001 - 02: Y(1S), Y(2S), Y(3S) 1 – 2 fb⁻¹ each Spectroscopy (Spin fine structure, decays) 10 – 20 times the existing world's data

CESR-c Accelerator

Modification for low-energy operation:

Add wigglers for transverse cooling

Expected machine performance:

√s	Luminosity ($10^{32} \text{ cm}^{-2} \text{ s}^{-1}$)
4.1 GeV	3.6
3.77 GeV	3.0
3.1 GeV	1.0

 $\Delta \textbf{E}_{\text{Beam}} \thicksim \textbf{1.2} \; \textbf{MeV} \; \; \textbf{at} \; \; \textbf{J/} \psi$

CLEO-c Detector

Replace 4 layer silicon strip tracker with 6 layer inner drift chamber

Ypsilon Spectrum

Ypsilon Spectroscopy

Search for ³D states in Y(3S) $\rightarrow \gamma\gamma\gamma\gamma \ell^+\ell^-$

 $\mathbf{3^{3}S_{1}} \xrightarrow{\gamma} \mathbf{2^{3}P_{J}} \xrightarrow{\gamma} \mathbf{1^{3}D_{J}} \xrightarrow{\gamma} \mathbf{1^{3}P_{J}} \xrightarrow{\gamma} \mathbf{1^{3}S_{1}} \rightarrow \ell^{+}\ell^{-}$

- Signal rate well predicted: ~ 6 · 10⁻⁵
- Background rate indirectly measured: $(21 \pm 7) \cdot 10^{-5}$
- In 0.1 fb⁻¹ CLEO-II 7 events observed => (19 ± 7) · 10⁻⁵ signal rate
- In 1.0 fb⁻¹ CLEO-III expected:
 ~ 40 signal events

~ 20 background events

Ypsilon Decays

Y(3S) decays:

Y(3S) → γ η_b(1S)

- Most favorable search, because highest predicted branching fraction
- Easy to calculate in Lattice QCD

Y(3S) $\rightarrow \gamma \chi_b$ (2P) only observed decay

```
\begin{array}{l} \textbf{Y(2S) decays:} \\ \textbf{Y(2S)} \rightarrow \gamma \ \eta_b(\textbf{1S}) \\ \bullet \ \textbf{Establish signal with 5} \ \sigma \\ significance \ for \ \textbf{L} = \textbf{0.5} \ fb^{-1} \ if \\ \textbf{BR} > \textbf{1.5} \cdot \textbf{10}^{-3} \\ \textbf{Y(2S)} \rightarrow \gamma \ \chi_b(\textbf{1P}) \ only \ observed \ decay \\ \textbf{Y(1S) decays:} \\ \ \textbf{Radiative decays } \textbf{Y(1S)} \rightarrow \gamma \ \textbf{X} \\ \ \textbf{Inclusive decays to charmonium} \\ \textbf{Y(1S)} \rightarrow \psi(\textbf{2S}) \ \textbf{X} \\ \ \textbf{Search for (cgc) } \textbf{1}^{-1} \ \textbf{hybrids} \\ \end{array}
```

Running at charm threshold

- Large cross section, low multiplicity
- Pure initial state: no fragmentation
- Double tag measurement: no background
- Clean neutrino reconstruction
- Quantum coherent initial state

Tagging Technique

Advantages of pure DD or D_sD_s production:

- Many high branching ratios (~ 1 10%)
- High reconstruction efficiency
- Two opportunities: 6M D tags
 300k D_s tags

 \rightarrow High net efficiency ~20 %

Absolute Branching Ratio Measurements

Double tags: ~ Zero background in hadronic modes !

Set absolute scale for all heavy quark measurements

Docay modo	BR fractional error %		
Decay mode	PDG 2000	CLEO-c	
$D^0 \rightarrow K \pi$	2.4	0.5	
$D^{*} \rightarrow K \pi \pi$	7.2	1.5	
$\textbf{D}_{\textbf{S}} \rightarrow \phi \ \pi$	25	1.9	

Set absolute scale for V_{cd} , V_{cs} and f.f. measurements

Docay mode	BR fractional error %		
	PDG 2000	CLEO-c	
$D^0 \rightarrow K \mid v$	5	1.6	
$D^0 \rightarrow \pi \mid v$	16	1.7	
$D^{+} \rightarrow \pi \mid v$	48	1.8	
$D_S \rightarrow \phi \mid v$	25	2.8	

Comparison to B Factories

	CLEO-c 2 – 4 fb ⁻¹	Babar 400 fb ⁻¹	Current Knowledge
f _D V _{cd}	1.5 – 2 %	10 – 20 %	n.a.
$f_{Ds} V_{cs}$	≤ 1 %	5 – 10 %	19 %
BR(D ⁺ \rightarrow K π π)	1.5 %	3 – 5 %	7 %
$BR(D_S \to \phi I \nu)$	2 – 3 %	5 – 10 %	25 %
BR(D $\rightarrow \pi$ I ν)	1.4 %	3 %	18 %

Gluonic Matter

Gluons carry color charge \rightarrow They should bind !

Glueball sightings: MARK III, BES, L3, Crystal Barrel

But glueballs have been sighted too many times without confirmation

Radiative J/ ψ decays are ideal glue factory

- Very clean initial state
- Very clean tag
- Glue pair in color iso-singlet

CLEO-c:

- 10⁹ J/ $\psi \rightarrow ~$ ~ 60M J/ $\psi \rightarrow \gamma$ X
- Inclusive studies
- Study of exclusive modes
- Complementary two-photon searches 25 fb⁻¹ of CLEO-III data
- Complementary radiative Y(1S) search

Inclusive Spectrum J/ $\psi \rightarrow \gamma X$

Holger Stöck

Glueball Candidate f_J(2220)

Exclusive modes:

- Essentially no hadronic background
- Extreme clean signatures
- Large statistics

Summary

Unique features of CLEO-c:

Huge data set 20 to 500 times larger than previous experiments

Modern detector Excellent tracking and photon resolution Well understood

Extra datasets for corroboration Ypsilons: 4 fb⁻¹ Two photon: 25 fb⁻¹

Powerful physics case: Precision flavor physics

Non-pertubative QCD

Probe for new physics

Optimal timing:

Flavor physics of this decade Beyond the Standard Model in next decade In resonance with Lattice-QCD

The CLEO Collaboration

Carnegie Mellon University Cornell University University of Florida University of Hawaii University of Illinois University of Kansas University of Minnesota Budker Institute of Nuclear Physics University of Tennessee Ohio State University University of Pittsburgh Purdue University University of Rochester Southern Methodist University Stanford Linear Accelerator Center **State University of New York at Albany** Syracuse University University of Texas – Pan American Vanderbilt University Wayne State University

Additional Topics

Mixing:

Comparison between hadronic and lepton tagged modes from C = \pm 1 D⁰ \overline{D}^0 pairs

Charm Baryons:

 $\Lambda_{c}\Lambda_{c}$ at threshold 1 fb⁻¹

Calibrate absolute BR($\Lambda_{c} \rightarrow p \ K \pi$)

Tau lepton physics:

 $\tau^+ \tau^-$ at threshold 0.25 fb⁻¹

Measure m_τ to \pm 0.1 MeV

Heavy lepton and exotics searches

Measurement of R:

R = $\sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$ Spot checks