CLEO and QCD: from Beauty to Charm (High Precision Tests of Theory)

Richard S. Galik Cornell University 24 June 2002

With much thanks to many CLEOns!

CESR/CLEO and CKM:

Rich 20+ year tradition of **B** physics **Many** important discoveries and measurements:

> Penguins: b s (V_{ts}) B⁰ Mixing (V_{td}) Rare B decays V_{ub} and V_{cb} Etc.

... but much more, too!!

A diverse collaboration with

diverse physics interests!!

24 June 2002

The CLEO Collaboration

- Membership:
 - ~20 Institutions
 - ~150 physicists
 - •~1/2 DOE, 1/2 NSF
 - · Currently expanding...
- Publication history 1980-
 - ~330 papers
 - diverse physics:

Albany Caltech CMU Cornell Florida Harvard Illinois Kansas Minnesota Northwestern Ohio State Oklahoma Pittsburgh Purdue Rochester SMU UCSD UCSB Syracuse Vanderbilt Wayne State

CESR has performed well ... some 24 fb⁻¹ in 1989-2001 some 17 million BB pairs in CLEO

... but BaBar/Belle have started up "brilliantly" ... 10 fb⁻¹ in first year ... soon to have 100 fb⁻¹

... no competition from CLEO for time-dependent studies

... fading competitive stance for CLEO in rare B decay modes

So, how **do** CESR and CLEO continue to contribute ?!

24 June 2002

Exploiting the experimental precision of the asymmetric B factories

result = value $\pm \sigma_{stat} \pm \sigma_{syst}$ $\pm \sigma_1$ (other experiments) $\pm \sigma_2$ (theory)

For example:

D branching fractions limit any result involving B
 D

2) Strong (NPQCD) uncertainties limit many weak interaction results (sin2 a "gold-plated" exception!)

24 June 2002

- Use B *l* decays;
 rate gives V_{ub} -- in
 principle!
 - Experimental precision at the B-Factories could approach 4% in the next 5 years
 - Strong interaction effects (*i.e.* the "form factor" for the u quark materializing as a pion) are known to ~20%.

Lattice QCD to the Rescue?

- Only complete definition of QCD
- Not a "model" no fudge factors

 Current (last ~5 yrs) situation: 10-20% accuracy on masses, form factors, etc.

• Can it get to a few percent for:

B and D systems?

and J/ systems?

Light hadron systems ?

Masses, form factors, rates, etc.?

And with 2-3% theory errors:

But, would one believe these small uncertainties?

Need to show that Lattice QCD gets the "right" answer for a number of diverse quantities in b- and c- physics!

That's where the CESRc/CLEOc program fits into this picture!

Fixed term, 3-4 year program Precision QCD tests in b and c Spans 3 < √s < 12 GeV!

See CLNS 01/1742 ("Yellow Book") or http://www.lns.cornell.edu for Project Description

B-Factories + 10% theory errors

B-Factories + 2-3% thy err (CLEO-c):

The CLEO-c Program !

Prologue: Upsilons ~1fb⁻¹ each (15), (25), (35) Spectroscopy, Matrix Elements, _{ee} 10-20 times existing data

Act I: (3770) -- 3 fb⁻¹ 30M events, 6M *tagged* D decays (310 times MARK III)

Act II: $s \sim 4100 -- 3 \text{ fb}^{-1}$ 1.5M D_sD_s, 0.3M <u>tagged</u> D_s decays (480 times MARK III, 130 times BES II)

Act III: (3100) -- 1 fb⁻¹ 1 Billion J/ decays (170 times MARK III, 20 times BES II)

24 June 2002

CESR-c: QCD from c to b

CESR needs to be able to run at all beam energies from 1.5 GeV (J/) to 6.0 GeV $(_{b}$ pair threshold).

Superconducting IR magnets installed in 2001 ... multiple functions... work great!

Provide increased flexibility and focusing!

Superconducting IR Magnet Assembly Being Installed into CESR/CLEO

24 June 2002

Energy and cross section look great!

CESR-c: QCD from c to b

At low energies CESR needs to greatly increase the "cooling" of the beams via synchrotron radiation (SR) to "damp" oscillations, increase injection rate, lower instability thresholds!

Solution? Wigglers! Similar to SR insertion devices Needed for LC damping rings Superferric design at 2.1 T Need 14 units, each 1.4 m long Prototype Performance? Run "cold" at 125% design current Undergoing final field quality tests Insertion this summer!

24 June 2002

First Wiggler is Ready!

Being inserted into final cryostat after initial tests!

In L-He staging area for final tests!

To be installed early August! ... Five more in early 2003!

24 June 2002

The CLEO III Detector

From CLEOIII to CLEO-c

Great drift chamber! Great EM calorimeter! Great particle ID (RICh) ! Great trigger and DAQ! ... but aging silicon vertexer

New small wire chamber! Small cell, 6 layers, stereo Extensive performance studies Built ... HV tests soon Installation: Early 2003

Strung and being tested

24 June 2002

Relative Performance of New Wire Chamber

24 June 2002

Status of Υ Running

	(1S)	(2S)	(3S)
Target	950	500	1000
Actual	1090	304	1270
Old	79	74	110

Status Taken In Progress Processed

All in pb⁻¹ for "on-resonance" Also have "continuum" and scan data!

Two groups of Υ analyses

"Discovery": D-states: (L = 2) $_{b}$ and h_{b} singlets Rare transitions (E1, had.) "Precision": ee \mathcal{B}_{u} and tot

hadronic transitions

Y Discovery Potential

Precision Υ **Analyses**

 $_{ee}$ to 2-3% each (better for ratios) $\mathscr{B}_{\mu\mu}$ to 3-4% each; $_{tot}$ to 5% Vastly improved studies

Integrated to give $_{ee}$ Great attention paid to syst biases Also determine $\mathcal{B}_{\mu\mu}$ and then $_{tot}$

24 June 2002

DiPion Invariant Mass (35) (15) + -

Data with errors - CLEOII Fit - Lahde and Riska New CLEO statistics:

Charmed Hadrons in CLEO-c

Data samples:

(3770): 3 fb⁻¹ (1 "year") 30M events ~6M *tagged* D decays

 $D_S D_S$: 3 fb⁻¹ (1 "year") 1-2M $D_S D_S$ 0.3M *tagged* D_S decays

Analyses (a sampler): "Tagging" of D and D_s Double Tags (Branching Fractions) Leptonic Decays (f_D and f_{Ds}) Semi-leptonic Decays (f₊/f_D)

Tagging Technology

- Pure $D\overline{D}$ or $D_s\overline{D}_s$ production
 - ✓ Many large branching ratios (~1-10%)
 - ✓ High reconstruction efficiencies
 - ✓ Two chances !

high net efficiency ~20%!

Beam Constrained Mass

 $D_{S} \rightarrow \mu \nu$

CLEO (4.8 fb⁻¹): f_{Ds}=280±14±25±18 stat/sys/

BaBar/Belle: (400 fb⁻¹):

f_{Ds}/f_{Ds}: 4-8%

partial width:

Double-Tagged *B* **Measurements**

~ No background in hadronic modes

Set absolute scale for all heavy quark meas.

Mode	2	PDG2000	CLEOc
		(3/3)%	(3/3)%
Do	K	2.4	0.5
D ⁺	K	7.2	1.5
Ds		25	1.9

Low backgrounds and high rates

Decay Mode	PDG2000	CLEOc
	(3/3) %	(3/3)%
Dº KI	5	2
Dº I	16	2
D+ 1	48	2
D _s I	25	3

Plus other vector modes...

V_{cd} and V_{cs} to ~1.5% Form factor slopes () to few per cent to check theory!

24 June 2002

Further Testing LQCD $(D \ell) / (D^+ \ell)$ Independent of $|V_{cd}|$ Semileptonic: use e and μ use D⁰ and D⁺ - tradeoffs Leptonic: use μ and $(D_{S} \ell) / (D_{S} \ell)$ Incl $\mathcal{B}(K^+K^-)$ uncertainty Test rate predictions to 3.5-4%

Test **amplitudes** at **1.5-2%**

J/ψ Radiative Decays

Glue-rich environment

Look for |gg> states - glueballs! new form of matter

RSGalik Lattice02

A Billion J/ψ Events

Present data systematic issues hadronic backgrounds in radiative decays hermticity

Need LARGE statistics (> BES/BEPC)

Need multi-faceted approach

two-photon production

 Υ radiative decays

 $\textbf{J/}\psi$ radiative decays

Need mature, high quality detector

(CLEOIII !!!)

Tensor Glueball Candidate $f_J(2220)$

Expect to see in J/ f_{.T} glue-rich environment predicted to be narrow (~20 MeV) large radiative f_2 and f_4 modes **Exclusive studies** essentially no hadronic background! extremely clean signatures large statistics Complementary *in*clusive studies Complementary anti-search in Complementary search in decays

	BES	CLEO-c	
+ -	74	32000	
00	18	13000	BES (publ.)
K ⁺ K ⁻	46	18600	C = C = (109 mm)
K _s K _s	23	5300	$CLEO-C (10^{\circ} \text{ proj.})$
pp	32	8500	
	-	5000	
24 June 2	2002	RSGalik La	ttice02 37

Supernumerary f₀ Triplet

Observe f₀(1370, 1500, 1710) Composed of |nn>, |ss>, and |gg>

Many approaches needed! exclusive and inclusive decays PWA - J^{PC} known - hermeticity partial widths

A Billion?!?

Branching fractions ~ 10⁻³ - 10⁻⁴ Need ~ 10⁶ per channel for PWA Samples of 10⁷ insufficient

24 June 2002

Comparison with Other Expts

China:

BES II is running now. BES II --> BES III upgrade BEPC I --> BEPC II upgrade, ~10^{33?} lumi Physics after 2005 if approval & construction go ahead.

Quantity	BES II	CLEO-C
J/psi yield	50M	> 1000M
dE/dx res.	9%	4.9%
K/pi separation up to	600 MeV	1500 MeV
momentum res. (500Mev)	1.3%	0.5%
Photon resolution (100 Mev)	70 MeV	4 MeV
Photon resolution (1000 Mev)	220 MeV	21 MeV
Minimum Photon Energy	80 MeV	30 MeV
Solid angle for Tracking	80%	94%
Solid angle for Photons	75%	95%

HALL-D at TJNAL:

p to produce states with exotic Quantum Numbers Focus on light states with J^{PC} = O+-, 1+-, ...

Complementary to CLEO-C focus on heavy states with J^{PC}=0++, 2++, ...

Physics in 2007+?

24 June 2002

Other Possible Physics Topics Taus:

m_τ from threshold scan parameter in μ — Systematically dominated modes **R-scans:** Scan 5-8 GeV: X-ball/MkI Basic Scan of 3.7-6 GeV Advanced Scan: D/D*/D_s ψ'(3686):

Gateway to many states P-V puzzle Study of J/ systematics

24 June 2002

Thoughts to take away .

The CLEO collaboration at CESR is embarking on a mission to determine a large number of measurements important to QCD with unprecedented precision.

It is a challenge to the theoretical community for predictions of similar precision to enhance our understanding of both strong and EW physics.

We at CLEO welcome your ideas and collaboration in maximizing the impact of the CLEO-c program.