New CLEO Results on Mixing and CP Violation Searches in D⁰ Decay and D^{*+} Intrinsic Width

Alex Smith

University of Minnesota International Workshop on B Physics and CP Violation, BCP4 Ise-Shima, Japan, Feb 19-23, 2001

- Intrinsic width measurement of the D^{*+}
- New CLEO results on D⁰-D⁰ mixing and CP violation
 - First measurement of "wrong-sign" $D^0 \rightarrow K^+ \pi^- \pi^0$ rate
 - Searches for CP violation in D⁰ decays to pseudoscalar particles
 - Measurement of the mixing parameter **y** using CP even decays $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$
- Conclusions and future directions

The CLEO II.V Detector

K

 π^+

 π

CESR storage ring operating on/near Upsilon(4S)

9 fb-1 of integrated luminosity

First Measurement of the D*+ Width

- Probe of non-perturbative strong physics of heavy-light quark systems
 - Framework of theory understood
 - Predictions range from 15 150 keV
- Previous best measurement is upper limit from ACCMOR
 - Significant improvement in statistics
 - CLEO II.V resolution ~150 keV

Measurement Technique

• Use well-measured decay channel

$$D^{*+} \rightarrow D^0 \pi^+_{\text{slow}}; D^0 \rightarrow K^- \pi^+$$

• Experimentally, we measure the energy released in the D*+ decay, Q:

$$Q \equiv \underbrace{m(K^{-}\pi^{+}\pi^{+}_{\text{slow}})}_{D^{*+}} - \underbrace{m(K^{-}\pi^{+})}_{D^{0}} - \underbrace{m_{\pi^{+}}}_{\pi_{\text{slow}}}$$

- $\Gamma(D^{*+})$ can be expressed in terms of its partial width to $D^0\pi^+$
- We assume $\Gamma(D^0) \ll \Gamma(D^{*+})$
 - Therefore, $\Gamma(Q)$ comes entirely from D^{*+} width convoluted with tracking resolution
- Perform fit to determine $\Gamma(Q)$
- Must REALLY understand detector and Monte Carlo simulation of resolution
 - No zero-width calibration mode
 - CLEO detector and simulation well-studied

Extracting the Intrinsic Width

- Unbinned maximum likelihood fit to Q
- Fit to Breit-Wigner line shape
- Input measured Q and σ_0 for each event
- Variables in fit:
 - $\quad \Gamma(Q), <\!\!Q\!\!>$
 - N_s : number of signal events
 - f_{mis} : fraction of mismeasured signal events
 - σ_{mis} : resolution of mismeasured events
 - N_b : number of background events
- Fixed background shape from fit to MC

$$\Gamma(D^{*+}) = 96.2 \pm 4.0 \text{ (stat) } \text{keV}$$

5

Tests of the Detector Simulation

- Excellent agreement of resolution between Monte Carlo and data
 - No corrections necessary
- All known contributions to resolution carefully checked in simulation

Tests of the Detector Simulation

- Mis-modeling of the tracking resolution will effect kinematic variables of decay
- Test for mis-modeling of key variables of decay:

$$\frac{\partial Q}{\partial \theta}, \frac{\partial Q}{\partial P(\pi_{\text{slow}})}, \frac{\partial Q}{\partial P(D^0)}, \frac{\partial Q}{\partial P(D^0)}$$

- Good MC/data agreement of Q peak width distribution with ~90 keV D^{*+} width
 - Dependence well modeled 7

Tests of the Detector Simulation

- Not quite as good agreement of mean Q
 - Included as systematic error
 - We are not trying to measure the mean, however

Effect of Tracking Mistakes on $\Gamma(Q)$ Result

- Fit to sample with tight tracking selection
- Apply very tight cuts to tracks to remove tracking mistakes
 - SVX hits in both views on all layers
 - No hits within 2 mm of silicon wafer edge
 - Large fraction of possible drift chamber hits
 - Tight matching of tracks between tracking devices
- Results are consistent with nominal fit

Test Sensitivity to Mismodeling of Decay Kinematics

- Fit to sample with tight kinematic selection
- Select sample with minimal dependence on kinematics of decay:
 - Small values of

$$\left| \frac{\partial Q}{\partial P_{D^0}} \right|$$
 and $\left| \frac{\partial Q}{\partial P_{\pi^+_{\text{slow}}}} \right|$

• Result is consistent with nominal fit

Summary of Systematic Errors

Source	$\delta\Gamma(D^{*+})$ (keV)
Variation of <q></q>	16
Mismodeling of σ_0	11
Fit variable correlations	8
D ⁰ production point	4
Background shapes	4
Offset Correction	2
Data format digitization	1
Total	22

Conclusions: D*+ Width Measurement

• We measure the D*+ width with best precision yet:

$$\Gamma(D^{*+}) = 96 \pm 4 \text{ (stat)} \pm 22 \text{ (syst) } \text{k}e\text{V}$$

- Consistent with predictions based on HQET and relativistic quark models
- Higher than predictions based on QCD sum rules
- Input into phenomenology of other important heavy-light quark systems

Standard Model prediction: $|x| \approx \tan^2 \theta_C \times \text{GIM suppression} \approx 10^{-6} - 10^{-2}$ Signatures of Non-Standard model physics: 1) Large |x|, 2) |x| >> |y|, *CP* viol. interference between 3) x and y or 4) x and DCSD

13

Note: C conjugate versions are implied throughout this talk, but not shown for clarity

Data Sample and Selection

- Good quality charged tracks
- Good π^0
 - $p(\pi^0) > 340 \text{ MeV/c}$
 - $E(\gamma) > 30$ (60) MeV Central (Endcap)
 - $|m(\gamma\gamma)-m(\pi^0)| < 2\sigma$
- D⁰ vertex: PROB > 0.0001
- $|m(\pi K \pi^0) m(D^0)| > 4\sigma$
- π_{slow} refit through intersection of D⁰ and CESR beam spot : PROB > 0.0001
- $p(D^{*+}) > 2.5 \text{ GeV/c}$

Complication of Multi-body Decays CLEO finds rich RS Dalitz plot : $\rho(770)^+, K^*(892)^-, K^*(892)^0$, **CLNS 00-23** (Submitted to $\rho(1700)^+, K_0(1430)^-, \overline{K_0}(1430)^0, K^*(1680)^-, \text{ non - resonant}$ Phys. Rev. D)

Efficiency of All Cuts

Fit to Determine N_{WS}/N_{RS}

Two-dimensional maximum likelihood fit to Q -m($K\pi\pi^0$) distribution

- Background shapes from Monte Carlo (8X data set)
 - RS \overline{D}^{0} ->K $\pi\pi^{0}$ + uncorrelated π_{slow}
 - Charm decays other than correctly reconstructed D^0 ->K $\pi\pi^0$
 - $e^+e^- \rightarrow u\bar{u}, dd, or \bar{ss}$
- Signal shape from RS data

Statistical significance of signal = 4.9s

Determination of Efficiency Ratio

- Maximum likelihood fit to wrong-sign Dalitz plot
- Fit $m^2(K^+\pi^-)$ vs $m^2(K^+\pi^0)$ distribution
- Start with measured RS amplitudes and phases
- Allow $A(K^{*0}\pi^0)$, $\phi(K^{*0}\pi^0)$, $A(K^{*+}\pi^-)$, and $\phi(K^{*+}\pi^-)$ to float relative to $K^+\rho^-$ mode
 - Aand ϕ of minor modes fixed relative to $K^+\rho^-$
- Efficiency function from fit to non-resonant MC sample
- Background function from fit to side band in Q
- Signal fraction from WS Q-m(K $\pi\pi^0$) fit
- Large statistical and systematic errors on amplitudes and phases, but efficiency ratio relatively insensitive

$$\frac{\overline{\varepsilon}_{RS}}{\overline{\varepsilon}_{WS}} = 1.00 \pm 0.02 \text{ (stat)}$$

Important Systematic Errors in R_{WS} Measurement

• Q - m(K $\pi\pi^0$) background shapes: fits to sub-regions : 14%

- Efficiency ratio: 9%
 - Uncertainty in amplitudes and phases of minor resonances: 8%
 - Dalitz plot of backgrounds: 3%
 - Uncertainty of Dalitz plot fit method: 3%

Result of R_{WS} Measurement

Source	$\delta(R_{WS})/R_{WS}$
Q-m bckg. shapes	14%
Efficiency ratio	9%
Mismodeling of selection variables	3%
Statistics of Q-m bckg. shapes	2.4%
Total	17%

$$R_{WS} = (0.43^{+0.11}_{-0.10} \text{ (stat.)} \pm 0.07 \text{ (syst.)})\%$$
First non-zero rate measurement in this channel

Mixing and DCSD Limits

Mixing and DCSD Limits

Note: If D^0 ->X->K $\pi\pi^0$ and D^0 ->K π do not have the same strong phase, then x', y', and R_{DCSD} are not necessarily the same variables for different decays

Searches for Direct CP Violation in D⁰ Decays

- Cabibbo-suppressed charm decays are a good place to look for non-Standard Model effects:
 - Expected to be small in Standard Model
 - Multiple paths to same final state with a weak phase difference
 - Large final state interactions likely
 - Enhance CP violation
- Search in the channels: $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$, $K^0{}_S\pi^0$, $\pi^0\pi^0$, and $K^0{}_SK^0{}_S$
- Experimentally, we measure the asymmetry for final state f:

$$A = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to f)}$$

Searches for CP Violation in D⁰ -> K⁺K⁻, $\pi^+\pi^-$

- D⁰ flavor tagged by pion charge in D^{*+} -> D⁰ π^+_{slow}
- Refit π⁺_{slow} through intersection of D⁰ and run-averaged beam spot
- Fit Q spectrum to obtain yields
 - Monte Carlo simulation of backgrounds
 - Fit in bins of D^0 momentum
- Dominant systematic errors:
 - Fitting procedure (0.69%)
 - Reconstruction bias (0.48%)

Searches for Direct CP Violation in $D^0 \rightarrow K^+K^-, \pi^+\pi^ A(K^+K^-) = 0.0005 \pm 0.0218 \text{ (stat)} \pm 0.0084 \text{ (syst)}$

 $A(\pi^+\pi^-) = 0.0195 \pm 0.0322 \text{ (stat)} \pm 0.0084 \text{ (syst)}$

Searches for Direct CP Violation in

 $D^0 \rightarrow K^0_{\ S} \pi^0, \pi^0 \pi^0, \text{ and } K^0_{\ S} K^0_{\ S}$

- Do not have well-reconstructed D⁰ direction to refit slow pion
- 13.7 fb⁻¹ from both CLEO II and CLEO II.V configurations
 - No benefit from silicon vertex detector in this mode
- Analysis method:
 - Reconstruct K_{s}^{0} in $\pi^{+}\pi^{-}$ mode
 - Select candidate events near D⁰ mass
- Background subtract to obtain yields
- Implicit assumption of no CP asymmetry in background

– Fit to Q side bands

Searches for Direct CP Violation in

 $D^0 \rightarrow K^0_{\ S} \pi^0, \pi^0 \pi^0, \text{ and } K^0_{\ S} K^0_{\ S}$

- Systematic errors: Potential false asymmetries from
 - Fit method: 0.5%
 - Background: 0.35% in $K_{S}^{0}\pi^{0}$, 12% in $K_{S}^{0}K_{S}^{0}$, negl. in $\pi^{0}\pi^{0}$
 - Slow pion finding: 0.19%
- Asymmetry results:
 - Significant improvement over previous measurement in $K_{s}^{0}\pi^{0}$ channel
 - First measurements in $\pi^0\pi^0$, and $K^0_{\ S}K^0_{\ S}$ channels

$$A(K_{S}^{0}\pi^{0}) = (+0.1\pm1.3(\text{stat}+\text{syst}))\%$$
$$A(\pi^{0}\pi^{0}) = (+0.1\pm4.8(\text{stat}+\text{syst}))\%$$
$$A(K_{S}^{0}K_{S}^{0}) = (-23\pm19(\text{stat}+\text{syst}))\%$$

Measurement of y Using CP-even Decays of D⁰ to K⁺K⁻ and **p**⁺**p**⁻

 Theorists trying to reconcile CLEO D⁰->K⁺π⁻ and FOCUS D⁰->K⁺K⁻ measurements

A. Petrov, hep-ph/0009160

- Possible explanations:
 - y of order few percent?!
 - Would be very surprising
 - Very large strong phase between Cabibbo-favored decay and DCSD (very large SU(3) symmetry breaking)
- Experimentally, we compare lifetime with well-measured D^0 ->K⁻ π^+ mode:

 $y = \frac{\tau_{\overline{CP}}}{\tau_{CP^+}} - 1, \quad \overline{CP} \equiv CP \text{ neutral state}$

 $D^{0}-\overline{D}^{0}$ Mixing Limits

Analysis Technique

- Use D*+-> D⁰π+_{slow} tag to reduce background
 Select signal region in Q
- Reconstruct D⁰ proper time
- Fit the proper time distribution to determine the D⁰ lifetime

Mixing and DCSD Limits

Assuming strong phase, δ_s , between CFD and DCSD of zero

Conclusions

• Best measurement of the D^{*+} width:

 $\Gamma(D^{*+}) = 96 \pm 4 \text{ (stat)} \pm 22 \text{ (syst)} \text{ keV}$

• First measurement of "wrong sign" rate in D⁰->K⁺ π ⁻ π ⁰:

 $R_{WS} = (0.43^{+0.11}_{-0.10} \text{ (stat.)} \pm 0.07 \text{ (syst.)})\%$

- Combined proper time/Dalitz fit under study -- stay tuned!
- New direct CP violation search results

 $A(K_{S}^{0}\pi^{0}) = (+0.1\pm1.3 \,(\text{stat} + \text{syst}))\%$ $A(\pi^{0}\pi^{0}) = (+0.1\pm4.8 \,(\text{stat} + \text{syst}))\%$ $A(K_{S}^{0}K_{S}^{0}) = (-23\pm19 \,(\text{stat} + \text{syst}))\%$ $A(K^{+}K^{-}) = 0.0005\pm0.0218 \,(\text{stat})\pm0.0084 \,(\text{syst})$ $A(\pi^{+}\pi^{-}) = 0.0195\pm0.0322 \,(\text{stat})\pm0.0084 \,(\text{syst})$

Reliniters

• New y measurement:

$$y = -0.011 \pm 0.025 \text{ (stat)} \pm 0.014 \text{ (syst)}$$