Recent results from CLEO

Hubert Schwarthoff Cornell University, USA

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

Rencontres de Moriond 2002

Contents

CLEO introduction How to measure V_{cb}, V_{ub} ♦ HQET Exclusive measurements ♦ How b B s g can help in ... ♦ … inclusive measurements Summary

CLEO Introduction

Since 1979

- CESR: symmetric e⁺e⁻: 1.3 x 10³³/cm⁻²s⁻¹
- √s = 10.58 GeV (BB threshold) at Y(4S)
 B meson created ~ at rest
- 10M BB pairs 1990-2000 (CLEO II/II.5)
 9 fb⁻¹ on resonance, 4.4 fb⁻¹ off resonance
- 7M BB pairs 2000-2001 (CLEO III) Some results already presented.

Hubert Schwarthoff, Cornell University Rencontres de Moriond

CKM matrix

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

- Standard Model
- CP violation with b quarks
 Babar, Belle

- To improve knowledge: improve measurement errors, but errors from theory dominate many measurements
- Here: V_{cb} , V_{ub} PDG: $error(|V_{cb}|) = 5\%$ (2000 status) $error(|V_{ub}|) = 30\%$

How to measure V_{cb}, V_{ub}

• "Simple": Semileptonic decays $b \rightarrow c l v$, $b \rightarrow u l v$

Not so simple: need theory

HQET (e.g. Phys.Rev. D47 (1993) 2965) Calculate observables in 1/M_b

Exclusive: Need form factors

Use later

w = kinematic variable related to q^2 F²(w = 1) = F²(q² = q²_{max}) from HQET

♦ Inclusive:

 $\mathsf{B} \to \mathsf{XIv} : |\mathsf{V}_{\mathsf{cb}}|^2 = \Gamma(\mathsf{b} \to \mathsf{cIv}) \ \mathsf{h}(\overline{\Lambda}, \lambda_1) \ \ \frac{\mathsf{Use}}{\mathsf{later}}$

- * $\overline{\Lambda}$, λ_1 HQET parameters (b quark in B meson)
- * Assume quark-hadron duality
- ★ h($\overline{\Lambda}$, λ_1) from HQET

March 2002

$V_{cb} \text{ Exclusive: } B \to D^* | \nu$

- Analysis: 3.3M BB events (CLEO II)
- Reconstruct $D^* \rightarrow D\pi$ (charged+neutral)
- Use mass constraints, vertex, divide into 10 w bins 1 < w < 1.5</p>

March 2002

CLNS 01/1773 (2002)

$B \rightarrow D^* | v$

- Signal yields vs. w:
 Extrapolate to w = 1
 |V_{cb}|F(w=1) =
 0.0431 x (1±3%±4.2%)
- |V_{cb}| = 0.047 x (1 ± 3% ± 4.2% ± 3.8%)
 from theory, using F(1) = 0.919^{+0.03}_{-0.035} (lattice QCD, hep-ph/0110253)
- Most precise single |V_{cb}| excl. measurement (6.5%)

V_{ub} Exclusive: $B \rightarrow \rho, \pi \mid v$

- Analysis in progress both on CLEO II and CLEO III data
- Reconstruct v (CLEO technique)
- Background:
 - Off-resonance data
 - Monte Carlo
- Form factors: compare models
- $M_{beam}^2 = E_{beam}^2 (\Sigma \mathbf{p})^2 ~ M_B^2$
- $\Delta E = \Sigma E E_{beam}$
- Previous CLEO V_{ub} measurement: ~20%

Phys.Rev.Lett. 77, 5000(1996) Phys.Rev. D 61, 052001(2000)

Inclusive: $b \rightarrow s \gamma$

- Measure full photon energy spectrum (now E_γ > 2GeV)
- Need to model background very well (continuum π⁰, ...)
 off-resonance data
 neural net
 "Pseudoreconstruction"

Inclusive: $b \rightarrow s \gamma$

- HQET: $\langle E\gamma \rangle = \frac{1}{2} M_B f(\overline{\Lambda}/M_B)$ $f(\overline{\Lambda}/M_B)$ independent of decay (to first order)
- $\overline{\Lambda} = 0.35 \pm 0.08 \pm 0.1 \text{ GeV}$
- Second moment (width) measured but not used

$V_{cb} \text{ Inclusive: } B \to X_c | \nu$

- Measure full hadron spectrum
- P₁ > 1.5 GeV
- v reconstruction (missing mass)
- $M_x^2 \sim M_B^2 + M_{1v}^2 2E_B E_{1v}$
- Subtract background:
 - Continuum from offresonance data
 - $b \rightarrow ulv$: MonteCarlo
- $< M_x^2 M_D^2 > = 0.25 \pm 0.023 \\ \pm 0.062$

$V_{cb} \text{ Inclusive: } B \to X_c | \nu$

$\blacksquare HQET: < M_x^2 - M_D^2 > = f(\overline{\Lambda}, \lambda_1)$ Combine with Λ from $b \rightarrow s \gamma$ (+use τ_b): $\overline{\Lambda} = 0.35 \pm 0.07 \pm 0.1 \text{ GeV}$ $\lambda_1 = -0.236 \pm 0.071 \pm 0.078 \text{ GeV}$ $|V_{cb}| = 0.0404 \text{ x} (1 \pm 2.3\%)$ ± 1.3% ± 2%) 3.2% total error • Better than from $D^*|_{v}$ but requires QHD

V_{ub} Inclusive: $B \rightarrow X_u | v$

- Analysis: 9.7M BB events (CLEO II, II.V)
- Main background: B $\rightarrow X_c I v$ Use lepton spectrum endpoint beyond $X_c I v$ limit
- Neural net for continuum background suppression
 Lepto
- Previous analysis too model dependent
 → use larger fraction of lepton spectrum
 → need good MC for B → X_cIv (use measured form factors, HQET)

Extract V_{ub} from $\mathbf{B} \rightarrow X_u | v$

- Lepton spectrum: need f_u for b.f. $f_u = fraction of spectrum in measured p interval$ $Get shape from b <math>\circledast$ s g- only depends on b quark dynamics in B - $f(\overline{\Lambda}, \lambda_1)!$ Hep-ex/0202019
- Fit data for f_u
- $|V_{ub}| \propto B(B \rightarrow X_u | v)$
- V_{ub} vs. p interval Choose: 2.2GeV < p₁ < 2.6GeV: $|V_{ub}| = 0.00408 \times (1 \pm 8.3\% \pm 10.8\% \pm 3.9\% \pm 5.9\%)$ Best V_{ub} (~15%) (requires QHD)

Summary of recent CLEO results

Exclusive:

- $|V_{cb}|$: B \rightarrow D*Iv: 0.047 x (1 ± 6.5%)
- $|V_{ub}|$: B $\rightarrow \rho, \pi$ Iv: Work in progress

Inclusive:

- $|V_{cb}|$: B \rightarrow X_cIv: 0.04 x (1 ± 3.2%) using γ spectrum from b \rightarrow s γ
- $|V_{ub}|$: B \rightarrow X_uIv: 0.004 x (1 ± 15%) using γ spectrum from b \rightarrow s γ
- CP violation: resulting sin(2β) competitive
- Stay tuned for more CLEO III results
- CLEO-c in preparation

$sin 2\beta \& Vub/Vcb$

- $|Vub/Vcb| = 0.101 \pm 0.017$
 - $\sin 2\beta_{\rm CKM} = 0.74 \pm 0.09 \pm 0.08$
 - (Assumes $45^{\circ} < \gamma < 110^{\circ}$)
- This agrees well with $sin 2\beta$ from BABAR and Belle:
- $(\sin 2\beta)_{\rm mixing} = 0.79 \pm 0.10$
- A significant consistency check of the CKM mechanism of CPV. Thecks of this type, with increasing recision, will be the hallmark of heavy avor physics in this decade.
- Autumn 2001 Ian Shipsev

$sin 2\beta \& Vub/Vcb$

From CLEO data Vub/Vcb is determined to 17% What are the implications ?

- BABAR & Belle immediate objective: (sin2β)_{mixing}
- Mixing :box diagrams new physics may enter: (sin2β+Θ)_{mixing}
- The goal compare $(\sin 2\beta)_{\text{mixing}}$ to $\sin 2\beta_{\text{CKM}}$ i.e β from Vub/Vcb

• β depends strongly on |Vub/Vcb| but weakly on γ for $45^{\circ} < \gamma < 110^{\circ}$ |Vub/Vcb| 0.101 ± 0.017 $sin2\beta_{CKM}$ 0.95 < @ 90% CL

• Take $45^{\circ} < \gamma < 110^{\circ}$

 $\frac{\sin 2\beta_{\text{CKM}}}{\sin 2001} = 0.74 \pm 0.09 \pm 0.08$ Autumn 2001 Ian Shipsev

(1st error Vub, 2nd error grange)

V_{cb} comparison

Autumn 2001 Ian Shipsey

V_{cb} comparison

March 2002

D mixing

- Current CLEO analysis: $B \rightarrow K^*ev$
- Measure "right sign decay" $B^+ \rightarrow \pi^+{}_s D^0,$ $D^0 \rightarrow K^{*-}e^+\nu$ and "wrong sign decay" $B^+ \rightarrow \pi^+{}_s D^0,$ $D^0 \rightarrow K^{*+}e^-\nu$
- Rmix = .0087 (prelim.)

$D^0-\overline{D}^0$ Mixing Limits

March 2002