CKM Status & Prospects

Brian K. Heltsley, Cornell University Physics In Collision, June 29, 2001

- CKM Basics
- Experimental Status b emphasis
 CPV, B_d & B_s mixing, b→clv, b→ulv
 Novel approach to V_{cb}
- Global fitting
- CKM, QCD, & CLEO-c
- Prospects

Cabibbo-Kobayashi-Maskawa Quark Mixing

Lagrangian (weak charged current) : $L_W = -\frac{g}{\sqrt{2}} \overline{u}_{Li} \gamma^{\mu} V_{ij} \overline{d}_{Lj} W_{\mu}^{+} + h.c.$ • V_{CKM} : 3×3, UNITARY (V[†]V=I) • Each V_{ij} has a real part + imag phase $\mathbf{V_{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$ $\mathcal{P} \Leftrightarrow 3$ gen's & ≥ 1 imag phase $\neq 0$

The Unitarity Triangle(s) (UT)

The sum for each
 0 in I is a triangle
 in the real complex plane

Phase convention:

 $(V_{cd} V_{cb}^{*})$ is real

$$V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

$$V_{ud}V_{us}^{*} + V_{cd}V_{cs}^{*} + V_{td}V_{ts}^{*} = 0$$

$$V_{us}V_{ub}^{*} + V_{cs}V_{cb}^{*} + V_{ts}V_{tb}^{*} = 0$$
...
$$(0,0) \quad V_{cd}V_{cb}^{*}$$

CKM parameterizations

 Wolfenstein (original). Expand in λ², with λ= sin θ_C = 0.22.
 To O(λ⁴) ~ 10⁻³: Buras: slight changes attain O(λ⁶) ~ 10⁻⁴

•
$$\lambda, A, \overline{\rho}, \overline{\eta}$$

• J= triangle area \propto CPV

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda - iA^2\lambda^5\eta & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 - iA\lambda^4\eta & 1 \end{pmatrix}$$
$$\overline{\rho} = \rho \left(1 - \frac{\lambda^2}{2}\right), \ \overline{\eta} = \eta \left(1 - \frac{\lambda^2}{2}\right)$$

SM Unitarity Triangle

Just 4 parameters?!

- Just four parameters: λ , A, $\overline{\rho}$, $\overline{\eta}$
- Measure them as <u>fundamental constants of</u> <u>nature</u> – "metrology"
 - Now, semi-leptonic decays & mixing provide best access
- With a rich diversity of quark decays, can <u>overconstrain</u> them – "global fit" to data
- Inconsistencies seen at any level means

New Physics outside SM

BUT, hadrons, not q's, are detected

CKM⇔QCD in (Semi)Leptonic Decay

CKM \Leftrightarrow **QCD** in B_d , B_s Mixing

~ V _{ij} (accuracy) [*=assumes Unitarity]						
<i>ud</i> : β-decay	us: $K \rightarrow \pi e \nu$	ub: b→ulv &				
<mark>0.1%</mark>	1.1%	17% $B \rightarrow \pi(\rho) l \nu$				
0.9739 ± 0.0009	0.2200±0.0025	0.0035 ± 0.0006				
$cd: \vee d \rightarrow lc \rightarrow llX$	$cs: D \rightarrow Kev,$	$cb: b \rightarrow cl \vee,$				
6%	$6\% W \to X_c X$	$\frac{7\%}{B} \longrightarrow Dl_{\rm V}$				
0.224 ± 0.014	0.97 ± 0.06	$\textbf{0.041} \pm \textbf{0.003}$				
<i>td</i> : <i>B_d</i> mixing	ts: B _s mixing	<i>tb: t→bl</i> ∨				
19% $D_s \rightarrow \mu \nu$	25% *	15%*				
0.0083 ± 0.0016	0.04 ± 0.01 *	0.99 ± 0.15 *				

Experiment \Leftrightarrow **Theory**

CP-violating parameter from K decay:

 $\varepsilon_K = C_{\varepsilon} B_K \lambda^6 \quad \overline{\eta} \left[C_1 A^2 \lambda^4 (1 - \overline{\rho}) + C_2 + C_3 \right] \Rightarrow hyperbola$

 $(b \rightarrow u \ lv) / (b \rightarrow c \ lv)$

$$|V_{ub}/V_{cb}|^2 = \lambda^2 (\rho^2 + \eta^2) \Rightarrow circle @ (0,0)$$

 B_d -mixing frequency = mass difference

$$\Delta m_d = C_d B_d f_{B_d}^2 A^2 \lambda^6 \left[(1 - \overline{\rho})^2 + \overline{\eta}^2 \right] \Rightarrow circle@(1,0)$$

*B*_s-mixing frequency: $\Delta m_s \propto B_s f_{B_s}^2 A^2 \lambda^4$

$$\frac{\Delta m_d}{\Delta m_s} = \frac{m_d}{m_s} \frac{\lambda^2}{\xi^2} \left[(1 - \overline{\rho})^2 + \overline{\eta}^2 \right] \Rightarrow circle @ (1,0), \ \xi = \frac{f_{B_s} \sqrt{B_s}}{f_{B_d} \sqrt{B_d}}$$

UT Constraints

From A. Hocker, et al. hep-ph/0104062

B. Heltsley, CKM Status & Prospects, PIC01

More UT Constraints

B. Heltsley, CKM Status & Prospects, PIC01

sin 2β

- 0.34 ± 0.21 BaBar
- 0.58 ± 0.34 Belle
- $\bigcirc 0.79 \pm 0.43 \quad \text{CDF}$
- 0.84 ± 0.93 ALEPH
- $\bullet \quad 3.2 \pm 2.0 \quad \text{OPAL}$

World Average: 0.48 ± 0.16

B_s too heavy to be produced *(a)* Y(4S)
LEP, SLC, Tevatron

- Near maximal mixing observed
 - $\Delta m_s >> 1/\tau$ unlike B_d
 - Oscillations not yet definitively seen due to large frequency; hard to measure
 - Only get lower limit on Δm_s , even when combining all expmts

- $|V_{cb}|^2 = h(\mu, m_b) \times \Gamma(b \rightarrow cl\nu)$ $=h(\mu, m_b) \times BR(b \rightarrow clv)/\tau_b$ • $h(\mu, m_b)$ from Heavy Quark Expansion Perturbative & non-perturbative pieces Quark-hadron duality assumption: integrated over enough charm bound states & enough phase space, the inclusive hadronic result will match quark-level
 - No consensus on uncertainty in assumption

5%? common theoretical error

Exclusive $V_{cb}: B \rightarrow D^* lv$

• Experiments measure $\frac{d\Gamma}{dw} = \frac{G_F^2}{48\pi^3} g(w) F_{D^*}^2(w) |V_{cb}|^2$

 $w = (m_B^2 + m_{D^*}^2 - q^2)/(2m_B m_D^*) = D^*$ boost in B rest-frame 1<w<1.5; g(w) is a known function with g(1)=0

- HQET: $F(1) \rightarrow 1$ for $m_b \rightarrow \infty$; $(1/m_b)^n$ corr'ns
 - $F_{D^*}(1) = 0.88 0.95$: HQET, LQCD

Nearly linear in w: measure curvature: parameter "ρ²"

- Extrapolate data to w=1 (where phase space $\rightarrow 0$)
- Experimental results usually quoted as $F_{D^*}(1)|V_{cb}|$

w fits: $B \rightarrow D^* l v$ examples

Kinematic variable distinguishing *D*^{*}*l*∨ *D*^{*}*Xl*∨

 $|V_{cb}|$ from $B \rightarrow D^* l v$

• w msd: σ_w (CLEO)= 0.03; σ_w (LEP) \geq 0.07 • Fit each w-bin for $(B \rightarrow D^* l \vee + D^* X l \vee + bgds)$ • CLEO limit: $\varepsilon(\text{slow }\pi)$ $D^{*+}lv$ $F(1)|V_{cb}|$ Fit • LEP limit: D^*Xl_{V} level Model of Leibovich, et al. 0.03 PRD 57, 308 (1997) 0.02 **Extrapolation** CLEO measures it, sees less 0.01 **CLEO 2001** Preliminary $F(1)|V_{cb}| = (42.2 \pm 1.3 \pm 1.8) \times 10^{-3}$ 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 CLEO $D^{*+}l\nu$, $D^{*\theta}l\nu$ $\rho^2 = 1.61 \pm 0.09$

5% total error on $F(1)|V_{cb}|$

• Similar to $b \rightarrow cl \vee BUT BR(b \rightarrow ul \vee) \sim 2 \times 10^{-3}!$ • Experimentally: few evts, swamped w/ $b \rightarrow clv$ • LEP expmts use inclusive analysis • LEP $|V_{ub}|$ avg has 10% statistical error HQE uncertainty (5%) + duality/modeling unc. (12%) • Systematics from identifying & separating $b \rightarrow u, b \rightarrow c$ • Systematics from non- $b \rightarrow u$, non- $b \rightarrow c$ suppression • CLEO uses "v-recon." for $B \rightarrow \pi l v$, $\rho l v$ Statistical error of 4% Form-factor model uncertainty of 17%

B. Heltsley, CKM Status & Prospects, PIC01

Global fits: Simmering tempest

Conservative Frequentists

- A. Hocker, et al., hep-ph/0104062 (BaBar)
- S. Stone, hep-ph/0012162 (Beauty 2000)
- A. Falk, hep-ph/9908520, Aug. 1999 (LepPho 1999)
- J. Rosner, hep-ph/0011184, Aug. 1999 (Beauty 2000)

Optimistic Bayesians:

- A. Stocchi, hep-ph/0010222 (ICHEP 2000), NIM A462 (2001) 318 (Beauty 2000).
- F. Parodi (CPV 2000)
- M. Ciuchini, et al., hep-ph/0012308 (Moriond 2001)
- Issue: How to treat theoretical QCD predictions (TP's) & associated uncertainties in a global CKM fit?

Central Q's in Tempest

• What are central values of TP's from HQET, LQCD, NLO ?

Do we exclude "disagreeable" or "outdated" predictions?

How to combine several incompatible results?

What are the uncertainties on the TP's?

- How well can they be estimated?
- Do "internal" tests give adequate estimates?
- How does one quantify errors from assumptions; e.g. quarkhadron duality in HQET?

Can some or all theoretical errors be treated w/Bayesian analysis along with the data, with a preferred central value as a result?

Standard vs 95% CL Scanning

- Security Arrea. June 28-29-
- Standard method advocates similar treatment of uncertainties for data and TP's with Gaussian (or even flat) PDF's (Bayesian)
 - LQCD is mature enough to trust results
 - Know the sign & rough magnitude of corrections
 - Can assign reasonable σ 's: don't throw away information!
- <u>95% CL Method</u> advocates cautious approach to TP's by restricting them to a "95% CL interval", <u>with no preferred central value</u> $\Rightarrow V_{ij}$: contours or intervals with no preferred ctrs (Frequentist)
 - Even combining flat PDF's is treacherous!
 - In multi-dimensional problems Bayesian treatment unfairly predicts a narrowing of possible results, not a broadening

sin2β CL's in different methods

From A. Hocker, et al. hep-ph/0104062

Direct sin2β msmts not included

Standard Method Global Fit

"95% Scanning" Global Fit

B. Heltsley, CKM Status & Prospects, PIC01

"95% CL" w/sin2β Constraint

From A. Hocker, et al. hep-ph/0104062

CL's in "95% Scan" Global Fit

B. Heltsley, CKM Status & Prospects, PIC01

Y2K Global Fit 95%CL Limits

"95%	Scanning"	VS	"St	andard"	Here uses
Φρ:	0.04 - 0.38	VS	-0.0	06 - 0.31	flat PDF's
Span:	0.34	VS		0.37	
Ο η:	0.21 - 0.49	VS	0.2	26-0.42	
Span:	0.28	VS		0.16	
O sin(2β):	0.47 - 0.89	VS	0.4	56 - 0.82	
Span:	0.42	VS		0.26	
From A. Hocker, et al. hep-ph/0104062From M. Ciucini, et al., hep-ph/0012308					
Each quoted with its own					
No sin2β constraint			choice for QCD params		

Global Fitting Conclusions

- No consensus on QCD uncertainties
 - Not likely to converge without data to pin it down
- No consensus on Bayesian/Frequentist
 Merits & difficulties on both sides
- Different methods will give much different answers as soon as the data are more precise (i.e. in a few weeks)
 - Different answers may have very different implications on whether the SM is found lacking
- Expect continuing spirited discussion

New V_{cb} from "Moments"

• HQET OPE: expand in $(1/m_B)^n$

$$|V_{cb}|^2 = \Gamma(b \rightarrow clv) \times h(\overline{\Lambda}, \lambda_1) : \sim O(m_B^{-3})$$

• Λ = Mass of light d.o.f.

• λ_1 = rms momentum of b quark.

A.Falk, M. Luke, & M. Savage, PRD53 (2491) 1996. M. Gremm & A. Kapustin, PRD55 (6934) 1997. M. Voloshin, PRD51 (4934) 1995.

• $\overline{\Lambda}$, λ_1 determined from

Lattice QCD Kronfeld & Simone, hep-ph/0006345.

• Measured hadronic spectral moments in $b \rightarrow clv$

• Measured photon energy spectrum moments in $b \rightarrow s\gamma$

• New, preliminary CLEO use of technique

CLEO $b \rightarrow s\gamma$ spectral moments

- Measure photon spectrum in lab-frame.
- Convert to B rest frame. MC accounts for smearing
 - Best match $m_b = 4719 \pm 115 \text{ MeV}/c^2$; $p_F = 378 \pm 150 \text{ MeV}$
- Extract moments $(E_{\gamma} > 2.0 \text{ GeV}) \langle (E_{\gamma} \langle E_{\gamma} \rangle)^2 \rangle = 0.021 \pm 0.006 \pm 0.002 \text{ GeV}^2$

Weights per 100 MeV

2000 • Lepton (p>1.5 GeV) DATA Fit D*/v • v-reconstruction: p_{y} 1500 D/v X_Hlv Calculate recoil mass Evts/.5 GeV² P₂ > 1.5 GeV/c • Fit spectrum w/ $B \rightarrow Dl v$, $B \rightarrow D^* l \nu, B \rightarrow X_H l \nu$ 500 (various models for X_{μ}) • $\langle M_X^2 - \overline{M}_D^2 \rangle$, \overline{M}_D is spin--2 n averaged D, D* mass $(M_{x}^{2}-M_{p}^{2})=0.287\pm0.065 \text{ GeV}^{2}$ • 2nd moment: 0.63 ±0.17 GeV⁴

 $B \rightarrow X_c l v$ Hadronic Mass Moments

37

8

 $\langle M_{v}^{2} - \overline{M}_{p}^{2} \rangle$

10

Second moments give consistent results, but still theoretically shaky.

2

 $\Lambda, \lambda_1 \text{ from } b \rightarrow s\gamma, B \rightarrow X_c lv \text{ moments}$

CLEO V_{cb} from $b \rightarrow clv, b \rightarrow s\gamma$

Using

- $B(B \rightarrow X_c l \nu) = (10.39 \pm 0.46)\%$ (CLEO, PRL76 (1570) 1996)
- $\tau_{\pm} = (1.548 \pm 0.032)$ psec (PDG)
- $\tau_0 = (1.653 \pm 0.028)$ psec (PDG)
- $f_{+-}/f_{00} = 1.04 \pm 0.08$ (CLEO, hep-ex/0006002)
- $\Gamma(b \rightarrow clv) = (0.427 \pm 0.020) \times 10^{-10} \text{ MeV}$

 $(\Lambda, \lambda_1)_{exp}$

 $|V_{cb}| = (40.5 \pm 0.9 \pm 0.9 \pm 0.8) \times 10^{-3}$

 $1/M_{B}^{3}$

B. Heltsley, CKM Status & Prospects, PIC01

What's next?

- B-factories in 5 years: ~0.5 ab⁻¹
 - $\Rightarrow \sim 1/10$ statistical σ 's
 - D BR's become limiting to B-decay precision
 - Charm physics could become less precise than b-physics: need better V_{cd} & V_{cs}
- Theoretical uncertainties dominate even now
 - But Lattice QCD & models promise big improvements

Just imagine ...

The Role of CLEO-c

• Modify CESR for E_{cm} =3-11 GeV: L=2-4×10³²

High precision charm data

- Measure D BR's for input to B-decay studies
- Establish successful precision testing ground of QCD for D's to give credibility to those for B's
- High precision quarkonia spectroscopy & decay data at ψ & Υ resonances
 - Provide much needed experimental basis for nonperturbative QCD tests. Glueballs/Hybrids?

Searches for non-SM phenomena in *D*mixing, CPV in *D* decay, & rare decays

- Υ(1S), Υ(2S), Υ(3S) ~1-2 fb⁻¹ each
 - Spectroscopy, Matrix elements, Γ_{ee} :(>10×world)
- ψ(3770) -- 3 fb⁻¹, 30M events

6M tagged D decays (310 × Mark III)

- $\psi(4100) 3 \text{ fb}^{-1}, 1.5 \text{M } D_s \overline{D}_s$
 - **0.3M** tagged D_s decays (480×Mark III, 130×BESII)

ψ(3100) -- 1 fb⁻¹, 10⁹ J/ ψ decays
 (170 × Mark III, 20 times BES II)

Tagging at Threshold

$$D^{0} \rightarrow \kappa^{-} \pi^{+} \qquad \overline{D^{0}} \rightarrow \kappa^{+} e^{-} \nu$$
CLEO-c MC

- •Large σ
- Low multiplicity
- •Pure *DD* init. State
- •High recon. eff's ~ 20%
- •6×10⁶ *D* tags
- •0.3 ×10⁶ D_s tags
- •Almost no bgd
- •Clean v-reconst.
- Coherent init state

Tagged Branching Ratios

Semi-leptonic Decays

Semi-leptonic (cont'd)Decay Mode PDG2000 CLEOc

V_{cd} , V_{cs} to ~1.5%, ratio to <1%

Cancelling systematics

Other Experiments

Security tongs, June 28-28-1

BES/BEPC

- CESR-c higher luminosity than BEPC I or BEPC II
- BEPC II/BES III upgrade completion: after 2005
- Physics priorities in τ -charm region dictate E_{cm}

B-factories

- Charm production not clean like at $D\overline{D}$ threshold
- Charm measurements will quickly become systematics limited
- D, D_s branching ratio errors 2-10 times smaller with CLEO-c than B-factories
- Very different systematics (a good thing)

CKM Conclusions

- B-factory appetizers to be followed by full course meal: just wait a few weeks
 - Major improvements in *B*-decay msmts. Surprises?
 - Treatment of theoretical uncertainties & global fitting techniques are active & important subjects of discussion
- HQ models, LQCD will confront %-level c & bdata in a few years: need accurate f_X , $F_X(w)$, B_X
 - CLEO-c to provide precision c, ψ, Υ data
 - Better precision in *D* BR's necessary for $B \rightarrow DX$
 - Improve V_{cd} & V_{cs} to the 1% level
- %-level metrology of $V_{\rm CKM}$ & very high sensitivity to new physics attainable in ~5 yrs

Whither the SM? It should be fun finding out.