CLEO MEASUREMENTS OF THE CKM Elements $\left|V_{u b}\right|$ AND $\left|V_{c b}\right|$

Thomas Meyer

CLEO Collaboration
(Cornell University)

Outline

- Current Situation
- How to Measure $\left|V_{q_{1} q_{2}}\right|$
- B 's at CLEO
- Getting $\left|V_{c b}\right|$ From $B \rightarrow D^{*} \ell \nu$
- Getting $\left|V_{u b}\right|$ From $B \rightarrow \pi / \rho / \omega / \eta \ell \nu$
- Summary and Outlook

Status of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

Unitary CKM matrix describes mixing between quark mass eigenstates in (charged-current) weak interactions
$V \equiv\left(\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right) \simeq\left(\begin{array}{ccc}1-\frac{1}{2} \lambda^{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\ -\lambda & 1-\frac{1}{2} \lambda^{2} & A \lambda^{2} \\ A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1\end{array}\right)$

- PDG 00 values:

$$
\left|V_{c b}\right|=0.0402 \pm 0.0019 \quad \text { and } \quad\left|V_{u b}\right|=(3.6 \pm 1.0) \times 10^{-3}
$$

- Note 4.7% error on $\left|V_{c b}\right|$
- Third most accurately measured CKM element
(After $\left|V_{u d}\right|$ and $\left|V_{u s}\right|$)
- From exclusive $B \rightarrow D^{(*)} \ell \nu$, inclusive $b \rightarrow c$
(CLEO, REP)
- And 28% error on $\left|V_{u b}\right|$!
- Based primarily on lepton endpoint measurements
- Agrees with CLEO measurements of $B \rightarrow \pi / \rho \ell \nu$ And values from LEP $b \rightarrow u \ell \nu$
- Branching fractions

$$
\begin{align*}
& \mathcal{B}(b \rightarrow c \ell \nu)=10.5 \% \\
& \mathcal{B}(b \rightarrow u \ell \nu) \sim 2 \times 10^{-3}
\end{align*}
$$

INTEREST IN $\left|V_{u b}\right|$ AND $\left|V_{c b}\right|$

Unitarity property (constraint) leads to famous triangle in complex plane when applied to d and b columns

Only this combination produces triangle with all sides of same order $\mathcal{O}\left(\lambda^{3}\right)$

CKM elements define Standard Model (SM)

- $\left|V_{q_{1} q_{2}}\right|$ simply sets scale for all $q_{2} \rightarrow q_{1}$ transitions
- Area of triangle measures CP violation within SM
\Rightarrow Sides-and angles-probe CP
- $\left|V_{u b}\right|$ sets bound on apex $\rho^{2}+\eta^{2},\left|V_{c b}\right|$ sets scale of base

Also provide window for testing it

- Over-constrain triangle -stress-test the theory
- Tests of unitarity \Leftrightarrow Sensitivity to new physics

Experimental measurement, however, is non-trivial . . .

Semileptonic B Decay

Good place to study $b \rightarrow c, u$ transitions

- Leptonic physics understood and calculable
- Hadronic physics unknown-but can be parameterized with form factors
$\sqrt{ }$ Constraints from HQET, other symmetries
$\sqrt{ }$ Universal to some extent
\times Model-dependent

Semileptonic B Decay-Kinematics

View as $b \rightarrow W q, W \rightarrow \ell \nu$

Kinematic variables

- w : Lorentz boost γ of X in B rest frame

$$
w=v_{B} \cdot v_{X}
$$

- q^{2} : Mass of virtual $W, 4$-mom transfer to $\ell \nu$ pair

$$
q^{2}=\left(p_{\nu}+p_{\ell}\right)^{2}=\left(p_{B}-p_{X}\right)^{2}
$$

At $w=1\left(q_{\text {max }}^{2}\right)$, daughter quark q does not recoil
For heavy q, light degrees of freedom ($q^{\prime}+$ gluons) unaware of $b \rightarrow q$ transition (Heavy Quark Symmetry)
\Rightarrow Theoretical calculation on sound footing

B's at CLEO

- Symmetric $e^{+} e^{-}$machine
- Operates on $\Upsilon(4 S)$ resonance
- $B \bar{B}$ pairs produced at threshold

Each B has only $\left|\vec{p}_{B}\right| \approx 300 \mathrm{MeV} / \mathrm{c}$

- Cross-sections

$$
\begin{aligned}
& \sigma(B \bar{B})=1.0 \mathrm{nb} \\
& \sigma(q \bar{q})=3.1 \mathrm{nb}
\end{aligned}
$$

- Off-resonance ("continuum") running 60 MeV below $\Upsilon(4 S)$
- Measure in data production of various "background" processes

$$
q \bar{q}(q=u, d, s, c), \tau \bar{\tau}, 2 \text {-photon, } \ldots
$$

- Simply subtract these from B-physics analyses

CLEO

- CLEO II (1989)

Drift chambers, crystal calorimeter, muon counters

- CLEO II.V—Upgraded version (1996) [6.5×10 $B \bar{B}$ decays]
- Silicon detector replaces inner wire chamber
- Nearly hermetic detector
- Tracking coverage $\approx 95 \%$ of 4π
- Calorimeter coverage $\approx 98 \%$

$$
\text { Analyzing } B \rightarrow D^{*} \ell \nu
$$

Differential decay rate:

$$
\frac{d \Gamma}{d w}=\frac{G_{F}}{48 \pi^{3}}\left|V_{c b}\right|^{2} \mathcal{F}^{2}(w) \mathcal{G}(w)
$$

- $\mathcal{G}(w)$ contains kinematics and is known
- $\mathcal{F}(w)$ is form factor for $B \rightarrow D^{*}$
- Parameterizes non-perturbative (unknown) physics
- Absolutely normalized at zero recoil $(w=1)$
i.e. $\mathcal{F}(1)$ provided by theory
\triangleright In $m_{Q} \rightarrow \infty$ limit: $\mathcal{F}(1) \rightarrow 1$
\triangleright For $B \rightarrow D^{*} \ell \nu$, corrections only at order $1 / m_{c}^{2}$ $\Rightarrow \mathcal{F}(1)=0.913 \pm 0.042^{a}$

Basic analysis technique:

1. Fit for $B \rightarrow D^{*} \ell \nu$ signal in data, in (10) bins of w
2. Measure $d \Gamma / d w$ in each bin
3. Fit with functional form from phenomenology
4. Extrapolate to $w=1$ and extract $\mathcal{F}(1)\left|V_{c b}\right|$
[^0]
Reconstructing $B \rightarrow D^{*} \ell \nu$

Fully reconstruct D^{*} decay

$$
\begin{aligned}
D^{*} \rightarrow & D^{0} \pi \\
& K^{-} \pi^{+}
\end{aligned}
$$

Separate analyses for $\bar{B}^{0} \rightarrow D^{*+} \ell \nu, B^{-} \rightarrow D^{* 0} \ell \nu$

- Backgrounds, $\mathcal{B}\left(D^{*} \rightarrow D \pi\right), \tau_{B}$ different
- Eff'y for charged $\pi^{ \pm}$different than for neutral π^{0}

$\Rightarrow D^{*+}$ analysis has preliminary results for \mathcal{B} and $\mathcal{F}(1)\left|V_{c b}\right|$

Finding $D^{*} \ell^{\prime} \mathrm{s}$

D^{*} Finding

- D candidate from K and π tracks
- D^{*} from addition of slow π

$D^{*} \ell$ pairs can arise from more than just signal \triangle
- $B \rightarrow D^{*} X \ell \nu$
- Non-resonant $B \rightarrow D^{*} \pi \ell \nu$ or higher resonant states, e.g.

$$
D^{* *} \rightarrow D^{*} \pi
$$

- Other backgrounds
- Estimated in data, some input from Monte Carlo

Fitting for the $B \rightarrow D^{*} \ell \nu$ Yield

Separate signal $B \rightarrow D^{*} \ell \nu$ from $B \rightarrow D^{*} X \ell \nu$ with kinematics:

$$
\cos \theta_{B-D^{*} \ell}=\frac{2 E_{B} E_{D^{*} \ell}-m_{B}^{2}-m_{D^{*} \ell}^{2}}{2\left|\vec{p}_{B}\right|\left|\vec{p}_{D^{*} \ell}\right|}
$$

Signal should have $\cos \theta \in[-1,1]$
Background extends to unphysical values

Binned maximum-likelihood fit to $\cos \theta_{B-D^{*} \ell}$ distribution in data

- Backgrounds subtracted
- Signal shape in $\cos \theta_{B-D^{*} \ell}$ from Monte Carlo
- Normalizations (= yields) allowed to float
\Rightarrow Result: $B \rightarrow D^{*} \ell \nu$ and $B \rightarrow D^{*} X \ell \nu$ yield in each w-bin

Representative Fits for $\bar{B}^{0} \rightarrow D^{*+} \ell \nu$

- Unfolds phase space, kinematic factors, and form factor $\mathcal{F}(w)$
- Takes into account reconstruction eff'y, smearing in w
- w-dependence of $\mathcal{F}(w)$ from dispersion relations ${ }^{a}$
- Fit parameters essentially $\mathcal{F}(1) \mathcal{W}_{c b} \mid$ and $\rho_{h_{A_{1}}}^{2}$ (slope at $w=1$)

$$
\begin{aligned}
\mathcal{F}(1)\left|V_{c b}\right| & =(42.4 \pm 1.8 \pm 1.9) \times 10^{-3} \\
\rho_{h_{41}}^{2} & =1.67 \pm 0.11 \pm 0.22
\end{aligned}
$$

- Integrating over w,

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell \nu\right)=(5.66 \pm 0.29 \pm 0.33) \%
$$

[^1]
Extracting $\left|V_{c b}\right|$

Form factor at zero recoil known: $\mathcal{F}(1)=0.913 \pm 0.042$

$$
\Rightarrow\left|V_{c b}\right|=0.0464 \pm 0.0020 \pm 0.0021 \pm 0.0021 \text { [CLEO] }
$$

- Consistent with previous CLEO, LEP measurements-but slightly higher

Compare this result to previous ones

Challenge of $\left|V_{u b}\right|$

Swamped by Cabibbo-favored $b \rightarrow c \ell \nu$

- $\left|V_{u b}\right|>0$ first verified only in 1990
- Hard cuts required experimentally to control $b \rightarrow c$ backgrounds-makes theoretical interpretation difficult
- Inclusive theoretical calculations only reliable when large part of phase space is sampled-experimental measurement hard!

Tradeoff

Exclusive analysis incurs large model dependence but
Inclusive analysis suffers from large backgrounds

$$
B \rightarrow X_{u} \ell \nu \text { ANALYSIS }
$$

Analysis Goals-In progress

- Extract $\left|V_{u b}\right|$
- Measure \mathcal{B}_{i} and kinematics $\left(q^{2}\right)$ of π, ρ modes
- Consider/Evaluate range of models
- Reconstruct $B \rightarrow X_{u} \ell \nu$ candidates in seven channels

$$
\begin{array}{ll}
\pi^{ \pm} & \rho^{ \pm} \rightarrow \pi^{ \pm} \pi^{0} \\
\pi^{0} & \rho^{0} \rightarrow \pi^{+} \pi^{-} \\
\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} & \\
\eta \rightarrow \gamma \gamma & \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}
\end{array}
$$

Neutrino Reconstruction

- Conservation laws dictate that what goes in must come out

$$
p_{\mathrm{miss}}^{\mu}=p_{0}^{\mu}-\sum_{\text {particles } i} p_{i}^{\mu}
$$

- Hermetic detector "captures" all particles

1. Charged particles-tracks $+\mathrm{PID} \Rightarrow p_{i}^{\mu}$
2. π^{0}, γ-unmatched showers + beamspot $\Rightarrow p_{i}^{\mu}$

- Neutrino must carry away any momentum-energy missing in final state

$$
\Rightarrow p_{\nu}^{\mu} \equiv p_{\mathrm{miss}}^{\mu}
$$

Neutrino Reconstruction

Must veto events with more than one missing particle

- e.g. Add'l ν, K_{L}^{0}, neutrons
- Lepton counting: $N_{\ell}>1 \leadsto N_{\nu}>1$
- Test neutrino hypothesis: $M_{\text {miss }}^{2} \stackrel{?}{=} 0$

Cuts out $b \rightarrow c \ell \nu$ that misreconstructs as signal

Measure tracks and showers, not particles

- Must be sure to account for each particle exactly once
- Examine net charge ΔQ of event
- Easy way to detect missing tracks: $|\Delta Q|=0$
- Include $|\Delta Q|=1$, increases signal eff'y more than bkgrd Ex: Slow π missed, but little impact on ($E_{\text {miss }}, \vec{p}_{\text {miss }}$)

Analysis Technique

- Continuum suppression
- Need to avoid cuts that bias q^{2} distribution
- $\theta_{\text {thrust }}$: angle between $X_{u}-\ell$ and thrust of rest of event
- Off-resonance data subtraction
- $b \rightarrow c \ell \nu$ suppression
- Angle between ℓ in W rest frame and W in B frame Reflects $V-A$ nature of charged current
\triangleright Apply cut on $\cos \theta_{\text {lep }}$ in vector modes only
- $\left|p_{\ell}\right|>1.5 \mathrm{GeV} / c$ (vector), $1.0 \mathrm{GeV} / c$ (pseudoscalar) \triangleright Softer ℓ from $b \rightarrow c \ell \nu$ than $b \rightarrow u \ell \nu$

Fitting Technique

- Define variables for each B-candidate

$$
\begin{aligned}
\Delta E & \equiv\left(E_{\nu}+E_{\ell}+E_{\text {had }}\right)-E_{\text {beam }} \\
\tilde{M}_{B} & \equiv \sqrt{E_{\text {beam }}^{2}-\left|\alpha \vec{p}_{\nu}+\vec{p}_{\ell}+\vec{p}_{\text {had }}\right|^{2}} \\
\alpha & =1-\frac{\Delta E}{E_{\nu}}
\end{aligned}
$$

- Carve up $\Delta E-M_{B}$ plane into signal box (\#1) and sidebands
- Backgrounds, cross-feeds constrained by data outside signal box, too
- Perform binned χ^{2} fit in $\Delta E-M_{B}$ to extract signal yields, background amounts in each box for each mode

Sample π-mode Fits

- Simultaneous fit for all X_{u} modes accounts for cross-feed and common backgrounds

1. $b \rightarrow c \ell \nu$ backgrounds from Monte Carlo

2 . $b \rightarrow u \ell \nu$ "other", i.e. not in signal modes
3. Cross-feed from other signal modes into this one, from MC
4. Fakes $(h \mapsto \ell)$, from non-leptonic data
5. Continuum backgrounds, as measured in OFF data
6. Signal from Monte Carlo

- Use ISGW2 model here for signal and background shapes

Charged and Neutral π

$\Delta \mathbf{E}$

$$
(\Delta Q=0 \text { only })
$$

Summary

- CKM elements offer special opportunity to investigate and test Standard Model
- CLEO has preliminary measurement of $\left|V_{c b}\right|$ from $\bar{B}^{0} \rightarrow D^{*+} \ell \nu$
- $\left|V_{c b}\right|=0.0464 \pm 0.0020 \pm 0.0021 \pm 0.0021$
- Charged and neutral D^{*} modes to be combined
- Systematics understood; analyses nearing completion
- Promises world's most precise measurement from $B \rightarrow D^{*} \ell \nu$
- New analyses using CLEO II.V dataset underway as well
- CLEO has analyses in progress on $\left|V_{u b}\right|$ using full dataset
- Exclusive $B \rightarrow \pi / \rho / \omega / \eta \ell \nu$
\triangleright Promises \mathcal{B}_{i} and q^{2} information
\triangleright Model discrimination
- Lepton-energy endpoint
\triangleright Window into essential non-perturbative physics
- $\left|V_{u b}\right|$ from $b \rightarrow s \gamma+E_{\ell}$-endpoint
- Several inclusive $b \rightarrow X \ell \nu$ analyses in the works

Will the Standard Model hold up . . . ?

$B \rightarrow D^{*} \ell \nu$ BaCKGROUNDS

$D^{*} \ell$ pairs can arise from more than just signal $\widehat{\wedge}$

- $B \rightarrow D^{*} X \ell \nu$
- Non-resonant $D^{*} \pi \ell \nu$ production
- Higher resonant states, generically called $D^{* *} \ell \nu$
- Model with latest phenomenology
- Combinatoric-Events with D^{*} resulting from mis-reconstruction (fakes)
- Estimate magnitude from events in $\Delta m=M_{D^{*}}-M_{D}$ sideband
- Shape from Monte Carlo
- Continuum - $e^{+} e^{-} \rightarrow q \bar{q}$ with real D^{*} and ℓ
- Subtracted using data taken slightly below $B \bar{B}$ threshold
- Uncorrelated- D^{*} and ℓ come from different B 's
- Estimate from inclusive D^{*} and ℓ yields
- Correlated—Real D^{*} and ℓ from same B, but not signal mode
- Ex: $B \rightarrow D^{*} D_{s}$, with $D_{s} \rightarrow X \ell$
- Estimated from Monte Carlo
- Fake lepton-Mis-ID hadrons as ℓ, combine with real $D^{*} 0.1 \%$
- Small enough to neglect

[^2]
Estimating w

- $w \in(1,1.51)$ is Lorentz boost of the D^{*} in the B rest frame
- At CESR/CLEO, B's nearly at rest: $\left|\vec{p}_{B}\right| \approx 300 \mathrm{MeV} / c$
- Know the magnitude but not the direction of B momentum Determined only up to azimuthal ambiguity
- Compute estimate for w using two extreme possibilities for B direction

- Resolution good: $\sigma_{w} \approx 0.03$

Checking the Fit

Projections of fit results into signal region, all w-bins combined Cut on $\cos \theta_{B-D^{*} \ell}$ applied

(Error bars on data are for data sample, and do not include statistical errors on combinatoric and continuum bkgrds)

Binned χ^{2} fit: $\left(B \rightarrow D^{*} \ell \nu \text { yield }\right)_{i} \mapsto(d \Gamma / d w)_{i}$

$$
\chi^{2}=\sum_{i=1}^{10} \frac{\left[N_{i}^{\text {obs }}-\sum_{j=1}^{10} \epsilon_{i j} N_{j}\right]^{2}}{\sigma_{N_{i}^{\text {obs }}}^{2}}
$$

- $N_{i}^{\text {obs }}:$ Yield in i th w-bin
- $\epsilon_{i j}$: Accounts for reconstruction eff'y, w-smearing
- N_{j} : number of signal decays in j th w-bin

$$
N_{j}=4 f N_{\Upsilon(4 S)} \mathcal{B}\left(D^{*} \rightarrow D \pi\right) \mathcal{B}(D \rightarrow K \pi) \tau_{B} \int_{w_{j}} d w d \Gamma / d w
$$

$\bar{B}^{0} \rightarrow D^{*+} \ell \nu$ SYSTEMATICS

Source	$\left\|V_{c b}\right\| \mathcal{F}(1)(\%)$	$\rho^{2}(\%)$	$\Gamma(\%)$
Slow π finding	3.1	3.7	2.9
Combinatoric Bkgd	1.4	1.8	1.2
Lepton ID	1.1	0.0	2.1
$K, \pi \& \ell$ finding	1.0	0.0	1.9
Number of $B \bar{B}$ events	0.9	0.0	1.8
Uncorrelated Bkgd	0.7	0.9	0.7
Correlated Bkgd	0.4	0.3	0.5
B momentum \& mass	0.3	0.5	0.4
$D^{*} X \ell \nu$ model	0.2	1.9	1.9
Subtotal	3.8	4.7	5.0
$R_{1}(1)$ and $R_{2}(1)$	1.4	12.0	1.8
$B(D \rightarrow K \pi)$	1.2	0.0	2.3
τ_{B}	1.0	0.0	2.1
$\mathrm{~B}\left(D^{*} \rightarrow D \pi\right)$	0.4	0.0	0.7
Subtotal	2.2	12.0	3.7
Total	4.4	$\mathbf{1 3}$	$\mathbf{6 . 2}$

$\left|V_{u b}\right|$ At CLEO

History

- First observation of $\left|V_{u b}\right|>0$ made in 1990

Found $B \rightarrow X \ell \nu$ beyond kinematic endpoint for charm

- Measurement of $\mathcal{B}(B \rightarrow \pi / \rho \ell \nu)$ and $\left|V_{u b}\right|$ published early 1996
- Successful debut of ν-reconstruction
- Data sample of $4 \mathrm{fb}^{-1}$
- 20% error on $\left|V_{u b}\right|$-model-dependence of form factors

$$
\left|V_{u b}\right|=\left(3.3 \pm 0.2_{-0.4}^{+0.3} \pm 0.7\right) \times 10^{-3}
$$

- Update of $\mathcal{B}(B \rightarrow \rho \ell \nu)$ in 1999

$$
\left|V_{u b}\right|=\left(3.25 \pm 0.14_{-0.29}^{+0.21} \pm 0.55\right) \times 10^{-3}
$$

First examination of partial rate in (3) bins of q^{2} High $\left|p_{\ell}\right|$ cut selects region where most models agree

Outlook

Another round at CLEO continues . . .

- $\left|V_{c b}\right|$ from $B \rightarrow D^{*} \ell \nu$ with CLEO II.V dataset

SVX improves slow π efficiency

- $\left|V_{u b}\right|$ from endpoint of lepton energy spectrum with full CLEO dataset
- $\left|V_{u b}\right|$ from measurements of non-perturbative physics from $b \rightarrow s \gamma$ combined with endpoint spectrum
- Inclusive $b \rightarrow u \ell \nu$ analysis
- Use other kinematic variables to cut out charm Hadronic mass, q^{2}
- But retain larger fraction of phase space

[^0]: $a_{(\text {PLB264, 455; 338,84; PRD47,2965; 51,2217; 53,3149; PRL 76, 4124) }}$

[^1]: $a_{\text {NPB530,153 }}$

[^2]: ${ }^{a}$ Estimate for $D^{*}+$ modes only

