STRUCTURAL ANALYSIS OF SINGLE CELL SUPERCONDUCTING ELLIPTICAL CAVITY WITH STATIC LORENTZ FORCE

A Roy, J. Mondal, K. C. Mittal Accelerator & Pulse Power Division Bhabha Atomic Research Centre

INTRODUCTION

The structural behavior of the single cell elliptical cavity has been studied by finite element structural analysis using COSMOS/M

- The resonant frequency shift due to vacuum load has been calculated from the frequency sensitivity data of SUPERFISH code.
- The frequency shift due to Static Lorentz Force has been calculated using SUPERFISH code.

Cavities mechanical resonant frequencies were calculated for two different boundary conditions.

STRUCTURAL ANALYSIS FOR VARIOUS SHAPE PARAMETERS

The Max. Von MISES Stress is minimum for round shape equator.

- The Max. Von MISES Stress is significantly decreased by increasing wall angle.
- The Max. Von MISES Stress dose not depend so much on iris ellipse.
- The Max. Von MISES Stress decreases significantly with increasing iris radius.

Max. Von MISES Stress for 3 mm Niobium with various wall angle

STATIC LORENTZ FORCE DETUNING ANALYSIS

The radiation pressures on the cavity wall is gi

20 -

18

16

14

pressures on the
iven by the equation
$$P = \frac{1}{4} (\mu_o H^2 - \mathcal{E}_o E^2)$$

$$-\frac{1}{4} (\mu_o H^2 - \mathcal{E}_o E^2)$$

1

- 0.0 Radiation Pressure

--0.6 (KPa)

-0.8

Lorentz Pressure Deformation for 5 mm wall thickness

5 mm wall thickness Zoom 400000 times 5 MV/m Gradient Deformed Shape	Materia l	Wall Thic k	Δf (Hz) @ 5 MV/m	Δf (Hz) @ 10 MV/m	<i>K</i> _{<i>L</i>} Hz/ MV/ m
	Copper	3 mm	-243	-1159	-10.7
	Niobiu m	3 mm	-212	-1007	-9.3
	Copper	4 mm	-135	-625	-5.8
	Niobiu m	4 mm	-118	-545	-5.1
	Copper	5 mm	-86	-396	-3.7

 Niobin
 5
 -75
 -345
 -3.2

DYNAMIC ANALYSIS OF SINGLE CELL CAVITY

Lowest mode of 5 mm Niobium Cavity

129.873

Without Stiffener

	Wall Thick	Lowest Frequency			
Material		Both end Fixed Hz	One end Free Hz	One end Free with Conical stiffener Hz	
	3 mm	212	61	130	
Copper	4 mm	245	71	153	
	5 mm	281	81	172	
Niobium	3 mm	231	66	141	
	4 mm	267	77	166	
	5 mm	305	88	187	

With Stiffener

CONCLUSIONS

- Structural properties of Niobium is slightly better than Copper.
- For 3 mm Niobium cavity the calculated frequency shift due to vacuum load is 306 Hz/millibar and for 5 mm Niobium it is 74 Hz/millibar.
- Frequency change due to static Lorentz force is quite low
 for 4 mm and 5 mm wall thickness.
- For 3 mm wall thickness stiffener is essential.
- Also Stiffener will be required if operated more than 5 MV/m accelerating gradient.