CP Violation studies with Rare *B* Physics at CLEO

Adam Lyon (University of Rochester) for the CLEO Collaboration

February 19-23, 2001

4th International Workshop on *B* Physics and *CP* violation *Ise-Shima, Japan*

<u>Outline</u>

- Charmless Hadronic Decays
 - $B \to \phi \, K, \, B \to \phi \, K^*$
 - ★ Summarize *B* → *K*π, $\pi\pi$; *B* → η '*h*; Asymmetry
- Radiative Decays
 - ★ $b \rightarrow s \gamma$ inclusive (Asymmetry), exclusive
 - $b \to d \gamma \text{ exclusive}$

Rare B Physics

Involving loops and boxes

Rates from loops and boxes are non-negligible because Top is so heavy (incomplete GIM) Learn about Unitarity Triangle:

CP Violation:

- Direct (decay amplitude interference)
- Mixing (mixing amplitude interference)

CESR and CLEO

- Symmetric e⁺e[−] accelerator at or near Y(4S) (P_B ~ 300 MeV/ c)
- On the $\Upsilon(4S)$: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B} \ (\sigma \sim 1 \text{ nb})$ $e^+e^- \rightarrow q\overline{q}, \ (q = u, d, c, s) \ (\sigma \sim 3 \text{ nb})$
- 1/ 3 running at OFF Υ(4S) for continuum bkg subtraction
- CLEO II + II.V collected
 ON: 9.1 fb⁻¹ (9.7M BB̄)
 OFF: 4.4 fb⁻¹

The CLEO Detector

- Cleo II (1989-1995):
 * 1.5T Solenoidal Field
 - ✤ 3 Tracking chambers
 - CsI Calorimeter
 - ✤ Time of Flight
 - ✤ Muon
 - ♦ 3.1 fb⁻¹ ON, 1.6 fb⁻¹ OFF
- Cleo II.V (1996-1999):
 3 layer silicon detector
 - * 3 layer silicon detector replaces innermost tracker
 - ♦ Replaced Drift Chamber Gas (Argon Ethane → HePr)
 - ✤ 6.0 fb⁻¹ ON, 2.8 fb⁻¹ OFF

Charmless Hadronic: Common analysis techniques

- Selecting Signal
 - Beam constrained mass

$$M_{B} = \sqrt{E_{beam}^{2} - |\mathbf{p}|^{2}}$$

 $\sigma \sim 2.5 \text{ MeV} (3.0 \text{ MeV if } \pi^{0}$

- Energy difference
 - $\Delta E = E_i E_{beam}$ Resolution is mode dependent, but generally $\sigma \sim 20-25 \text{ MeV}$ (×2 worse if π^0)
- ♦ dE/dx and ΔE for PID
- Put all this and more into ML fit
- A. Lyon (CLEO) 2001

- Rejecting continuum
 Signal = isotropic (2 uncorrelated B's), continuum = jetty
 - ✤ Thrust angle
 - Fisher discriminant:
 Linear combination of 11 shape variables:
 - Sphericity angle (signal isotropic)
 - *R*₂ (signal < continuum)
 - Energy distribution about Sphericity axis use nine 10° angular bins

 $B \rightarrow \phi K^{(*)}$

Submitted to PRL hep-ex/0101032

-0.2

- Clean signature for gluonic penguin (no BB bkg)
- Maximum likelihood fits for each topology:

$$\phi K^{-}, \phi K^{0}, \phi K^{*0}_{\to K^{-}\pi^{+}},$$

$$\phi K^{*0}_{\to K^{0}\pi^{0}}, \phi K^{*-}_{\to K^{-}\pi^{0}}, \phi K^{*-}_{\to K^{0}\pi^{-}}$$

PDF shapes for $\phi K^{*0}_{\rightarrow K^{-}\pi^{+}}$ — Signal (MC) — Continuum (Off data)

neu

A. Lyon (CLEO) - 2001

0.2

 $B \rightarrow \phi K^{(*)}$ results

$B \rightarrow K\pi$,	<i>KK</i> , <i>ππ</i>
Results	CLEO BaBar

CLEO *K* π : PRL **85**, 515 (2000) BaBar/Belle ICHEP2000

	CLEO (9.7M $B\overline{B}$)				Belle (ICHEP2000)	BaBar (ICHEP2000)	
Mode	Nsig	Signif.	Eff (%)	$BF \times 10^{-6}$	Theory BF × 10-6	[5.5M $B\overline{B}$] BF $\times 10^{-6}$	$\begin{bmatrix} 8.6M & B\overline{B} \end{bmatrix}$ $BF \times 10^{-6}$
$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	$20.0^{\scriptscriptstyle +7.6}_{\scriptscriptstyle -6.5}$	4.2σ	48	$4.3^{+1.6}_{-1.4} \pm 0.5$	8-26	< 16.5	$9.3^{+2.6}_{-2.3}{}^{+1.2}_{-1.4}$
$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle 0}$	$21.3^{+9.7}_{-8.5}$	3.2σ	39	< 12.7	3-20	< 10.1	
$\pi^{0}\pi^{0}$	$6.2^{+4.8}_{-3.7}$	2.0σ	29	< 5.7	0.3-4.6		
$K^+\pi^-$	$80.2^{+11.8}_{-11.0}$	11.7σ	48	$17.2^{+2.5}_{-2.4} \pm 1.2$	7-24	$17.4_{-4.6}^{+5.1} \pm 3.4$	$12.5^{+3.0}_{-2.6}{}^{+1.3}_{-1.7}$
$K^{0}\pi^{+}$	$25.2\substack{+6.4\\-5.6}$	7.6σ	14	$18.2^{+4.6}_{-4.0} \pm 1.6$	3-15	< 34	
$K^+\pi^0$	$42.1_{-9.9}^{+10.9}$	6.1σ	38	$11.6^{+3.0}_{-2.7}{}^{+1.4}_{-1.3}$	8-26	$18.8^{+5.5}_{-4.9} \pm 2.3$	
$K^{0}\pi^{0}$	$16.1^{+5.9}_{-5.0}$	4.9σ	11	$14.6^{+5.9}_{-5.1}^{+2.4}_{-3.3}$	3-9	$21.0^{+9.3}_{-7.8}{}^{+2.5}_{-2.3}$	
K^+K^-	$0.7^{\rm +.3.4}_{\rm -0.7}$	0σ	48	< 1.9		< 6	< 6.6
K^+K^0	$1.4^{+2.4}_{-1.3}$	1.1σ	14	< 5.1	0.7-1.5	< 5	$1.9^{+0.6}_{-0.5} \pm 0.2$
$K^{0}\overline{K}^{0}$	0	0σ	5	< 17			$2.1^{+0.9}_{-0.8}\pm0.2$

5σ

80

- Good agreement with theory
- Small rate and limit for $\pi\pi$ modes Fit Proj
 - ✤ No strong phase enhancement
 - ✤ Large gluonic penguins

A. Lyon (CLEO) - 2001

 $\pi\pi$ signal

Kπ bkg

A. Lyon (CLEO) - 2001

$B \rightarrow PV, B \rightarrow VV$ modes

A. Lyon (CLEO) – 2001

Direct CP Asymmetry

Theory: Ali, Kramer & Lü, PRD **59**, 014005 (1999) CLEO Results: PRL **85**, 525 (2000)

 A_{CP} comes from two or more amplitudes with different weak and strong phases

$$A_{CP} \equiv \frac{BF(\overline{B} \to \overline{f}) - BF(B \to f)}{BF(\overline{B} \to \overline{f}) + BF(B \to f)}$$

Mode	Yield	A_{CP}
$K^{\pm}\pi$	$80.2^{+11.8}_{-11.0}$	-0.04 ± 0.16
$K^{\pm}\pi^{0}$	$42.1_{-9.9}^{+10.9}$	-0.29 ± 0.23
$K^0\pi^{\pm}$	$25.2_{-5.6}^{+6.4}$	$+0.18\pm0.24$
$K^{\pm}\eta^{\prime}$	100^{+13}_{-12}	$+0.03\pm0.12$
$\omega\pi^{\pm}$	$28.5_{-7.3}^{+8.2}$	-0.34 ± 0.25

- Use self tagging modes (high-p daughter tags *B* flavor)
- A_{CP} free parameter in ML fits
- Factorization: A_{CP} < 0.1, but final state interaction or new physics could enhance

Inclusive $b \rightarrow s \gamma$

- Electroweak Penguin
 No FCNC at tree level
 - Provides direct look at loops and boxes
 - **\diamond** Sensitive to $V_{tb}V_{ts}$

 $\frac{b}{\bar{q}}$

- $\bullet \quad b \to s \gamma$
 - ★ SM NLO prediction: BF(b → sγ) = $(3.28 \pm 0.33) \times 10^{-4}$
- Perhaps there's new physics in the penguin!
 - ✤ Charginos
 - ✤ Charged Higgs
 - Anomalous WWγ couplings

Analysis Strategy

- Basic idea: Measure E_{γ} spectrum for ON and OFF resonance and subtract
- But, must suppress
 huge continuum
 background!
 [veto is not enough]
- ◆Three attacks:
 - ✤ Shape analysis
 - Pseudoreconstruction
 - Leptons

A. Lyon (CLEO) - 2001

Analysis Details

- Require $2.0 < E_{\gamma} < 2.7 \text{ GeV}$
- Shape Analysis:
 - Exploit shape differences
 - Combine shape variables (energy cones, event topology, photon isolation) with Neural Net
- Pseudoreconstruction:
 - Loosely find the X_s system
 - $\bigstar K + \text{up to } 4\pi (\text{at most } 1 \pi^0)$
 - ♦ χ^2 to choose best combination
 - * Use NN to combine shape analysis, χ^2 , cos θ_{thrust}

(more) Analysis Details

- High energy lepton
 - \clubsuit From the other *B*
 - Not likely from continuum
- Putting it all together:
 - Every event gets a weight
 - ✤ Weights are chosen to minimize statistical uncertainty

Continuum like

Inclusive $b \rightarrow s \gamma$ Results Preliminary

$BF(b \to s\gamma) = (2.85 \pm 0.35_{stat} \pm 0.22_{sys}) \times 10^{-4}$

- Cleo II + II.V data
 9.1 fb⁻¹ ON, 4.4 fb⁻¹ OFF
- *BF* measured for $2.0 < E_{\gamma} < 2.7 \text{ GeV}$ Factor of 0.94 \rightarrow Full spectrum
- NLO Prediction: (3.28 ± 0.33) × 10⁻⁴ Chetyrkin, Misiak, and Münz
- Belle (ICHEP2000) measures: $(3.34 \pm 0.50^{+0.34}_{-0.37}) \times 10^{-4}$

CP Asymmetry in $b \rightarrow s\gamma$?

• SM says its small! Another window on new physics?

$$b \to s\gamma = A_{sm} + A_{new}e^{i\theta_s}e^{i\theta_w}$$

$$\overline{b} \to \overline{s}\gamma = A_{sm} + A_{new}e^{i\theta_s}e^{-i\theta_w}$$

$$BF = |b \to s\gamma|^2 + |\overline{b} \to \overline{s}\gamma|^2$$

$$\sim A_{sm}^2 (1 + 2\rho\cos\theta_s\cos\theta_w + \rho^2) \qquad \rho = \frac{A_{new}}{A_{sm}}$$

$$A_{CP} = \frac{|b \to s\gamma|^2 - |\overline{b} \to \overline{s}\gamma|^2}{|b \to s\gamma|^2 + |\overline{b} \to \overline{s}\gamma|^2} \sim 2\rho\sin\theta_s\sin\theta_w$$

• A. Kagan, M. Neubert PRD **58**, 094012 (1998); Aoki, Cho, Oshimo PRD **60**, 035004 (1999)

A. Lyon (CLEO) – 2001

$b \rightarrow s \gamma CP Asymmetry (Tagging)$

- Require $2.2 < E_{\gamma} < 2.7 \text{ GeV}$
- Pseudoreconstruction:
 - ✤ Same algorithm as for BF
 - ✤ Aggressive particle ID
 - If K^0_{s} and neutral pions, then ambiguous flavor (?)
 - \bullet α ~ 9%, β ~ 1.7%, γ ~ 25%
- ♦ Lepton Tag:
 - ✤ Tag lepton from the *other B*
 - ★ $1.4 < P_{lepton} < 2.2 \text{ GeV} / c$
 - Recover events not pseudoreconstructed
 - ✤ If event has a lepton, ignore pseudoreconstruction
 - * $\alpha \sim 11\%$ (most from mixing)

$b \rightarrow s \gamma A_{CP}$ Results

Data: Full CLEO II + II.V
 9.1 fb⁻¹ ON (9.7M BB)
 4.4 fb⁻¹ OFF Resonance

PseudoReco (TOF + dE/dx): Ν W(b) W(b-bar) W(?) ON 5542 171.2 ± 6.8 $174.7 \pm 7.0 \ 23.0 \pm 2.7$ OFF 111.6 ± 6.6 101.5 ± 6.1 11.5 ± 2.0 4878 BB-bar 113 8.7 8.7 1.2 57.0 ± 9.5 64.6 ± 9.2 10.3 ± 3.4 Yield 551

(dE/dx only):

	Ν	W(b)	W(b-bar)	W(?)
ON	2408	65.5 ± 3.8	72.3 ± 4.3	8.2 ± 1.3
OFF	2114	47.5 ± 4.2	40.7 ± 3.7	5.5 ± 1.4
BB-bar	35	2.9	2.9	0.4
Yield	260	15.0 ± 5.7	28.7 ± 5.6	2.3 ± 2.0

$$A_{\rm CP}^{\rm pseudo} = -0.178 \pm 0.132$$

• Lepton tag:

	N	W(b)		W(b-bar)	
ON	507	127.1 ±	8.9	107.3 ±	7.8
OFF	280	51.7 ±	6.8	48.0 ±	7.0
BB-bar	40	12.8		12.8	
Yield	187	62.6 ±	11.1	46.5 ±	10.5

$$A_{_{CP}}^{lepton} = +0.191 \pm 0.181$$

 Pseudo & Lepton analyses are statistically independent: combine, weighting by expected statistical accuracy

 $A_{_{CP}}^{combined} = -0.079 \pm 0.108$

$b \rightarrow s \gamma$ Asymmetry Results

Detection

Asymmetry

 0.0032 ± 0.0029

0.0097±0.0077

$$A_{CP} = (-0.079 \pm 0.108_{stat} \pm 0.022_{addsys}) * (1.0 \pm 0.03_{multsys})$$

- ◆ Data: Full CLEO II + II.V 9.1 fb⁻¹ON (9.7M BB) 4.4 fb⁻¹ OFF Resonance
- ◆ 90% CL Limit: $-0.27 < A_{CP} < +0.10$
- ♦ Systematics
 - ✤ Multiplicative: Mistake rates; on, off subtraction; ambiguous events, f_{+}/f_{00}
 - ✤ Additive: Particle detection biases

[All ON-OFF Data] Central electrons More forward *e* Muons -0.0005 ± 0.0021

Lepton

But what did we really measure?

- We actually observe a weighted sum of $b \rightarrow s \gamma$ decays:
 - Charged B, neutral B
 - Low mass X_s , high mass
 - ★ Ambiguous decays for PseudoReco ($B^0 \rightarrow K^0...$) are only measured by lepton analysis
 - If at most ±10% difference in individual A_{CP}'s:
 Unevenness in our weightings asymmetry that differs from uniform weighting by no more than ± 0.02 -- add to systematic
- Measure no A_{CP} dependence on M_X or $E_{\gamma'}$ (but limited stats)

- Sensitivity to $b \rightarrow d \gamma$
 - ✤ In SM, rate down by $|V_{td} / V_{ts}|^2 \approx 1/20$
 - ★ But A_{CP} for $b \rightarrow d \gamma$ up by factor of 20 and opposite sign
 - ★ Lepton tag: $\varepsilon_d / \varepsilon_s = 1.1$ PseudoReco: $\varepsilon_d / \varepsilon_s = 0.56$ Combined: $\varepsilon_d / \varepsilon_s = 0.65$
 - MisId rates Lepton – same PseudoReco – $\alpha = 0.4$
 - We've really measured a weighted sum

 $A_{CP} = 0.965 A(b \rightarrow s\gamma) + 0.02 A(b \rightarrow d\gamma)$

Exclusive Radiative *B* decays

♦ Analyses:

- &Update the 1993 $K^*\gamma$ discovery analysis with full Cleo II+II.V dataset
- ✤ Look for heavier K* resonances
- ★ Look for exclusive $b \rightarrow d\gamma$ to set limits on $|V_{td}/V_{ts}|$
- ★ Look for $B \rightarrow \phi \gamma$ (non-penguin radiative box diagram) [No theoretical rate prediction] [All new analyses above: PRL 84, 5283 (2000)]
- ★ and $\overline{B^0} \rightarrow D^{*0} \gamma$ (possibly enhanced non-penguin)

 9.7×10^6 BB pairs

4.1 fb⁻¹ off resonance

A. Lyon (CLEO) - 2001

Main Analyses Requirements

 $B \rightarrow K^* \gamma$

- ♦ K*(892):
 - $\bigstar \mid \varDelta E \mid < 100 \text{ MeV}$
 - Simultaneous, binned maximum likelihood fit to K* charged and neutral M_B distributions

Mode	Yield	$\mathcal{E}\left[\pi^{\pm} ight] = \mathcal{E}\left[\pi^{0} ight]\left(\% ight)$	$(5) \qquad BF (10^{-5})$
$B^0 \to K^{*0}(892)\gamma$	88.3 ^{+12.2} _{-11.5}	28.4±0.3 13.3±0.3	$4.55^{+0.72}_{-0.68} \pm 0.34$
$B^+ \rightarrow K^{*+}(892)\gamma$	$36.7^{+8.3}_{-7.6}$	25.2 ± 0.5 13.4 ± 0.5	$3.76^{+0.89}_{-0.83} \pm 0.28$

 $B \rightarrow K^* \gamma$

	BF(10 ⁻⁵)	♦ Asymn
<u>CLEO</u> :	$9.7M B\overline{B}$	$A_{CP} = \left(\frac{1}{1}\right)$
$B^0 \to K^{*0}(892)\gamma$	$4.55^{+0.72}_{-0.68}\pm0.34$	$(1-2\alpha)$
$B^+ \rightarrow K^{*+}(892)\gamma$	$3.76^{+0.89}_{-0.83}\pm0.28$	✤ Use I✤ Mista
<u>BaBar</u> : (ICHEP2000)	$8.6M B\overline{B}$	• Re • Fr
$B \rightarrow K^*(892)\gamma$	$5.4 \pm 0.8 \pm 0.5$	• Fit M_B di
$\underline{Belle}: (ICHEP2000)$ $B^0 \to K^{*0}(892)\gamma$	5.5M BB 4.9±0.9±0.5	Neutral ICharged
$B^+ \to K^{*+}(892)\gamma$	$2.9 \pm 1.2^{+0.5}_{-0.4}$	♦ Combine

netry $BF(\overline{B} \to \overline{K}^* \gamma) - BF(B \to K^* \gamma)$ $\overline{BF(\overline{B}\to\overline{K}^*\gamma)}+BF(B\to\overline{K}^*\gamma)$ $K^{\pm}\pi^{0}, K^{0}_{s}\pi^{\pm}, K^{\pm}\pi$ ake rate α only for $K^{\pm}\pi$ equire $|p_{\pi} - p_{K}| > 500 \text{ MeV}/c$ com MC α = (3.45 ± 0.02)%

- istributions:
- $K^* \quad A_{CP} = -0.13 \pm 0.17$
- $K^* A_{CP} = +0.38^{+0.20}_{-0.19}$

ed: $A_{CP} = +0.08 \pm 0.13 \pm 0.03$

A. Lyon (CLEO) - 2001

$B \rightarrow K^* \gamma$ Heavier Resonances

- $K_2^*(1430), K^*(1410)$:
 - Use θ_{helicity} and resonance widths to distinguish (1430) from (1410).
 - ✤ See no K*(1410)
 - ♦ Fit *K**(1430) M_B
- $B \to K_2^*(1430)\gamma$: • Yield = $15.9^{+5.7}_{-5.1}$ events • $\varepsilon [\pi^{\pm}] = (18.5 \pm 0.7)\%$ • $\varepsilon [\pi^0] = (7.7 \pm 0.7)\%$ • BF = $(1.66^{+0.59}_{-0.53} \pm 1.3) \times 10^{-5}$
- BF($B \to K^*(1410)\gamma$) < 12.7 × 10⁻⁵ @ 90% CL

combinatoric bkg = 2.7 ± 0.1 events $\varepsilon = (9.7 \pm 0.8)\%$ $BF(B \rightarrow \omega\gamma) < 0.92 \times 10^{-5} @ 90\%$ CL

No observed $b \rightarrow d \gamma$

A. Lyon (CLEO) – 2001

• Look for non-penguin decay:

- Combinatoric bkg = 1.2 ± 0.2
- $\epsilon = (23.0 \pm 0.6)\%$
- $BF(B \to \phi \gamma) < 0.33 \times 10^{-5}$ @ (90% CL)

$$R \equiv \frac{BF(B \to \rho \gamma)}{BF(B \to K^* \gamma)} = \zeta \left| \frac{V_{td}}{V_{ts}} \right|^2$$

◆ CLEO: <mark>*R* < 0.32</mark> @ 90% CL

If $\zeta = 0.58$, | V_{td} / V_{ts} | < 0.75

- Assume top-quark electromagnetic penguin dominates
- ♦ Belle: *R* < 0.28 @ 90% CL (ICHEP2000)

 $\overline{B^0} \to D^{*0} \gamma$

PRL 84, 4292 (2000)

- ◆ Strongly suppressed in SM (10⁻⁶)
- But possibly enhanced by 10×
 - Gluon emission from initial state quark
 - Large qqg component in the B wave function
 - Could be bkg to radiative penguin decays

- $E_{\gamma} > 1.5 \text{ GeV}, \pi^0 \text{ veto}, \text{ Fisher}$
- $\varepsilon = 2.3\%$
- In signal region: 0.5 event qq,
 0.9 event BB, No Data Observed
- $\bullet \quad \mathrm{BF}(\bar{B^0} \to D^{*0}\gamma) < 5.0 \times 10^{-5}$
- No big enhancement observed

Conclusions

- CLEO has examined >60 charmless B modes!
- New results for $B \rightarrow \phi K^{(*)}$
 - ★ $BF(B \to \phi K) = (5.5^{+1.8}_{-1.5} \pm 0.7) \times 10^{-6}$ ★ $BF(B \to \phi K^*) = (11.2^{+3.6^{+1.8}}_{-3.1^{-1.7}}) \times 10^{-6}$
- Small branching fractions ~10⁻⁶ • $BF(B \rightarrow \pi^+ \pi^-) = (4.3^{+1.6}_{-1.4} \pm 0.5) \times 10^{-6}$
- All but B → η'K in agreement with theoretical predictions (many want more precision)
 BF(B → η'K⁰) = (8.9^{+1.8}_{-1.6} ± 0.9)×10⁻⁵
- No hint of CP violation

• from $b \rightarrow s\gamma$: -0.27 < A_{CP} < +0.10