

Thomas Meyer CLEO Collaboration (Cornell University)

Outline

- Current Situation
- How to Measure $|V_{q_1q_2}|$
- *B*'s at CLEO
- Getting $|V_{cb}|$ From $B \to D^* \ell \nu$
- Getting $|V_{ub}|$ From $B \to \pi/\rho/\omega/\eta \ \ell \nu$
- Summary and Outlook

Status of $|V_{ub}|$ and $|V_{cb}|$

Unitary CKM matrix describes mixing between quark mass eigenstates in (charged-current) weak interactions

$$V \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• PDG 00 values:

 $|V_{cb}| = 0.0402 \pm 0.0019$ and $|V_{ub}| = (3.6 \pm 1.0) \times 10^{-3}$

- Note 4.7% error on $|V_{cb}|$
 - ► Third most accurately measured CKM element (After $|V_{ud}|$ and $|V_{us}|$)
 - From exclusive $B \to D^{(*)} \ell \nu$, inclusive $b \to c$ (CLEO, LEP)
- And 28% error on $|V_{ub}|$!
 - ▶ Based primarily on lepton endpoint measurements
 - ► Agrees with CLEO measurements of $B \to \pi/\rho \, \ell \nu$ And values from LEP $b \to u \, \ell \nu$
- Branching fractions

$$\mathcal{B}(b \to c \,\ell\nu) = 10.5\% \quad \textcircled{\bigcirc} \\ \mathcal{B}(b \to u \,\ell\nu) \sim 2 \times 10^{-3} \quad \textcircled{\bigcirc}$$

INTEREST IN $|V_{ub}|$ and $|V_{cb}|$

Unitarity property (constraint) leads to famous triangle in complex plane when applied to d and b columns

Only this combination produces triangle with all sides of same order $\mathcal{O}(\lambda^3)$

CKM elements define Standard Model (SM)

- $|V_{q_1q_2}|$ simply sets scale for all $q_2 \rightarrow q_1$ transitions
- Area of triangle measures CP violation within SM \Rightarrow Sides—and angles—probe OP
- $|V_{ub}|$ sets bound on apex $\rho^2 + \eta^2$, $|V_{cb}|$ sets scale of base

Also provide window for *testing* it

- *Over-constrain* triangle—stress-test the theory
- Tests of unitarity \Leftrightarrow Sensitivity to new physics

Experimental measurement, however, is non-trivial . . .

Semileptonic B Decay

Good place to study $b \rightarrow c, u$ transitions

- Leptonic physics understood and calculable
- Hadronic physics unknown—but can be parameterized with *form factors*
 - \checkmark Constraints from HQET, other symmetries
 - $\sqrt{}$ Universal to some extent
 - \times Model-dependent

Semileptonic *B* Decay—Kinematics

View as $b \to Wq, W \to \ell \nu$

Kinematic variables

• w: Lorentz boost γ of X in B rest frame

$$w = v_B \cdot v_X$$

• q^2 : Mass of virtual W, 4-mom transfer to $\ell \nu$ pair

$$q^2 = (p_{\nu} + p_{\ell})^2 = (p_B - p_X)^2$$

At w = 1 (q_{\max}^2) , daughter quark q does not recoil For heavy q, light degrees of freedom (q' + gluons) unaware of $b \rightarrow q$ transition (Heavy Quark Symmetry) \Rightarrow Theoretical calculation on sound footing

B'S AT CLEO

• Symmetric $e^+ e^-$ machine

- ▶ Operates on $\Upsilon(4S)$ resonance
- ► $B\bar{B}$ pairs produced at threshold Each *B* has only $|\vec{p}_B| \approx 300 \text{ MeV/c}$
- ► Cross-sections

$$\sigma(B\bar{B}) = 1.0 \text{ nb}$$

 $\sigma(q\bar{q}) = 3.1 \text{ nb}$

- Off-resonance ("continuum") running 60 MeV below $\Upsilon(4S)$
 - Measure in *data* production of various "background" processes

 $q\bar{q} \ (q=u,d,s,c), \ \tau\bar{\tau}, \ 2\text{-photon}, \ . \ .$

 \blacktriangleright Simply *subtract* these from *B*-physics analyses

CLEO

• CLEO II (1989) $[3.3 \times 10^6 B\bar{B} \text{ decays}]$

Drift chambers, crystal calorimeter, muon counters

- CLEO II.V—Upgraded version (1996) $[6.5 \times 10^6 B\bar{B} \text{ decays}]$
 - ► Silicon detector replaces inner wire chamber
- Nearly hermetic detector
 - Tracking coverage $\approx 95\%$ of 4π
 - ▶ Calorimeter coverage $\approx 98\%$

Analyzing $B \to D^* \ell \nu$

Differential decay rate:

$$\frac{d\Gamma}{dw} = \frac{G_F}{48\pi^3} |V_{cb}|^2 \mathcal{F}^2(w) \mathcal{G}(w)$$

- $\mathcal{G}(w)$ contains kinematics and is known
- $\mathcal{F}(w)$ is form factor for $B \to D^*$
 - \blacktriangleright Parameterizes non-perturbative (*unknown*) physics
 - ► Absolutely normalized at zero recoil (w = 1) i.e. F(1) provided by theory
 - \triangleright In $m_Q \to \infty$ limit: $\mathcal{F}(1) \to 1$
 - ▷ For $B \to D^* \ell \nu$, corrections only at order $1/m_c^2$ ⇒ $\mathcal{F}(1) = 0.913 \pm 0.042^{-a}$

Basic analysis technique:

- 1. Fit for $B \to D^* \ell \nu$ signal in data, in (10) bins of w
- 2. Measure $d\Gamma/dw$ in each bin
- 3. Fit with functional form from phenomenology
- 4. Extrapolate to w = 1 and extract $\mathcal{F}(1)|V_{cb}|$

 $^{^{}a}(\mathtt{PLB264},\!455;\, \textbf{338},\!84;\, \mathtt{PRD47},\!2965;\, \textbf{51},\!2217;\, \textbf{53},\!3149;\, \mathtt{PRL}\,\,76,\,4124)$

Fully reconstruct D^* decay $D^* \to D^0 \pi$ $\downarrow K^- \pi^+$

Separate analyses for $\bar{B}^0 \to D^{*+} \ell \nu, B^- \to D^{*0} \ell \nu$

- Backgrounds, $\mathcal{B}(D^* \to D\pi), \tau_B$ different
- Eff'y for charged π^{\pm} different than for neutral π^{0}

 \Rightarrow D^{*+} analysis has preliminary results for \mathcal{B} and $\mathcal{F}(1)|V_{cb}|$

Finding $D^*\ell$'s

D^* Finding

- D candidate from K and π tracks
- D^* from addition of slow π

$D^*\ell$ pairs can arise from more than just signal \triangle

- $B \to D^* X \ell \nu$
 - ► Non-resonant $B \to D^* \pi \ell \nu$ or higher resonant states, *e.g.* $D^{**} \to D^* \pi$
- Other backgrounds
 - ▶ Estimated *in data*, some input from Monte Carlo

Fitting for the $B \to D^* \ell \nu$ Yield

Separate signal $B \to D^* \ell \nu$ from $B \to D^* X \ell \nu$ with kinematics:

$$\cos \theta_{B-D^*\ell} = \frac{2E_B E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2|\vec{p}_B||\vec{p}_{D^*\ell}|}$$

Signal should have $\cos \theta \in [-1, 1]$

Background extends to unphysical values

Binned maximum-likelihood fit to $\cos \theta_{B-D^*\ell}$ distribution in data

- Backgrounds subtracted
- Signal shape in $\cos\theta_{B-D^*\ell}$ from Monte Carlo
- Normalizations (= yields) allowed to float

 \Rightarrow Result: $B \to D^* \ell \nu$ and $B \to D^* X \ell \nu$ yield in each w-bin

Representative Fits for $\bar{B}^0 \to D^{*+} \ell \nu$

FITTING THE DECAY RATE

- Unfolds phase space, kinematic factors, and form factor $\mathcal{F}(w)$
- Takes into account reconstruction eff'y, smearing in w
- w-dependence of $\mathcal{F}(w)$ from dispersion relations ^a
- Fit parameters essentially $\mathcal{F}(1)|V_{cb}|$ and $\rho_{h_{A_1}}^2$ (slope at w=1)

$$\mathcal{F}(1)|V_{cb}| = (42.4 \pm 1.8 \pm 1.9) \times 10^{-3}$$
$$\rho_{h_{A_{\mathrm{T}}}}^{2} = 1.67 \pm 0.11 \pm 0.22$$

• Integrating over w,

$$\mathcal{B}(\bar{B}^0 \to D^{*+} \ell \nu) = (5.66 \pm 0.29 \pm 0.33)\%$$

 $a_{\text{NP}\mathbf{B530},153}$

EXTRACTING $|V_{cb}|$

Form factor at zero recoil known: $\mathcal{F}(1) = 0.913 \pm 0.042$

 $\Rightarrow |V_{cb}| = 0.0464 \pm 0.0020 \pm 0.0021 \pm 0.0021$ [CLEO]

• Consistent with previous CLEO, LEP measurements—but slightly higher

Compare this result to previous ones

Challenge of $|V_{ub}|$

Swamped by Cabibbo-favored $b \rightarrow c \, \ell \nu$

- $|V_{ub}| > 0$ first verified only in 1990
- Hard cuts required experimentally to control $b \to c$ backgrounds—makes theoretical interpretation difficult
- Inclusive theoretical calculations only reliable when *large* part of phase space is sampled—experimental measurement hard!

Tradeoff

Exclusive analysis incurs large model dependence butInclusive analysis suffers from large backgrounds

$B \to X_u \, \ell \nu$ Analysis

Analysis Goals—In progress

- Extract $|V_{ub}|$
- Measure \mathcal{B}_i and kinematics (q^2) of π , ρ modes
- Consider/Evaluate range of models
- Reconstruct $B \to X_u \,\ell\nu$ candidates in seven channels

$$\begin{array}{ll} \pi^{\pm} & \rho^{\pm} \to \pi^{\pm} \pi^{0} \\ \pi^{0} & \rho^{0} \to \pi^{+} \pi^{-} \\ \eta \to \pi^{+} \pi^{-} \pi^{0} & \\ \eta \to \gamma \gamma & \omega \to \pi^{+} \pi^{-} \pi^{0} \end{array}$$

Neutrino Reconstruction

• Conservation laws dictate that what goes in must come out

$$p_{\rm miss}^{\mu} = p_0^{\mu} - \sum_{\rm particles \, i} p_i^{\mu}$$

- Hermetic detector "captures" all particles
 - 1. Charged particles—tracks + PID $\Rightarrow p_i^{\mu}$
 - 2. π^0 , γ —unmatched showers + beamspot $\Rightarrow p_i^{\mu}$
- Neutrino must carry away any momentum-energy missing in final state

 $\Rightarrow p^{\mu}_{\nu} \equiv p^{\mu}_{\mathrm{miss}}$

NEUTRINO RECONSTRUCTION

Must **veto** events with more than one missing particle

- e.g. Add'l ν , K_L^0 , neutrons
- Lepton counting: $N_{\ell} > 1 \rightsquigarrow N_{\nu} > 1$
- Test neutrino hypothesis: $M_{\text{miss}}^2 \stackrel{?}{=} 0$ Cuts out $b \to c \,\ell \nu$ that misreconstructs as signal

Measure tracks and showers, not particles

- Must be sure to account for each particle exactly once
- Examine net charge ΔQ of event
 - Easy way to detect missing tracks: $|\Delta Q| = 0$
 - ► Include $|\Delta Q| = 1$, increases signal eff'y more than bkgrd Ex: Slow π missed, but little impact on $(E_{\text{miss}}, \vec{p}_{\text{miss}})$

ANALYSIS TECHNIQUE

- Continuum suppression
 - ▶ Need to avoid cuts that bias q^2 distribution
 - ▶ θ_{thrust} : angle between X_u - ℓ and thrust of rest of event
 - ▶ Off-resonance data subtraction
- $b \to c \,\ell \nu$ suppression
 - ► Angle between l in W rest frame and W in B frame Reflects V - A nature of charged current
 - \triangleright Apply cut on $\cos \theta_{lep}$ in vector modes only
 - ► $|p_{\ell}| > 1.5 \text{ GeV}/c \text{ (vector)}, 1.0 \text{ GeV}/c \text{ (pseudoscalar)}$ ▷ Softer ℓ from $b \to c \, \ell \nu$ than $b \to u \, \ell \nu$

FITTING TECHNIQUE

• Define variables for each B-candidate

$$\Delta E \equiv (E_{\nu} + E_{\ell} + E_{\text{had}}) - E_{\text{beam}}$$
$$\tilde{M}_B \equiv \sqrt{E_{\text{beam}}^2 - |\alpha \vec{p}_{\nu} + \vec{p}_{\ell} + \vec{p}_{\text{had}}|^2}$$
$$\alpha = 1 - \frac{\Delta E}{E_{\nu}}$$

• Carve up $\Delta E - M_B$ plane into signal box (#1) and sidebands

- Backgrounds, cross-feeds constrained by data *outside* signal box, too
- Perform binned χ^2 fit in $\Delta E M_B$ to extract signal yields, background amounts in each box for each mode

SAMPLE π -MODE FITS

- Simultaneous fit for all X_u modes accounts for cross-feed and common backgrounds
 - 1. $b \rightarrow c \,\ell \nu$ backgrounds from Monte Carlo
 - 2. $b \rightarrow u \,\ell \nu$ "other", i.e. not in signal modes
 - 3. Cross-feed from *other* signal modes into this one, from MC
 - 4. Fakes $(h \mapsto \ell)$, from non-leptonic data
 - 5. Continuum backgrounds, as measured in OFF data
 - 6. Signal from Monte Carlo
- Use ISGW2 model here for signal and background shapes \bullet

Charged and Neutral π

SUMMARY

- CKM elements offer special opportunity to investigate and test Standard Model
- CLEO has preliminary measurement of $|V_{cb}|$ from $\bar{B}^0 \rightarrow D^{*+} \ell \nu$
 - $\blacktriangleright |V_{cb}| = 0.0464 \pm 0.0020 \pm 0.0021 \pm 0.0021$
 - Charged and neutral D^* modes to be combined
 - ► Systematics understood; analyses nearing completion
 - Promises world's most precise measurement from $B \rightarrow D^* \ell \nu$
 - ▶ New analyses using CLEO II.V dataset underway as well
- CLEO has analyses in progress on $|V_{ub}|$ using full dataset
 - Exclusive $B \to \pi/\rho/\omega/\eta \ \ell \nu$
 - \triangleright Promises \mathcal{B}_i and q^2 information
 - \triangleright Model discrimination
 - ► Lepton-energy endpoint
 - \triangleright Window into essential non-perturbative physics
 - \blacktriangleright $|V_{ub}|$ from $b \rightarrow s\gamma + E_{\ell}$ -endpoint
 - Several inclusive $b \to X \ell \nu$ analyses in the works

Will the Standard Model hold up . . . ?

$B \to D^* \ell \nu$ Backgrounds

 $D^*\ell$ pairs can arise from more than just signal \triangle

- $B \to D^* X \ell \nu$
 - ► Non-resonant $D^* \pi \ell \nu$ production
 - ▶ Higher resonant states, generically called $D^{**}\ell\nu$
 - ▶ Model with latest phenomenology
- Combinatoric—Events with D^* resulting from $6\%^a$ mis-reconstruction (fakes)
 - ► Estimate magnitude from events in $\Delta m = M_{D^*} M_D$ sideband
 - ► Shape from Monte Carlo
- Continuum— $e^+ e^- \to q\bar{q}$ with real D^* and ℓ 4%
 - ▶ Subtracted using data taken slightly below $B\bar{B}$ threshold
- Uncorrelated— D^* and ℓ come from different B's 4%
 - \blacktriangleright Estimate from inclusive D^* and ℓ yields
- Correlated—Real D^* and ℓ from same B, 0.5% but not signal mode
 - Ex: $B \to D^*D_s$, with $D_s \to X\ell$
 - ▶ Estimated from Monte Carlo
- Fake lepton—Mis-ID hadrons as ℓ , combine with real $D^* 0.1\%$
 - ► Small enough to neglect

 $a_{\text{Estimate for } D^{*+} \text{ modes only}}$

Estimating w

- $w \in (1, 1.51)$ is Lorentz boost of the D^* in the B rest frame
- At CESR/CLEO, B's nearly at rest: $|\vec{p}_B| \approx 300 \text{ MeV}/c$
- Know the magnitude but not the *direction* of *B* momentum Determined only up to azimuthal ambiguity
- Compute estimate for w using two extreme possibilities for B direction

• Resolution good: $\sigma_w \approx 0.03$

CHECKING THE FIT

Projections of fit results into signal region, all w-bins combined Cut on $\cos \theta_{B-D^*\ell}$ applied

(Error bars on data are for data sample, and do not include statistical errors on combinatoric and continuum bkgrds)

Fitting $d\Gamma/dw$

Binned χ^2 fit: $(B \to D^* \ell \nu \text{ yield})_i \mapsto (d\Gamma/dw)_i$

$$\chi^{2} = \sum_{i=1}^{10} \frac{\left[N_{i}^{\text{obs}} - \sum_{j=1}^{10} \epsilon_{ij} N_{j}\right]^{2}}{\sigma_{N_{i}^{\text{obs}}}^{2}}$$

- N_i^{obs} : Yield in *i*th *w*-bin
- ϵ_{ij} : Accounts for reconstruction eff'y, w-smearing
- N_j : number of signal decays in *j*th *w*-bin

$$N_j = 4f N_{\Upsilon(4S)} \mathcal{B}(D^* \to D\pi) \mathcal{B}(D \to K\pi) \tau_B \int_{w_j} dw \, d\Gamma/dw$$

Source	$ V_{cb} \mathcal{F}(1)(\%)$	$ ho^2(\%)$	$\Gamma(\%)$
Slow π finding	3.1	3.7	2.9
Combinatoric Bkgd	1.4	1.8	1.2
Lepton ID	1.1	0.0	2.1
$K, \pi \& \ell \text{ finding}$	1.0	0.0	1.9
Number of $B\bar{B}$ events	0.9	0.0	1.8
Uncorrelated Bkgd	0.7	0.9	0.7
Correlated Bkgd	0.4	0.3	0.5
B momentum & mass	0.3	0.5	0.4
$D^*X \ell \nu ext{ model}$	0.2	1.9	1.9
Subtotal	3.8	4.7	5.0
$R_1(1)$ and $R_2(1)$	1.4	12.0	1.8
$\mathcal{B}(D \to K\pi)$	1.2	0.0	2.3
$ au_B$	1.0	0.0	2.1
${\cal B}(D^* \to D\pi)$	0.4	0.0	0.7
Subtotal	2.2	12.0	3.7
Total	4.4	13	6.2

$\bar{B}^0 \to D^{*+} \ell \nu$ Systematics

$|V_{ub}|$ at CLEO

History

- First observation of $|V_{ub}| > 0$ made in 1990 Found $B \to X \ell \nu$ beyond kinematic endpoint for charm
- Measurement of $\mathcal{B}(B \to \pi/\rho \ \ell \nu)$ and $|V_{ub}|$ published early 1996
 - ▶ Successful debut of ν -reconstruction
 - ► Data sample of 4 fb^{-1}
 - ▶ 20% error on $|V_{ub}|$ —model-dependence of form factors

 $|V_{ub}| = (3.3 \pm 0.2^{+0.3}_{-0.4} \pm 0.7) \times 10^{-3}$

• Update of $\mathcal{B}(B \to \rho \, \ell \nu)$ in 1999

$$|V_{ub}| = (3.25 \pm 0.14^{+0.21}_{-0.29} \pm 0.55) \times 10^{-3}$$

First examination of partial rate in (3) bins of q^2 High $|p_{\ell}|$ cut selects region where most models agree

Outlook

Another round at CLEO continues . . .

- $|V_{cb}|$ from $B \to D^* \ell \nu$ with CLEO II.V dataset SVX improves slow π efficiency
- $|V_{ub}|$ from endpoint of lepton energy spectrum with full CLEO dataset
- $|V_{ub}|$ from measurements of non-perturbative physics from $b \rightarrow s \gamma$ combined with endpoint spectrum
- Inclusive $b \to u \,\ell \nu$ analysis
 - ► Use other kinematic variables to cut out charm Hadronic mass, q^2
 - ▶ But retain larger fraction of phase space