CLEO-c and CESR-c: A New Frontier of Electroweak And QCD Physics

Kamal Benslama University of Hlinois

On behalf of CLEO Collaboration Wilson Laboratory, Cornell University I thaca, NY

The CLEO Collaboration

- Membership:
 - ~20 Institutions
 - ~155 physicists
 - ~1/2 DOE, 1/2 NSF
 - Currently expanding...
- Publication history 1980-
 - ~320 papers
 - diverse physics:

Albany Caltech CMU Cornell Florida Harvard **I Ilinois Kansas Minnesota Ohio State** Oklahoma Purdue Rochester **SLAC** SMU UCSD **UCSB Syracuse** Vanderbilt Wayne State

What is CESR-c?

- Modify for low-energy operation: add wigglers for transverse cooling
- Expected machine performance:

CLEO III Detector → CLEO-c Detector

The CLEO-c Program

2 0 0 2	Prologue: Upsilons ~1-2 fb ⁻¹ ea. Y(1S) ,Y(2S), Y(3S) Spectroscopy, Matrix Elements, Γ_{ee} 10-20 times existing world's data	
2 0 0 3	Act I: ψ(3770) 3 fb ⁻¹ 30M events, 6M <i>tagged</i> D decays (310 times MARK III)	
2 0 0 4	Act II: vs ~ 4100 3 fb ⁻¹ 1.5M D _s D _s , 0.3M <i>tagged</i> D _s decays (480 times MARK III, 130 times BES II)	
2 0 0 5	Act III: ψ(3100) 1 fb ⁻¹ 1 Billion J/ψ decays (170 times MARK III 20 times BES II)	

Why run on threshold Resonances?

Charm events produced at threshold are extremely Clean
Large σ, low multiplicity
Pure initial state: no fragmentation
Signal/Background is optimum

at threshold

Double tag events are pristine

These events are key to
making absolute branching
fraction measurements

Neutrino reconstruction is clean

Quantum coherence aids D mixing
and CP violation studies

D⁰→ K[−]π⁺

 $D^0 \rightarrow K^+ e^- v$

A typical Y(4S) event:

Tagging Technique

Pure DD or D_sD_s production

 Many high branching ratios (~1-10%)
 High reconstruction eff
 Two chances

6M D tags 300K D_s tags

 \rightarrow high net efficiency ~20% !

Beam constrained mass

Why CLEO-c ? Why Now ?

- We expect great advances in flavor and electroweak physics during the next decade:
 - Tevatron (CDF, DO, BTeV,CKM).
 - B-Factories (BaBar, Belle).
 - LHC (CMS, ATLAS, LHC-b).
 - Linear Collider (?).
- What could CLEO-c possibly have to offer this program?

To score nice goals we absolutely need an excellent player who can make the Perfect passes at the perfect time

Precision Standard Model Tests

Absolute hadronic charm branching ratios with 1-2% errors.

 f_{D+} and f_{Ds} at ~2% level.

Semileptonic decay form-factors (few % accuracy).

Absolute Branching Ratios

~ Zero background in hadronic modes

Set absolute scale for all heavy quark meas.

Decay Mode	PDG2000	CLEOc
	(δB/B %)	(δB/B %)
$D^{\scriptscriptstyle 0}\! ightarrow\!K\pi$	2.4	0.5
$D^{*} ightarrow K \pi \pi$	7.2	1.5
$D_s \rightarrow \phi \pi$	25	1.9

The importance of absolute Charm BRs

V_{cb} from zero recoil in $B ightarrow D^* \ell \ ^+\!\! V$

CLEO LP01

Stat: 3.1% Sys 4.3% theory 4.6% Dominant Sys: ε_{π} slow, form factors

& B(D→Kπ) dB/B=1.3%

Lattice predicts $f_B/f_D \& f_{Bs}/f_{Ds}$ with small errors if precision measurements of $f_D \& f_{Ds}$ existed (they do not) could substitute in above ratios to obtain precision estimates of $f_B \& f_{Bs}$ and hence precision determinations of Vtd and Vts

Similarly f_D/f_{Ds} checks f_B/f_{Bs}

Comparison between B factories & CLEO-C

Semileptonic Form Factors.

Absolute magnitude & shape of form factors is a great test of theory.

1) Measure $D \rightarrow \pi$ form factor in $D \rightarrow \pi l \nu$ (CLEO-c): Calibrate LQCD to 1%.

2) Extract V_{ub} at BaBar/Belle using *calibrated* LQCD calc. of $B \rightarrow \pi$ form factor.

3) Precise (5%) V_{ub} is a vital CKM cross check of sin2 β .

4) Absolute rate gives direct measurements of V_{cd} and V_{cs} .

 $D^{0} \rightarrow K^{-}e^{+}\boldsymbol{u} \quad \delta \text{Vcs} / \text{Vcs} = 1.6\% \text{ (now: 11\%)}$ $D^{0} \rightarrow \boldsymbol{p}^{-}e^{+}\boldsymbol{u} \quad \delta \text{Vcd} / \text{Vcd} = 1.7\% \text{ (now: 7\%)}$

Use CLEO-c validated lattice + B factory $B \rightarrow \rho/\pi/\eta/lv$ for ultra precise Vub

How can CLEO-c Contribute to CKM Measurements ?

An illustration using a variant of the 95% Scan method.

Allowed regions of the $m{r}$ - $m{h}$ plane using:

- current experimental results and
- conservative theoretical uncertainties

Allowed regions of the r - h plane using:

- current experimental results and
- theoretical uncertainties of O(1%)
- •2% decay constants and 3% semileptonic form factors

CLEO-c: Probes of new Physics

Mixing sensitivity at the 1% level.

CP violation sensitivity at the 1-2% level.

• Rare Decays. Sensitivity: 10⁻⁶

Charm Mixing

CP Violation

Suppose both D⁰'s decay to CP eigestates f_1 and f_2 : These can **NOT** have the **same CP** :

 π^+

Ex:
$$(K^+K^-)(p^+p^-)$$

Compare to B Factories

	CLEO-C	BaBar	Current	
	2-4fb-1	400 fb-1	Knowledge	
f_D Vcd	1.5-2%	10-20%	n.a.	
f_Ds Vcs	<u><</u> 1%	5-10%	19%	
Br(D+ -> Kππ)	1.5%	3-5%	7%	
Br(Ds -> $\phi\pi$)	2-3%	5-10%	25%	
Br(D-> π Iv)	1.4%	3%	18%	
Br(Λc -> p Kπ)	6%	5-15%	26%	
A(CP)	~1%	~1%	3-9%	
x'(mix)	0.01	0.01	0.03	
Statis	Statistics limited.		Systematics & background limited.	

Additional topics

- Ψ' spectroscopy (10 8 decays) $\eta'_c h_c ...$
- $\tau^+\tau^-$ at threshold (0.25 fb⁻¹)
 - measure m_{τ} to ± 0.1 MeV
 - heavy lepton, exotics searches
- $\Lambda_c \bar{\Lambda}_c$ at threshold (1 fb⁻¹)
 - calibrate absolute ${\sf BR}(\Lambda_c {\rightarrow} {\sf pK} \pi)$
- $R=\sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$
 - spot checks

The CLEO-c Program: Summary

- Huge data set
 - 20-500 times bigger than previous experiment
- Modern and understood detector
- •Experienced Collaboration
- Powerful physics case
 - Precision flavor physics -
 - Nonperturbative QCD -
 - Probe for New Physics
- Very small and well-controlled backgrounds
- •Very small and well-understood systematic errors

• A large number of and wide variety of precision measurements to challenge and validate theory

CLEO-c Physics I mpact

•CLEO-C workshop (May 2001) : successful ~120 participants, 60 non-CLEO

•Snowmass working groups E2/P2/P5 : acclaimed CLEO-c

• HEPAP endorsed CLEO-c

CESR/CLEO Program Advisory Committee
Sept 28 Endorsed CLEO-c
Proposal submission to NSF was on October 15,2001
Site visit on Jan/Feb 2002: Endorsed CLEO-c
Science Board March 2002,
Expect approval shortly thereafter

•See http://www.Ins.cornell.edu/public/CLEO/spoke/CLEOc/ for project description

Invitation

If interested in our program you are more than welcome to join us. We have room for you !

More information is available in CLEO Web page: www.lns.cornell.edu/public/CLEO/spoke/CLEOc

Contact person: spoke@mail.lns.cornell.edu