Charmless B Decays at CLEO

David Urner Cornell/CLEO

- Motivation
- New measurment on $B \rightarrow \Phi K$
- Hadronic b-u transitions
- New limit on $B \rightarrow \pi^0 \pi^0$
- $B \rightarrow$ charmless PV states:
- $B \rightarrow$ charmless PP states:
- B decays with η and η' in final state
- First search for direct CP violation in B decays
- $B \rightarrow e^+e^-, \mu^+\mu^-, e^{\pm}\mu^{\mp}$
- Summary

Motivation

Rare B decay measurements will help to construct a description of the weak quark couplings and phases.

- Testing the unitarity of the CKM matrix:
 - Measurement of $\beta + \gamma$: B $\rightarrow \pi \pi$, $\rho \pi$
 - Measurement of $\gamma: B \rightarrow K\pi$

- CP-violation outside the Kaon sector:
 - direct: $B \rightarrow K\pi$, $B \rightarrow K^*\pi$
 - mixing induced: $B \rightarrow \pi\pi$, $\rho\pi$
- Search for non SM physics

Introduction

Look for $B \rightarrow PP$ or PV (P = pseudoscalar, V = vector) Dominant diagrams:

Most modes have several interfering contributions.

- ⇒ Need to measure many related modes to disentangle the weak phases using isospin or SU(3) symmetries.
- ⇒ May give rise to direct CP violation.

QCD corrections can obscure the weak physics.

The CLEO Experiment at the CESR Storage Ring

- All presented results use entire data sample:
- On Resonance: $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}: 9.7 \ge 10^6 \quad 9.1 \text{ fb}^{-1}$
- Off Resonance: $e^+e^- \rightarrow Y(4S) \rightarrow qq: \sim 3 \ge 10^7 \quad 4.4 \text{ fb}^{-1}$
- Symmetric collider $\Rightarrow P_B \sim 300 \text{ MeV/c}$
- CLEO II.V (about 2/3 of data): relevant change for rare B: DR gas → better dE/dx

David Urner, Cornell/CLEO

Observation of $B \rightarrow fK$ (preliminary)

- Final state is dominantly produced via the gluonic penguin.
- The ϕ is very narrow \rightarrow nice signature
- $B \rightarrow FK \Rightarrow \sin 2\beta$
- Event Selection:
 - highest momentum ϕ and K (K[±]or K_s⁰ $\rightarrow \pi\pi$)
 - dE/dx of fast K[±] consistent with being a K.
 - cuts applied:

φ-mass, K_s-mass, B-mass,

R2 (event shape variable to reduce non resonant background).

	# events on res.	# events off res.	Efficiency
K^{\pm}	8486	4400	49 %
\mathbf{K}^0	1024	505	31 %
			5

Separation of Signal from Background

Unbinned maximum likelihood fit:

 $L(N_{s},N_{b}) = e^{-(N_{s}+N_{b})} \bigvee_{i}^{N} (N_{s}P_{s}^{i} + N_{b}P_{b}^{i}) \qquad \begin{array}{l} N_{s}: \text{ signal amplitude} \\ N_{b}: \text{ background amplitude} \end{array}$ Signal and Background Likelihoods P_{s}^{i} , P_{b}^{i} :

 $P_i = \bigotimes_{j}^{6} p_j(x_j)$ p_j : probability density functions from signal MC & off resonance data

Observables:

Energy & Momentum Constraints

• beam constrained mass of ΦK

• energy difference $E(\Phi K)$ - E_{beam}

B → **F**K Results (preliminary)

	B ⁻ → F K⁻	$B^0 \rightarrow \mathbf{F} K_{s}^{0}$	B → F K
signal yield (ev.):	15.8 + 6.1 - 5.1	4.3 +2.9 -2.1	
significance: $\sqrt{\Delta c^2 (N_s = 0)}$	4.7 σ	2.9 σ	5.6 σ
BR in units of 10^{-6} :	6.4 +2.5+0.5 - 2.1- 2.0	5.9 +4.0+1.1 - 2.9- 0.9	6.2 +2.0+0.7 -1.8-1.7
upper limit: (90 % CL)		1.2 x 10 ⁻⁵	

Agreement with theory:

Deshpande+He:

inclusive $B \rightarrow \Phi X_s \sim (0.6 - 2.0) \times 10^{-4}$ ΦK Fraction of ΦX_s : ~ 10%

Hadronic b-u transitions

Motivation:

- Determine CKM angle α via isospin or time dependent daliz plot analysis.
- Determine CKM angle γ together with π K

```
First observation: B \rightarrow \rho^0 \pi^{\pm} (1998)
Followed by B \rightarrow \rho^{\pm} \pi^{\mp}
Further observations:
```

 $B \rightarrow \omega \pi^{\pm}$

and finally $B \rightarrow \pi^+ \pi^-$

```
But still looking for B \rightarrow \pi^0 \pi^0:
```

New limit on $B \rightarrow \pi^0 \pi^0$ (preliminary)

- Event selection:
 - selection of π^0 :
 - shape of showers photon like, photons distinct from tracks, M($\gamma\gamma$) within 2.5 σ of π^0 mass
 - beam constrained mass m(B),
 - $|E_{\pi^0\pi^0} E_{beam}| < 400 \text{MeV},$
 - shape cut to reject jetty events
 - number of tracks >2,

Selection efficiency for $B \rightarrow \pi^0 \pi^0$: 32.1 %

- Background Monte Carlo studies:
 - 40 decay modes
 - 35 decay modes with $\varepsilon < 0.1\%$
 - large (7.57%) efficiency for $B_0 \rightarrow \rho^{\pm} \pi^0$

 \Rightarrow use $B_0 \rightarrow \rho^{\pm} \pi^0$ in Likelihood analysis

Maximum Likelihood Fit Results (Preliminary)

- Variables: M_B , ΔE , Fisher discriminant
- Components: Signal: $B^0 \rightarrow \pi^0 \pi^0$ Background: non $B\overline{B}$ $B \rightarrow \rho^{\pm} \pi^0$

M.L. fit selection efficiency:

	Decay Mode	$B^0 \rightarrow \pi^0 \pi^0$	expected yield for On-resonance data		
	$B^0 \rightarrow \pi^0 \pi^0$	(28.79±0.27)%			
	$B^0 \rightarrow \rho^{\pm} \pi^0$	0.023%	< 0.17		
	$B^0 \rightarrow f_0 \pi^0$	<0.011%	< 0.01		
	$B^0 \rightarrow K_s^0 \pi^0$	0.032%	< 0.24		
	$B^0 \rightarrow \eta \pi^0$	0.086%	< 0.10		
	ττ	$(6.0 + 8.3) \times 10^{-8}$	< 0.5		
	Off resonance	$1.33^{+3.11}_{-1.33}$ ev.			
•	Signal yield: $6.2^{+4.8}_{-3.7}$ events				
•	Significance ~ 2σ .				

Check of Fit Behavior

- Test for probability that off-resonance background generates observed signal:
 - Generate off resonance Monte Carlo sample (same size as on resonance sample)
 - Use signal Monte Carlo events
 - apply M.L. fit for different signal sizes.

David Urner, Cornell/CLEO

Preliminary Systematic Errors and Results for $B \rightarrow \pi^0 \pi^0$

Systematic effects:

•
$$B^{\pm} \rightarrow \rho^{\pm} \pi^0$$
:

cross feed ~ -0.3 ev. for largest BR($B^{\pm} \rightarrow \rho^{\pm} \pi^{0}$) other backgrounds (e.g. $B \rightarrow 3\pi$) feed into $B^{\pm} \rightarrow \rho^{\pm} \pi^{0} \Rightarrow$ they do not contribute to $B \rightarrow \pi^{0} \pi^{0}$

•
$$\Delta N \tau \tau = -0.5^{+0.5}_{-0.7}$$

- Prob. density functions $(\pm 1\sigma) \rightarrow +1.8 = -1.3$ events
- π^0 finding: $\pm 1\%$

 $\Rightarrow \mathbf{N} = \mathbf{5.7} \pm \left(\begin{smallmatrix} 4.8 \\ 3.7 \end{smallmatrix} \right)_{sta} \pm \left(\begin{smallmatrix} 1.9 \\ 1.8 \end{smallmatrix} \right)_{sys} - 7500 \text{ x } \mathrm{BR}(\mathrm{B}^{\pm} \rightarrow \rho^{\pm} \pi^{0})$

Branching ratio:

 $[2.1 \pm (\begin{smallmatrix} 1.7 \\ 1.3 \end{smallmatrix})_{sta} \pm (\begin{smallmatrix} 0.7 \\ 0.6 \end{smallmatrix})_{sys}] \ge 10^{-6} - 0.0027 \bullet BR(B^{\pm} \rightarrow \rho^{\pm} \pi^{0})$

Upper limit (90 % C.L.):

 $BR(B^0 \rightarrow \pi^0 \pi^0) < 5.6 \ge 10^{-6}$

Theoretical Predictions: 0.3-4.6 x 10⁻⁶

$B \rightarrow VP$

hep-ex/0006008 (accepted by PRL)

Mode	Yield	e(%)	Signif.	BR (10 ⁻⁶)	Th.* (10 ⁻⁶)
$B^0 \rightarrow \pi^{\pm} \rho^{\mp}$	$31.0_{-8.3}^{+9.4}$	12	5.6	27.6 ^{+8.4} _{-7.4} ±4.2	12 - 93
$B \rightarrow \pi \rho^0$	$29.8^{+9.3}_{-9.6}$	30	5.4	$10.4^{+3.3}_{-3.4}\pm 2.1$	0.4 - 13
$B^0 \rightarrow \pi^0 \rho^0$	$5.4 \begin{array}{c} +6.5 \\ -4.8 \end{array}$	34	1.2	< 5.5	0 - 2.5
$B^{-} \rightarrow \pi^{0} \rho^{-}$	$23.7^{+8.4}_{-7.4}$ †	10	5.1	< 43	3 - 27
$B^0 \rightarrow K^{\pm} \rho^{\mp}$	$16.4_{-6.6}^{+7.8}$	11	3.5	< 32	0 - 12
$B \rightarrow K \rho^0$	$22.4^{+10.7}_{-9.1}$	28	3.7	< 17	0 - 6.1
$B \rightarrow \pi K^{*0}$	$13.4_{-5.2}^{+6.2}$	18	3.6	< 16	3.4 - 13
$B^0 \rightarrow \pi^0 K^{*0}$	$0.0 \begin{array}{c} ^{+3.0}_{-0.0} \end{array}$	25	0.0	< 3.6	0.7 - 6.1
$B \rightarrow \pi^0 K^{*}$	$2.6 \ ^{+4.2}_{-2.6}$	4	1.0	< 31	0.5 - 24
$B \rightarrow K K^{*0}$	$0.0 \begin{array}{c} ^{+2.2}_{-0.0} \end{array}$	17	0.0	< 5.3	0.2 - 1
$B^{-} \rightarrow \pi^{-} \omega$	$28.5_{-7.3}^{+8.2}$	26	6.2	$11.3^{+3.3}_{-2.9} \pm 1.4$	0.6 - 24
$B^0 \rightarrow \pi^0 \omega$	$1.5 ^{+3.5}_{-1.5}$	19	0.6	< 5.5	0.0 - 12
B-→ K-ω	$7.9 \begin{array}{c} ^{+6.0}_{-4.7} \end{array}$	26	2.1	< 7.9	0.2 - 14
$B^0 \rightarrow K^0_{s} \omega$	$7.0 \begin{array}{c} ^{+3.8}_{-2.9} \end{array}$	7	3.9	< 21	0.0 - 17

† non resonant contributions cannot be excluded* [Chen,Cheng,Tseng,Yang, Phys Rev. D 60 094014]

.2
6
5
CL)

 $B \rightarrow K\pi$. $\pi\pi$

For modes with K⁰: yields are for K_s^0 , other numbers for K⁰ [†] Only 3.3M BB events used.

 New measurements of B → PV, PP decays by BaBar and Belle confirm our results.

DPF Aug 12 2000

David Urner, Cornell/CLEO

Interpretation of $B \rightarrow PP$

- Good agreement with theory
- small $\pi^+\pi^-$ rate & small upper limit for $\pi^0\pi^0$:
 - no strong phase enhancement
 - gluonic penguins are large
- No observed signals in $B \rightarrow KK, B \rightarrow K^*K$
 - No contribution from dominant diagrams: ideal probes of final state interactions.

Rescattering in $B \rightarrow K^0 \pi^{\pm}$ can be limited:

$$\frac{\left|\frac{A_{rescattering}}{P}\right| \cong \mathbf{I}_{\sqrt{\frac{B(B \to K^{+}K^{-})}{B(B \to K^{0}\boldsymbol{p}^{\pm})}} < 9\%$$

[Gronau and Rosner, hep-ph/9806348]

 Several constraints on angle γ: [Fleischer-Mannel, hep-ph/9704423]
 [Neubert-Rosner, hep-ph/9808493]

Modes with η and η'

David Urner, Cornell/CLEO

Interpretation

- Decays into η'K and η K* are considerably higher than predicted by factorization [Ali, Kramer, Lu hepph/9804363]
- Hairpin diagram:

$$\overline{b} \underbrace{\overline{t, c, u}}_{W} \underbrace{g}_{W} \underbrace{g}_$$

- glue content in η'
- new physics
- Intrinsic charm content of η' proposed. [E.V. Shuryak, A.R.Zhitnistsky, Phys. Rev. D 57, 2001 (1998)]

No corresponding enhancement of BR(B $\rightarrow \eta_c K$) over BR(B $\rightarrow J/\psi K$) seen. [CLNS 00/1680, hepex/0007012], See Y.Gao's talk this conference.

David Urner, Cornell/CLEO

Direct CP Asymmetry Measurement

• Factorization model predictions small $A_{CP} < 0.1$

[Ali, Kramer, Lu, hep-ph/9805403]

- Final state interaction or new physics can enhance strong phase [He, Hou, Yang, hep-ph/9809282]
- Combined CP-violating rate differences in B⁰ → K⁺π⁻ and B⁺ → K⁺π⁰ could be detectable. [Gronau, Rosner Phys Rev D 59 113002]

• Definition:
$$A_{CP} \equiv \frac{\Gamma(\overline{B} \to f) - \Gamma(B \to \overline{f})}{\Gamma(\overline{B} \to f) + \Gamma(B \to \overline{f})}$$

• A_{CP} free parameter in Maximum Likelihood fits

$B \rightarrow e^+e^-, \mu^+\mu^-, e^{\pm}\mu^{\mp}$

Small helicity suppressed Standard Model Expectations:

- BR(B⁰ → $\mu^+\mu^-$) ~ 1.1 x 10⁻¹⁰
- BR(B⁰ → $e^{\pm}\mu^{\mp}$) forbidden

New physics can enhance cross section:

- Two Higgs doublet Models
- SUSY,
- Pati-Salam Leptoquark Models

$$B \rightarrow e^+e^-, \mu^+\mu^-, e^{\pm}\mu^{\mp} \text{ cont.}$$

Event Selection:

- 2 opposite charged tracks with correct lepton ID
- Beam Constrained B Mass
- Energy Constraint

Background Study:

- BB backgrounds: < 0.02 events
- $\tau^+ \tau^-$ backgrounds < 0.5 events
- $e^+e^- \rightarrow qq (q = u, d, s, c) < 0.2 \text{ event}$

Results:

Mode	Efficiency	Evts.	UL (90% C.L.)
$B^0 \rightarrow e^+e^-$	$31.3 \pm 0.4 \pm 2.4\%$	0	< 8.3 x 10 ⁻⁷
$B^0 \rightarrow \mu^+ \mu^-$	$42.4 \pm 0.5 \pm 3.2\%$	0	< 6.1 x 10 ⁻⁷
$B^0 \rightarrow e^{\pm} \mu^{\mp}$	$43.6 \pm 0.5 \pm 7.1\%$	2	$< 15 x 10^{-7}$
			24

Summary

- Many modes $B \rightarrow PP$, PV studied:
 - $B \rightarrow \Phi K$
 - limit on $B \rightarrow \pi^0 \pi^0$
 - $B \rightarrow \pi^+ \pi^-$
 - all modes of $B \rightarrow K\pi$
 - B $\rightarrow \pi \rho$, πK^* , $\pi \omega$, $K \rho$, $K K^*$, $K \omega$
 - larger than expected results in $B \rightarrow \eta' \pi, B \rightarrow \eta K^*$
- important to determine CKM angles α , β , γ
- Limits the possible range of direct CP Asymmetry values
- New limits on $B \rightarrow e^+e^-$, $B \rightarrow \mu^+\mu^-$, $B \rightarrow e^\pm\mu^\mp$

Simple Review of $K\pi$, $\pi\pi$, $K\Phi$ Results

Branching ratios: x 10⁻⁶

Exp.	$\mathrm{K}^{-}\pi^{+}$	$\pi^{-}\pi^{+}$	$K^+\Phi$		
CLEO	$17.2^{+2.8}_{-2.7}$	$4.3^{+1.7}_{-1.6}$	6.4 ^{+2.6} -2.9		
BaBar	$12.5^{+3.3}_{-3.1}$	9.3 ^{+2.9} -2.7	}<1.4 σ		
Belle	$17.4^{+5.1}_{-4.6}$		$17.2^{+6.9}_{-5.7}$		
	15.6 ± 2.0	5.6 ± 1.4	8.0 ± 2.4		
assuming gaussian errors!					
			26		