New Results on Charm Semileptonic Decays and Lifetime

K.K. Gan
The Ohio State University
Representing CLEO Collaboration

July 14, 2001

Outline

- measurement of $B\left(D^{+} \rightarrow{\overline{K^{*}}}^{0} l^{+} v_{l}\right)$
- first measurement of $\Gamma\left(D^{*+}\right)$
- form factor ratio measurement in $\Lambda_{c} \rightarrow \Lambda e^{+} v$
- evidence for $\Omega_{c} \rightarrow \Omega e^{+} \boldsymbol{v}$
- measurement of Ξ_{c}^{+}lifetime

Measurement of $B\left(D^{+} \rightarrow \overline{\left.K^{* 0} l^{+} v_{l}\right)}\right.$

Motivation:

- no reliable calculation of form factors in $D^{+} \rightarrow \overline{K^{* 0}} l^{+} v_{l}$
is measurement of form factors helps to guide theory
- HQET and chiral symmetry:
is form factors in $D^{+} \rightarrow \overline{K^{*}} l^{+} v_{l}$ is related
to those in $b \rightarrow u l v$ and $b \rightarrow$ sll
\Rightarrow measurement of $B\left(D^{+} \rightarrow \overline{K^{*}} l^{+} v_{l}\right)$
helps to reduce uncertainty in $V_{u b}$ extraction

Analysis procedure:

- choose δm closest to 0.1406 GeV :
is $P_{D 1}$ or $P_{D 2}$ or event missing momentum
- fit for K^{*} resonance in each δm bin
- fit δm to extract signal yield

Fit of δm Distribution

- clear excess of events over low background

Preliminary Results on $B\left(D^{+} \rightarrow \overline{\left.K^{* 0} l^{+} v_{l}\right)}\right.$

- $R_{l}=\frac{B\left(D^{+} \rightarrow \overline{K^{*}} l^{+} v_{l}\right)}{B\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)}$:

$$
\begin{aligned}
& R_{e}=0.74 \pm 0.04 \pm 0.06 \\
& R_{\mu}=0.72 \pm 0.10 \pm 0.06 \\
& R_{l}=0.73 \pm 0.04 \pm 0.05
\end{aligned}
$$

- PDG: $B\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)=(9.0 \pm 0.6) \%$:

$$
\begin{aligned}
& B_{e}=(6.7 \pm 0.4 \pm 0.5 \pm 0.4) \% \\
& B_{\mu}=(6.5 \pm 0.9 \pm 0.5 \pm 0.4) \% \\
& B_{l}=(6.6 \pm 0.4 \pm 0.5 \pm 0.4) \%
\end{aligned}
$$

- CLEO results are consistent with other experiments

First Measurement of $\Gamma\left(D^{*+}\right)$

- use $D^{*+} \rightarrow D^{0} \pi^{+}$with $D^{0} \rightarrow K^{-} \pi^{+}$
- measure energy release:
$Q=m\left(K^{-} \pi^{+} \pi^{+}\right)-m\left(K^{-} \pi^{+}\right)-m_{\pi^{+}}$
is width of Q distribution is dominated by
$\Gamma\left(D^{*+}\right)$ and detector resolution
is use unbinned maximum likelihood fit with Breit Wigner shape for $\Gamma\left(D^{*+}\right)$

Typical Fits of Data and MC

Results

- $\Gamma\left(D^{*+}\right)=96 \pm 4 \pm 22 \mathrm{KeV}$
- first measurement of $\Gamma\left(D^{*+}\right)$
- $m\left(D^{*+}\right)-m\left(D^{0}\right)=145.412 \pm 0.002 \pm 0.012 \mathrm{MeV}$
$-\Gamma\left(D^{*+}\right)=\frac{g_{D^{*+} D^{0} \pi^{+}}^{2}}{24 \pi m_{D^{*+}}^{2}} p_{\pi^{+}}^{3}+\frac{g_{D^{*+} D^{+} \pi^{0}}^{2}}{24 \pi m_{D^{*+}}^{2}} p_{\pi^{0}}^{3}+\frac{\alpha g_{D^{++} D^{+} \gamma}^{2}}{3} p_{\gamma}^{3}$
$g_{D^{*} D \pi} \equiv g_{D^{n+} D^{0} \pi^{+}}=-\sqrt{2} g_{D^{*+} D^{+} \pi^{0}}=\frac{2 m_{D^{*+}}}{f_{\pi}} g$
is $g_{D^{*} D \pi}=17.9 \pm 0.4 \pm 2.0$
is $g=0.59 \pm 0.01 \pm 0.07$
- consistent with RQM, HQET, Chiral Bag Model, HM χ L
- contradicts QCD sum rules: $g=0.2-0.3$

Form Factor Ratio Measurement in $\Lambda_{c} \rightarrow \Lambda e^{+} v$

Motivation:

- alternative methods for extracting $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$:

is same set of form factors in both decays
is Korner-Kramer:

$$
R=\frac{f_{2}\left(q^{2}\right)}{f_{1}\left(q^{2}\right)}=-0.25
$$

Analysis procedure:

- extract form factor ratio from fits
to decay rate distributions of three kinematic variables
is $t=\frac{q^{2}}{q_{\text {max }}^{2}}$
is $\cos \theta_{W}$: angle between e and W in center of mass of W
$\therefore \cos \theta_{\Lambda}$: angle between p and Λ in center of mass of Λ
right sign ($\Lambda \mathrm{e}^{+}$and $\bar{\Lambda} \mathrm{e}^{-}$)

- clear excess of right sign over wrong sign events
K.K. Gan

Preliminary Results

- $R=-0.31 \pm 0.06 \pm 0.06$
\& CLEO (1995) : $R=-0.25 \pm 0.14 \pm 0.08$
\Rightarrow significant improvement over previous measurement
is Korner-Kramer: $R=-0.25$
\Rightarrow consistent with Korner-Kramer

Search for $\Omega_{\mathrm{c}} \rightarrow \Omega e^{+} v$

- measurements of semileptonic decays of charm mesons and baryons provides test of Heavy Quark Expansions theory
- search for Ω_{c} by comparing right sign $\left(\Omega \mathrm{e}^{+}\right)$and wrong sign $\left(\Omega \mathrm{e}^{-}\right)$event yields:

Preliminary Results

- $B\left(\Omega_{c} \rightarrow \Omega e^{+} v\right) \cdot \sigma\left(e^{+} e^{-} \rightarrow \Omega_{c} X\right)=42.2 \pm 14.1 \pm 11.9 \mathrm{fb}$
is first observation of baryon β decay with no u or d in parent particle
\& background fluctuation probability $<9 \times 10^{-4}$

Measurement of $\Xi_{c}{ }^{+}$Lifetime

- theoretical motivation:
\& understanding of contribution of W-exchange mechanisms to weak decays which are different for charm mesons and baryons
- experimental motivation:
\& charm mesons $\left(D^{0}, D^{+}, D_{s}\right)$ and baryon $\left(\Lambda_{\mathrm{c}}{ }^{+}\right)$lifetimes are measured to $1-4 \%$

कर $\Xi_{\mathrm{c}}{ }^{+}$lifetime measured to 20%
is $\mathrm{e}^{+} \mathrm{e}^{-}$experiments provides measurements with different systematic from fixed target experiments

$\Xi_{\mathrm{c}}{ }^{+}$Mass and Lifetime Distributions

- clear excess of events with positive lifetime

Results

- CLEO: $\tau_{\Xi_{c}^{+}}=503 \pm 47 \pm 18 \mathrm{fs}$
- CLEO result is consistent with other experiments

