Improved Measurement of |V_{ub}| with Inclusive Semileptonic B Decays

Stefan Anderson University of Minnesota CLEO Collaboration

2002 Lake Louise Winter Institute

The CKM Matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- Parameterizes flavor mixing in weak decays
- Diagonal elements: near 1
- Off-diagonal: crossgenerational, smaller
- Unitary
- Complex phase generates CP Violation

• Unitarity constraint on 1st and 3rd columns:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

- Triangle: Sides and angles accessible experimentally
- Goal: overconstrain and test SM

Inclusive Semileptonic B Decays

- B mesons can only decay across generations
- Semileptonic decays give most direct access to |V_{ub}|, |V_{cb}|
- |V_{ub}|/|V_{cb}| ~ 0.1: decays to charmed mesons ~100 times more likely

Decays to charm
 overwhelm b→u
 signal everywhere but
 endpoint region

Lepton Energy Endpoint

Approach: look for leptons in endpoint region

- Provided first evidence $|V_{ub}| \neq 0$
- $|V_{ub}|$ Measurement
 - − Need fraction of spectrum measured ($f_u \sim 10\%$ for 2.3 → 2.6 GeV/c) to get $|V_{ub}|$ from partial Branching Fraction (BF)
 - Previous measurements relied on models \rightarrow large error
- What's new in this measurement:
 - ~10x more data than 1993 measurement
 - Better understanding of $B \rightarrow X_c l$? bkg \Rightarrow lower momentum cut and test stability of result
 - Heavy Quark Theory (HQT) and $B \rightarrow X_s \gamma$ photon-energy spectrum used in place of models

HQT, $B \rightarrow X_s \gamma$, and $B \rightarrow X_u l$?

- Parton level decays calculable w/ NLO QCD
- Meson level decays depend upon
 - $-m_b$ mass of b quark
 - p_F Fermi momentum; motion of b quark in B meson
- Not directly calculable; but can be described with a shape function F(k₊)
 - Convolute w/ parton spectrum
 - Universal for b→light transitions (to 1st order)

- Quark-hadron duality assumed
- There are theoretical constraints on shape of F(k₊)
- Several parameterizations in literature (we use 3)

The Shape Function

CESR & CLEO II Dataset

- CESR a Symmetric $e^+e^$ storage ring
- On the $\Upsilon(4S)$:
 - $e^+e^- \otimes i(4S) \otimes BB(\mathbf{s} \sim 1 nb)$
 - $e^+e^- \otimes qq, (q = u, d, c, s) (\mathbf{s} \sim 3 nb)$
 - $(P_B \sim 300 \text{ MeV}/c)$
- 1/3 running at OFF Υ(4S) for continuum bkg subtraction
- CLEO II ('90-'99)
 ON: 9.1 fb⁻¹ (9.7M BB)
 OFF: 4.4 fb⁻¹

The CLEO II Detector

- Nearly Hermetic
- Tracking Chambers
 - 1.5 T **B** field
 - 95% solid angle
 - Provides p and dE/dx
- EM Calorimeter
 - Inside magnet
 - 98% solid angle
- Muon Detectors
 - 85% solid angle

$B \rightarrow X_u l$?: Analysis Strategy

- High Quality Tracks
 - Candidates restricted to central region of detector (~71% of solid angle)
 - Require excellent fits to reduce pollution from mismeasurement
- Lepton Identification
 - Electrons: combine E/p, dE/dx, other info into loglikelihood; fake rate < 0.1%
 - Muons: require hits at \geq 7 nuclear interaction lengths; fake rate \cong 0.5%

- Backgrounds
 - $B \rightarrow X_c l$? dominates below kinematic limit
 - Continuum production dominates above

$B \rightarrow X_u l$?: Analysis Strategy

- Continuum Background
 - Subtract with OFF data
 - Suppress w/ neural net (NN)
 - Uses event shape info
- $B \rightarrow X_c 1$? Background

- 1. Use simulated spectra with $B \rightarrow D, D^*, D^{**} \& D^{NR}$ components
- 2. Get mixture from fit to *e* spectrum without NN cut
- 3. Extend mixture to spectra with NN cut; minimal free parameters for data/MC differences
- 4. Systematics: Inner Brem., $D/D^* \text{ mix}$, $B \rightarrow D^{(*)}$ form factors, $D^{**} \& D^{NR}$

Lepton Yields & Partial BFs

- Total $e \cong 0.21 \pm 0.015$
 - systematic error equal parts detector response and model dependence
- Measure yield in 5 overlapping intervals
- Need fraction of spectrum in each pinterval (f_u) from $B \rightarrow X_s \gamma$

$B \rightarrow X_s \gamma$: Analysis Strategy

- $\sim 2.0 < E_{\gamma} < \sim 2.7 \text{ GeV}$
- Continuum (qq) contributions HUGE
 - Subtract with OFF data
 - Must suppress to reduce error of subtraction
- Production from other B decays important below 2 GeV
- Distinguishing hard photons from continuum versus B decays is the task

S. Anderson (CLEO)

2002 Lake Louise Winter Institute

$B \rightarrow X_s \gamma$: Analysis Strategy

- Shape Analysis
 - Combine many shape variables with Neural Net
- Pseudo-reconstruction

- Identify the X_s System
 - K with up to 4π 's with at most $1 \pi^0$
- Look for lepton
 - B-decay tag
 - Flavor tag

• Four Event Types:

Shape Analysis				
Reconstructable		Non-Reconstructable		
Lepton	No	Lepton	No	
_	Lepton	_	Lepton	

- Use all the available information
 - 4 Different Neural Nets
 - Rather than cut on the NN output, weight each event to minimize the statistical uncertainty

Fitting E? Spectrum

- Procedure:
 - Generate lab spectra for different F(k₊) parameters
 - Fit E? spectrum over 1.5-2.8 GeV/c
 - Repeat to find minimum ?² and error ellipse

- Use results to compute $B \rightarrow X_u l$? spectra and f_u 's
- Correct for electroweak radiative effects
- Systematics:
 - Other B decay processes
 - $-a_{s}(\mu)$: vary μ from
 - $m_b/2 \rightarrow 2m_b$
 - $F(k_+)$: 3 choices

Momentum Interval (GeV/c)	f_u
$2.0 \le p_\ell < 2.6$	$0.266 \pm 0.041 \pm 0.024$
$2.1 \le p_\ell < 2.6$	$0.198 \pm 0.035 \pm 0.020$
$2.2 \le p_\ell < 2.6$	$0.130 \pm 0.024 \pm 0.015$
$2.3 \le p_\ell < 2.6$	$0.074 \pm 0.014 \pm 0.009$
$2.4 \le p_\ell < 2.6$	$0.037 \pm 0.007 \pm 0.003$

|Vub| calculation

$$|V_{ub}| = (3.07 \pm 0.12) \cdot 10^{-3} \cdot \frac{\mathbf{\acute{e}B}(B \otimes X_u \ell \mathbf{n})}{\mathbf{\acute{e}}} \frac{\mathbf{\acute{u}}^2}{\mathbf{\acute{e}}} \cdot \frac{\mathbf{\acute{e}1.6 \text{ ps}}}{\mathbf{\acute{e}}} \frac{\mathbf{\acute{o}}^2}{\mathbf{\acute{e}}}$$

(Hoang, Ligeti, Manohar; Uraltsev)

• Results:

Momentum Interval (GeV/c)	$V_{ub}(10^{-3})$
$2.0 \le p_\ell < 2.6$	$3.87 \pm 0.83 \pm 0.35 \pm 0.15 \pm 0.12$
$2.1 \le p_\ell < 2.6$	$3.95 \pm 0.46 \pm 0.40 \pm 0.16 \pm 0.16$
$2.2 \le p_\ell < 2.6$	$4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24$
$2.3 \le p_\ell < 2.6$	$4.27 \pm 0.24 \pm 0.47 \pm 0.17 \pm 0.34$
$2.4 \le p_\ell < 2.6$	$4.05 \pm 0.28 \pm 0.45 \pm 0.16 \pm 0.45$

• Uncertainties:

- 1. Endpoint yield
- 2. f_u measurement
- 3. $|V_{ub}|$ expression
- 4. Theoretical assumptions
- Dominant error depends upon lower limit:
 - Near 2.0: $b \rightarrow c$ subtraction
 - Near 2.4: f_u extrapolation
- We quote 2.2-2.6 GeV/c result as best compromise

Conclusions

• We find:

 $|V_{ub}| = (4.08 \pm 0.63) \times 10^{-3}$

- Consitent with previous measurements
- New approach eliminates reliance on modeling
- Overall error smaller and better-measured than previous measurements

• Result stable as lower momentum limit varied:

