Cold rolling evolution in high purity niobium using a tapered wedge specimen

H. Jiang, T.R. Bieler, C. Compton*, T.L. Grimm* Chemical Engineering and Materials Science, *NSCL, Michigan State University, East Lansing, MI

Abstract

A tapered wedge niobium specimen was rolled at room temperature with multiple passes in the same direction without lubricant and then annealed at 750° C for 1 hour. The crystal orientation distribution of the 50, 70%, 80%, 90% deformed samples was investigated using x-rays to obtain a quantitative texture analysis. The initial rotated cube (001)<110> texture was largely retained up to about 70% reduction in the interior of the samples. After 80% rolling deformation the initial texture vanished and revealed a {111} fiber texture in the interior, which remained stable during annealing. With 90% reduction, the {111} fiber texture become somewhat stronger. In the surface layer, the {001} fiber orientation remained stable but after annealing, the surface texture sharpened to become {001}<110>

Experimental procedure

As-received Nb (RRR=150) tapered	10mm
specimens	
Unidirectional cold rolling without	///
lubrication at room temperature	
The maximum reduction reach 90%	/ Rolling Direction // 60mm
after six reductions	
Roll Diameter = 102 mm	
Roll Speed = 102 mm/s	¥ (
$L/H \approx 4 \Rightarrow$ strain penetrates to center	← 40mm
	Schematic diagram of specimen

After rolling, the specimen was sliced along the rolling direction to make 8 equal size strips

Three incomplete (200), (220) and (111) pole figures of surface, the quarter thickness (0.4 mm) layer were measured

- A strip from the center was annealed at 750 for 1 hour in evacuated quartz tube heated slowly in furnace
- Pole figures of surface and quarter thickness (0.4 mm) of annealed specimen were measured
- Post processing with popLA software, WIMV recalculated PFs presented

OIM data was collected by Camscan SEM for through thickness measurement

In the *center*, After rolling, the α fiber deceased, γ fiber increased. After annealing, the γ fiber becomes very strong

Initial Rolled Annealed

On the surface, After rolling, α fiber unchanged, slight γ fiber increase. After annealing, the $~\gamma$ fiber weakened

Evolution of recrystallization textures from cold rolling textures in Nb

Conclusions

- 1. The major components of cold rolling textures depend on the cold rolling reduction and rolling conditions. After 70% reduction, the {111} fiber dominates in the center of layer, but {001} fiber dominates on the surface
- 2. The major components of the recrystallization textures are {111} fiber in the center of layer, {001}<110> dominates on the surface after annealing
- 3. The intensity of recrystallization textures depend on the cold reduction. With 90% reduction, the {111} fiber becomes stronger
- 4. Processing path affects the texture. unidirectional rolled specimen has more homogenous textures than reversed rolled specimen

