Preliminary Results on $\gamma \gamma \rightarrow K_{s} K^{ \pm} \pi^{\mp}$

Global objective: provide data to understand the phenomenon of confinement by studying hadronic resonances below $1.7 \mathrm{GeV} / \mathrm{c}^{2}$ that decay into $K_{s} K^{ \pm} \pi^{\mp}$ final state.

Motivation
Experimental Tools Selection Criteria Systematics
Preliminary Results Interpretation

Understanding Hadron Mass Spectrum Quantatively would be Fundamental Verification of Low-Energy QCD

Do we understand this spectrum theoretically? ask a theorist...
Do we understand this spectrum experimentally? NO \longrightarrow
Check PDG review and try to make sense of all reported low-mass resonances!
This study: hadrons with masses below $1.7 \mathrm{GeV} / \mathrm{c}^{2}$ that decay to $K_{s} K^{ \pm} \pi^{\mp}$ final state

Experimental tool: production in two-photon collisions:

$$
\frac{\gamma \gamma \longrightarrow \eta(1440) \longrightarrow K_{s} K^{ \pm} \pi^{\mp}}{\text { Two-photon cross section } \sim \Gamma_{\gamma \gamma} F^{2}\left(Q_{1}^{2}, Q_{2}^{2}\right)}
$$

Properties of two-photon events: boosted along beam axis, difficult to trigger on, transverse momentum of the entire event peaks at low values, no glueballs produced

Experimental Status of $\eta(1440)$

Mass region between 1200 and 1500 MeV contains several poorly-understood hadrons.
Some of these are, possibly, due to gluonic degrees of freedom.
$\eta(1440)$ is one of these hadrons: was observed in hadron collisions and radiative decays of J / φ, not observed in two-photon collisions until recently - glueball? Experiments disagree about the properties of this resonance...

Citation: D.E. Groom et al. (Particle Data Group), Eur. Phys. Jour. C15, 1 (2000) and 2001 partial update for edition 2002 (URL: http://pdg.Ibl.gov)

Recent news on $\eta(1440)$

L3 Collaboration / Physics Letters B 501 (2001) 1-11

\square

$$
\times \operatorname{BR}\left(\eta(1440) \rightarrow \mathrm{K}_{\mathrm{S}}^{0}\left(\rightarrow \pi^{+} \pi^{-}\right) \mathrm{K}^{ \pm} \pi^{\mp}\right)
$$

$$
=49 \pm 12 \text { (stat.) eV. (BR ~1 for ss̄ meson) }
$$

$$
\Gamma_{W} \text { too small for a meson - }
$$ mixing with a glueball?

An independent verification would be very useful, also, expecting larger signal with CLEO

$\Delta P_{T}^{2}\left(\mathrm{GeV}^{2}\right)$	Events	$M(\mathrm{MeV})$	$\sigma(\mathrm{MeV})$	$C L(\%)$	$\epsilon(\%)$	
$0-0.02$	37 ± 9	1481 ± 12	48 ± 9	89	1.03 ± 0.04	
$0.02-0.2$	28 ± 7	1473 ± 11	37 ± 8	77	0.85 ± 0.09	8.0 ± 2.0
$0.2-1$	29 ± 9	1435 ± 10	32 ± 10	99	1.74 ± 0.14	3.4 ± 2.3
$1-7$	21 ± 6	1452 ± 11	35 ± 10	55	1.4 ± 0.4	
PANIC'02					0.24	

Event Selection Criteria

- Exactly four reconstructed charged tracks in the entire detector (13% efficiency, 20\% syst.)
- Exactly $1 \mathrm{~K}_{\mathrm{s}}$ candidate (vertex radially displaced by two or more standard deviations
- Signal candidates' properties:
- transverse momentum below $100 \mathrm{MeV} / \mathrm{c}$

This selection is based (in part) on the hermeticity of CLEO detector, efficiency is shown for 1475 MeV

- amount of energy detected in calorimeter in unmatched clusters below 100 MeV
- at least one large transverse momentum track reaching barrel calorimeter
- make sure events were recorded with reliable triggers and pass beam-gas rejection
- 3 standard deviations PID consistensy for charged K and non $-K_{s} \pi$ using TOF and dEdx

Efficiency of this selection for MC samples (independent data is also used): Signal MC ($\eta(1440)$): 0.84% (total systematics is 30%)
This is not unusual for low-mass untagged two-photon events

Using Data to Measure Efficiencies and Estimate Systematics

Exclusive two-photon K_{s} pairs in data

Invariant mass of $K_{S} K_{S}$ candidates
$\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

Two-Photon K_{s} Pairs Below 1.4 GeV/c c^{2} are utilized

Transverse momentum in calibration data (points) and signal MC (line)

Invariant mass of K_{s} candidates in calibration data at low invariant mass

Tight Selection Criteria and Two-Photon Backgrounds

Some Important Distributions in Signal Data

These distributions are shown for data after applying all selection criteria (for right plot we removed PID requirement). Plots prove that there are $K_{s} K^{ \pm} \pi^{\mp}$ events in data.

Testing the Analysis on η_{c} Measurement

We obtain central value of 6.7 keV in both tests, while we reported
$\Gamma_{\gamma r}\left(\eta_{c}\right)=7.6 \mathrm{keV}+-0.8 \mathrm{keV}($ PRL 85, 3095 (2000)) - good (same data used).

Invariant Mass Distribution for Signal Candidates

Can only do upper limits, no observation. Is this surprising? Not necessarily: L3 integrated luminosity: 3\% of CLEO but L3 γ cross section: 6 times larger We can do sqrt(5) better with bckg

90\% CL UL: approx. < 33 events Efficiency (with systematics): 0.0051 Luminosity: 13.8 inverse femtobarns Cross section per 1 keV $\begin{aligned} & \\ & \text { width: } 36 \mathrm{pb}\end{aligned}$

Setting 90% CL UL on the product: $\Gamma_{\gamma}(\eta(1440)) B\left(\eta(1440) \rightarrow K_{s} K^{ \pm} \pi^{\mp}\right)$
< 14 eV (systematics included, preliminary) (L3 reports: 49 +- 12 eV for this value)

Two More Fits for Other Mass and Width Hypotheses

$\mathrm{K}_{\mathrm{s}} \mathrm{K}^{+} \pi^{-}$(and CC) Invariant Mass $\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$ in $\gamma \gamma$ data

Conclusions

In our analysis we do not observe any narrow resonances between 1.3 GeV and 1.7 GeV , also, we do not confirm L3 observation.

We set upper limits on the product of partial two-photon width and branching fraction (K_{s} branching fraction included)
For example, assuming $M=1.475 \mathrm{GeV}, \Gamma=50 \mathrm{MeV}$ $\Gamma_{\gamma}(\eta(1440)) B\left(\eta(1440) \rightarrow K_{s} K^{ \pm} \pi^{\mp}\right)<14 \mathrm{eV}$
(this is 2.9σ below L 3 number of $49 \mathrm{eV}+-12 \mathrm{eV}$)
Final result of our analysis will include tables of upper limits estimated using various values for the mystery resonance mass and width (analysis continues).

