CLEO-c: A New Frontier for QCD & Heavy Flavor Physics

Brian K. Heltsley KEK Seminar, July 2, 2001

LABORATORY OF NUCLEAR STUDIES CESR CLEO THEORY

1

Outline

Ist half: where should we go? Whither CLEO? 3 threads Whither QCD? Whither Flavor Physics? • 2nd half: how to get there CLEO-c & CESR-c Beyond CLEO & CESR?

A Short History of CESR/CLEO

- 1968: 10 Gev e⁻ synchrotron built
 - Size of ring determined by size of playing fields
- 1975: Proposal for e⁺e⁻ storage ring in synchrotron tunnel, E_{beam}=8 GeV
 - PEP/PETRA E_{beam}=15-20 GeV
 - SPEAR E_{beam}=2 GeV
- 1977: b-quark discovered at FNAL!
- 1979: CLEO sees first collisions
- 1980: Y(4S) discovered
 - CLEO 1979
 - CLEO I.V 1984
 - CLEO II 1989
 - CLEO II.V 1995
 - CLEO III 1999

The CLEO Collaboration

Membership:

- ~20 Institutions
- ~155 physicists
- ~1/2 DOE, 1/2 NSF
- Currently expanding...

Albany	Oklahoma
Caltech	Purdue
CMU	Rochester
Cornell	SLAC
Florida	SMU
Harvard	UCSD
Illinois	UCSB
Kansas	Syracuse
Minnesota	Vanderbilt
Ohio State	Wayne State

•Publication history 1980-

- ~320 papers
- diverse physics

B. Heltsley, KEK Seminar, 7/2/01

CESR/CLEO 1980-2001

• Very(!) productive experimental program of exciting physics

- This summer :
 - V_{cb}, V_{ub}
 - b→sγ
 - D*width
 - $B \rightarrow \pi \pi, K \pi$
- But ...

PEP-II/KEK-B 1999

B-factories now do it much better!!

Whither CLEO?

•Success of B-factories \Rightarrow CLEO III ceased taking data near the $\Upsilon(4S)$ last Tuesday, with ~7 fb⁻¹ on the $\Upsilon(4S)$ & ~2 fb⁻¹ just below.

CLEO III results coming soon

• Install superconducting final focus quadrupoles this summer: higher L

•What's next?

A Short History of QCD

1960's: Beginning of modern era of SI Quark model

• 1970's: Gauge theory of SI: QCD

- Like QED except
 - Gluons carry charge -> nonlinear
 - Coupling is large

Can't solve QCD analytically!

- Asymptotic freedom saved the day
 - Perturbative QCD spectacularly successful
 - Nonperturbative regime problematic

Lattice

Includes perturbative & nonperturbative

Lattice QCD Revolution

•Lattice QCD is the only complete definition of QCD: includes both perturbative & nonperturbative aspects.

Lattice QCD is not a model.

- Single formalism relates B/D physics to ψ/Υ physics to glueball physics to ...
- Systematically improvable (beyond 10%)
- Only parameters are α_s and the quark masses; no fudge factors!

•Lattice QCD has been transformed in the last decade, particularly since 1995.

Glue

Glueball, Hybrid States

- Fascinating states: only known theory in nature where gauge particle is also a constituent.
- Previous theoretical work frustrated by ambiguous &/or highly incomplete data.
 - Dramatic improvement in data needed
- Theorists are certain these states exist (extra states, beyond quark-model states). If they don't, will stimulate major effort in nonperturbative QCD.

Future of Lattice QCD (Cornell Workshop, Jan 2001)

● 1-3% accuracy possible now for:

- Masses, decay constants, semileptonic form factors, and mixing amplitudes for D, D_s, D*, D_s*, B, B_s, B*, B_s*, and corresponding baryons.
- Masses, leptonic widths, electromagnetic form factors, and mixing amplitudes for any meson in ψ and Y families below D and B threshold.
- Masses, decay constants, electroweak form factors, charge radii, magnetic moments, and mixing angles for low-lying light-quark hadrons.
- Gold-plated processes for every off-diagonal V_{ij} CKM

Pace dictated by improved algorithms & theoretical physics. Not limited by CPU.

Nonperturbative QFT

 Nonperturbative, strongly-coupled field theory is an outstanding challenge to all theoretical physics
 Thread # 2

Field theory is generic; weak-coupling is not

- QCD & gravity are strongly-coupled
 - Strong coupling at LHC & beyond: SUSY / Technicolor?
- Critical long-term need for:
 - Detailed experimental data on all sectors of QCD.
 - Reliable theoretical techniques for analyzing stronglycoupled theories.

- Standard Model Successes...
 - Impressive precision in EW sector: W^{\pm} , Z^{0} , τ^{\pm}
 - Discovery of top quark
 - Tantalizing suggestion of Higgs observation
- Certainty of new physics but where?
- B-physics, factories have come of age
- Imminent 2nd example of SM CP?
- Precision in heavy quark physics?

Just 4 parameters?!

- Just four parameters: λ , A, $\overline{\rho}$, $\overline{\eta}$
- Measure them as <u>fundamental constants of</u> <u>nature</u> – "metrology"
 - Now, semi-leptonic decays & mixing provide best access
- With a rich diversity of quark decays, can <u>overconstrain</u> them – "global fit" to data
- Inconsistencies seen at any level means

New Physics outside SM

OBUT, hadrons, not q's, are detected

CKM⇔QCD in (Semi)Leptonic Decay

Experiment \Leftrightarrow **Theory**

CP-violating parameter from K decay:

 $\varepsilon_K = C_{\varepsilon} B_K \lambda^6 \quad \overline{\eta} \left[C_1 A^2 \lambda^4 (1 - \overline{\rho}) + C_2 + C_3 \right] \Rightarrow hyperbola$

 $(b \rightarrow u \ lv) / (b \rightarrow c \ lv)$

$$|V_{ub}/V_{cb}|^2 = \lambda^2 (\rho^2 + \eta^2) \Rightarrow circle @ (0,0)$$

 B_d -mixing frequency = mass difference

$$\Delta m_d = C_d B_d f_{B_d}^2 A^2 \lambda^6 \left[(1 - \overline{\rho})^2 + \overline{\eta}^2 \right] \Rightarrow circle@(1,0)$$

*B*_s-mixing frequency: $\Delta m_s \propto B_s f_{B_s}^2 A^2 \lambda^4$

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_d}{m_s} \frac{\lambda^2}{\xi^2} \left[(1 - \overline{\rho})^2 + \overline{\eta}^2 \right] \Rightarrow circle @ (1,0), \ \xi = \frac{f_{B_s} \sqrt{B_s}}{f_{B_d} \sqrt{B_d}}$$

UT Constraints

From A. Hocker, et al. hep-ph/0104062

B. Heltsley, KEK Seminar, 7/2/01

More UT Constraints

$\sim V_{ij} $ (ac	curacy) [*=a	ssumes Unitarity]	
<i>ud</i> : β-decay	<i>us: K→πev</i>	<i>ub: b</i> \rightarrow <i>ul</i> \vee &	
0.1%	1.1%	17% $B \rightarrow \pi(\rho) l \vee$	
0.9739 ± 0.0009	0.2200±0.0025	0.0035 \pm 0.0006	
<i>cd:</i> v <i>d</i> → <i>l</i> c→ <i>ll</i> X	$cs: D \rightarrow Kev,$	<i>cb: b</i> \rightarrow <i>cl</i> ν ,	
6%	6% $W \rightarrow X_c X$	7% <i>B</i> \rightarrow <i>Dl</i> ν	
0.224 ± 0.014	0.97 ± 0.06	0.041 ± 0.003	
<i>td</i> : B_d mixing	<i>ts: B_s</i> mixing	<i>tb: t→bl</i> ∨	
19% $D_s \rightarrow \mu \nu$	25%*	15%*	
0.0083 \pm 0.0016	0.04 ± 0.01 *	0.99 ± 0.15 *	

. 1994

Global fits: Simmering tempest

Conservative Frequentists

- A. Hocker, et al., hep-ph/0104062 (BaBar)
- S. Stone, hep-ph/0012162 (Beauty 2000)
- A. Falk, hep-ph/9908520, Aug. 1999 (LepPho 1999)
- J. Rosner, hep-ph/0011184, Aug. 1999 (Beauty 2000)

Optimistic Bayesians:

- A. Stocchi, hep-ph/0010222 (ICHEP 2000), NIM A462 (2001) 318 (Beauty 2000).
- F. Parodi (CPV 2000)
- M. Ciuchini, et al., hep-ph/0012308 (Moriond 2001)

Issue: How to treat theoretical QCD predictions (TP's) & associated uncertainties in a global CKM fit?

Standard vs 95% CL Scanning

Standard method advocates similar treatment of uncertainties for data and TP's with Gaussian (or even flat) PDF's (Bayesian)

- LQCD is mature enough to trust results
- Know the sign & rough magnitude of corrections
- Can assign reasonable σ 's: don't throw away information!
- <u>95% CL Method</u> advocates cautious approach to TP's by restricting them to a "95% CL interval", <u>with no preferred central value</u> $\Rightarrow V_{ij}$: contours or intervals with no preferred ctrs (Frequentist)
 - Even combining flat PDF's is treacherous!
 - In multi-dimensional problems Bayesian treatment unfairly predicts a narrowing of possible results, not a broadening

"95% Scanning" Global Fit

Global Fitting Conclusions

- No consensus on QCD uncertainties
 - Not likely to converge without data to pin it down
- No consensus on Bayesian/Frequentist
 Merits & difficulties on both sides
- Different methods will give much different answers as soon as the data are more precise (i.e. in a few weeks)
 - Different answers may have very different implications on whether the SM is found lacking
- Expect continuing spirited discussion

- B-factories in 5 years: ~0.5 ab⁻¹
 - $\Rightarrow \sim 1/10$ statistical σ 's
 - D BR's become limiting to B-decay precision
 - Charm physics could become less precise than b-physics: need better V_{cd} & V_{cs}
- Theoretical uncertainties dominate even now
 Thread # 3
 - But Lattice QCD & models promise big improvements

Just imagine ...

The Role of CLEO-c

• Modify CESR for E_{cm} =3-11 GeV: L=2-4×10³²

High precision charm data

- Measure D BR's for input to B-decay studies
- Establish successful precision testing ground of QCD for D's to give credibility to those for B's
- High precision quarkonia spectroscopy & decay data at ψ & Υ resonances
 - Provide much needed experimental basis for nonperturbative QCD tests. Glueballs/Hybrids?
- Searches for non-SM phenomena in *D*mixing, CPV in *D* decay, & rare decays

The CESR-c Accelerator

- Since L~E_b⁴ without artificial radiation: wigglers for transverse cooling: L~E_b
 2T peak field with 40 cm period
 - ~16 superconducting, 1.3m modules inserted: \$5M
 - • $\Delta E_{beam} \approx 1.2 \text{ MeV} @ J/\psi$

\sqrt{S}	$L (10^{32} \text{ cm}^{-2} \text{ s}^{-1})$
4.1 GeV	3.6
3.77 GeV	3.0
3.1 GeV	2.0

A CLEO-c Program

- $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \sim 1-2 \text{ fb}^{-1} \text{ each}$
 - Spectroscopy, Matrix elements, Γ_{ee} :(>10×world)
- $\psi(3770)$ -- 3 fb⁻¹, 30M events
 - 6M tagged D decays (310 × Mark III)

- $\psi(4100) 3 \text{ fb}^{-1}, 1.5 \text{M } D_s \overline{D}_s$
 - 0.3M tagged D_s decays (480×Mark III, 130×BESII)

ψ(3100) -- 1 fb⁻¹, 10⁹ J/ ψ decays
 (170 × Mark III, 20 times BES II)

The CLEO III Detector

CLEO III/c Drift Chamber

CLEO III Silicon

Silicon efficiencies continue to drop

- Layer 1 rφ view: >85% to 9% in <1 yr</p>
- Other layers following

Single wafer efficiency (black = good)

φ**(rad)**

Inner Tracking (2<r<12cm)

Now: 4-lyr, 2-sided Si, 125K ch, 1.6% X₀ • Early radiation damage: Lyr 1+2 r-phi $\varepsilon \rightarrow 0$ Proposed: 6-lyr all-stereo (10-15°) drift chamber •1.1% X_0 inner wall + 0.1% X_0 gas: improves σ_p/p • Preserves mass resolution despite larger σ_z Smaller event size Build from spare parts – install late 2002

CLEO III CsI Calorimeter

93% solid angle good resolution in both barrel & endcaps $\sigma_{\rm F}/{\rm E} = 4\%$ at **100 MeV** $\sigma_{\rm E} / {\rm E} = 2\%$ at 1 GeV • $\sigma_{M(\gamma\gamma)} \sim 5.5 \text{ MeV}$ π^0 mass resolution

RICH Particle Id

12.2 (sawtooth LiF)

CLEO III Particle ID - RICH

(n_γ) = 12
 10-200σ K-π separation for p>0.5 GeV

• Trigger

- Flexible & programmable
- Now: 100 Hz
- Loose trigger pre-scaling for ε studies

Data Acquisition

- **Designed for 1000 Hz for CLEO III / Υ(4S)**
- CLEO-c: no problems handling increase rate
 - Smaller event size
 - Lower backgrounds
 - Rate at $J/\psi < 250$ Hz
 - Bhabha rate < 120 Hz before pre-scaling

Tagging at Threshold

$$D^{0} \rightarrow \kappa^{-} \pi^{+} \qquad \overline{D^{0}} \rightarrow \kappa^{+} e^{-} \chi$$

$$CLEO-c MC$$

- •Large σ
- Low multiplicity
- •Pure *DD* init. State
- •High recon. eff's ~ 20%
- •6×10⁶ *D* tags
- •0.3 ×10⁶ D_s tags
- •Almost no bgd
- •Clean v-reconst.
- Coherent init state

Tagged Branching Ratios

Leptonic Decays

Semi-leptonic Decays

Semi-leptonic (cont'd) Decay Mode PDG2000 CLEOc $(\delta B/B \%)$ (δB/B %) 1.6 $\rightarrow Kl_{V}$ **Systematics** $\rightarrow \pi l \nu$ 1.7 16 limited **48** 1.8 25 2.8 **Plus vector modes...**

V_{cd} , V_{cs} to ~1.5%, ratio to <1%

Cancelling systematics

Double Tags

Clean D_s Tagging as Well

Absolute Branching Fractions

Measure absolute D⁰, D⁺ scale to ~1% Measure absolute D_s scale to ~1-2%

What do we learn from these?

• Semileptonic decays: $|V_{CKM}|^2 |F(q^2)|^2$

- Form factor shapes & normalizations
- Calibrate theory!
- Extract |V_{cd}|, |V_{cs} |
- Theory \rightarrow Extract $|V_{ub}|$ from B

• Leptonic Decays: $|V_{CKM}|^2 |f_D|^2$

- Decay constants
- Calibrate theory!
- Extract |V_{cd}|, |V_{cs} |
- Theory \rightarrow Extract $|V_{td}|$, $|V_{ts}|$ from B

Hadronic decays:

- Set scale of heavy quark decays
- Enables precision tests in B decays
- Strong phases: Extract γ from $B \rightarrow DK$

Hybrids and Glueballs

• Strategy Part 1: 1fb⁻¹ on J/Ψ

- Search for states in glue rich enviror
- B(J/ $\Psi \rightarrow \gamma X$) ~ 6%

- Copious source of color singlet gg pairs
- $J^{PC} = 0^{++}, 0^{-+}, 2^{++}$
- PWA to get QN of states
 - Hermetic detector / Low background
- **Absolute BR's:** *ππ*, **KK**, **pp**, *ηη*,....
- If see state in $J/\Psi \rightarrow \gamma X$, how do you know what it is?

More Hybrids, Glueballs

Strategy Part 2: Current Data!

- Anti-search in glue-poor environment
 - Eg. e⁺e⁻ -> e⁺e⁻γγ -> e⁺e⁻X
- Compare: $\gamma\gamma \rightarrow M$ vs. $\gamma\gamma \rightarrow G$

- Candidate states rich in glue seen at Ψ should not be copiously produced in γγ collisions!
 - Photons couple to charge!

More Hybrids, Glueballs

- Strategy Part 3: 1fb⁻¹ on Y(1S)
 - Compare $\Gamma(J/\Psi \rightarrow \gamma X)$ and $\Gamma(Y(1S) \rightarrow \gamma X)$
 - The Y(1S) is also glue rich but...

$$\frac{\Gamma(\Psi \to \gamma X)_{1-2GeV}}{\Gamma(\Psi \to \gamma X)_{1-2GeV}} \sim \frac{\sigma_{\Psi}}{\sigma_{Y}} \left(\frac{q_{c}}{q_{b}}\right)^{2} \frac{\frac{\Pi \to \gamma A_{1-2GeV}}{\Psi \to \gamma X_{1-2GeV}}}{\frac{\Psi \to \gamma X}{\Psi \to \gamma X}}$$

$$\sim 10^2 \bullet 4 \bullet 10$$

١IJ

 $\wedge \alpha V$

$$\sim 4000$$

- No PWA at Y(1S)!
 - Can confirm existence of states
 - Probe details of wave functions
 - Measure wf at different x
 - Test conclusions drawn from $J/\Psi \& \gamma \gamma$ data

Current Status

Experimental

Far from clear!

List of "glue ball" suspects

- η(1400) region
- $f_0(1500)$
- **f**_J(1710)
- ξ(2220) or f_J(2220)
- The situation is complicated and experimental results are contradictory
- Sorting it out will be challenging!
 - Looks messy now due to insufficient statistics

The vanishing f_J(2220)

FIG. 1. Invariant mass spectra of (a) $\sigma^{-}\sigma^{-}$, (b) $K^{-}K^{-}$, (c) $K_{a}^{-}K_{a}^{+}$, and (d) $p\overline{p}$.

 $\pi^+\pi^-$ (b) K⁺K⁻ (c)K_sK_s pp 2.22.4 $\overline{26}$ MASS $(G_{\Theta}V)$

BES 1996

 $\operatorname{ced} J/\psi$, and

The vanishing f_J(2220)

54

Inclusive Search

• γ spectrum from $J/\psi \rightarrow \gamma X$:

10⁻⁴ sensitivity for narrow resonance

- Eg: ~25% efficient for f_J(2220)
 - Suppress hadronic bkg: J/ψ→π⁰X

Comparison w/ Other Expts

- **BES II is running now.**
- BES III, BEPC II (~10³²) upgrade proposed
- Physics: 2005 if approval & construction.

Quantity	BES II	CLEO-C
.J/psi yield	50M	> 1000M
dE/dx res.	9%	4.9%
K/pi separation up to	600 MeV	1500 MeV
momentum res. (500Mev)	1.3%	0.5%
Photon resolution (100 Mev)	70 MeV	4 MeV
Photon resolution (1000 Mev)	220 MeV	21 MeV
Minimum Photon Energy	80 MeV	30 MeV
Solid angle for Tracking	80%	94%
Solid angle for Photons	75%	95%

HALL-D @TJNAL: Light states with J^{PC} = 0+-, 1+-, ... (2007+)
 Complementary to CLEO-C: heavy states with J^{PC}=0++, 2++, ...
 B. Heltsley, KEK Seminar, 7/2/01

What about *B*-Factories?

	CLEO-C	BaBar	Current
	2-4fb-1	400 fb-1	Knowledge
f_D Vcd	1.5-2%	10-20%	n.a.
f_Ds Vcs	<u>≺</u> 1%	5-10%	19%
Br(D+ -> Kππ)	1.5%	3-5%	7%
Br(Ds -> φπ)	2-3%	5-10%	25%
Br(D-> πIν)	1.4%	3%	18%
Br(Λc -> p Kπ)	6%	5-15%	26%
A(CP)	~1%	~1%	3-9%
x'(mix)		0.01	0.03
Statistics limited		Systemat	tics & background

B. Heltsley, KEK Seminar, 7/2/01

Possible additional topics

Υ(nS) Precision partial/total width msmts **Discover** $\eta_{\rm b}$ (bb ground state) in $\Upsilon(nS) \rightarrow \gamma \eta_{\rm b}$ • $\tau^+\tau^-$ at threshold (0.25 fb⁻¹) • measure m_t to ± 0.1 MeV heavy lepton, exotics searches • $\Lambda_c \Lambda_c$ at threshold (1 fb⁻¹) • calibrate absolute BR($\Lambda_c \rightarrow pK\pi$)

• $R=\sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ • spot checks

Tying the Threads

Direct impact on CKM

• Precise V_{cd} & V_{cs} & more precise V_{cs}/V_{cd}

Enable B-factory msmts for CKM precision

- Precise D decay rates used to tag D's in B-decay & mixing
- Precision form factors & decay constants for charm to give confidence for extrapolations to beauty
 - High Precision reality check for HQET & Lattice QCD.

• QCD

- Υ spectroscopy, transitions; discover η_b ?
- glueballs, hybrids: corroborating datasets: 1-stop shopping (~1 fb⁻¹ Υ(1S), 25 fb⁻¹ 2γ)

• Detector & collider capable of 100 fold or better improvement in data.

- Modern, well-understood detector + collaboration ready to go
- Modest accelerator changes
- Tightly focussed ~4-year program

Near/Far Term

Near

- Look for favorable reaction at Snowmass, just as from the HEPAP-Long Range Panel
- Accumulate data at Y resonances in 2001-2
- Modify CESR with wigglers (2003)
- CLEO-c (2003-2005)
 - Precision data that will make fundamental contributions to QCD and Flavor physics
 - Validates theoretical technology at 1-2% level

Far Future

- CESR & CLEO turn off for HEP: ~2006
- Lab will turn its full effort to the energy frontier!