Design of Half-Reentrant SRF Cavities

M. Meidlinger, T.L. Grimm, W. Hartung

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan

SIMULATIONS PROBLEM OBJECTIVE Analyst was used to calculate the cavity parameters. There are A reentrant cell shape traps gases and liquids during Achieve higher accelerating twelve geometrical variables. chemical treatment. gradients by lowering B_{peak}/E_{acc} Further Improvements FILL DRAIN • Ensure multi-cell can be easily cleaned • Possibly reduce wall angle to < 6° Use a series of arcs instead of ellipses to define geometry • Flatten electric and magnetic Trapped gase Trapped liquid surface field profiles INTRODUCTION There are two approaches to achieving higher accelerating RESULTS gradients: 1. Increase the theoretical TESI A Cornell CEBAE High-k Half Low-k Half maximum accelerating Reentrant Reentrant Reentrant Low-Loss gradient by using a material with a higher RF Frequency [MHz] 1,300 1,300 1,500 1,300 SOLUTION H_{crit} than Nb 2.00 2.40 2.17 2.40 Epeak/Eacc [-] $\left[\frac{mT}{MV/}\right]$ B_{peak}/E_{acc} 4.26 3.78 3.74 3.78 By making the cell reentrant on only one side, gas pockets 2. Improve the cell shape to R/Q [Ω] 115 121 129 123 are avoided and liquids can drain from the cavity - all lower B_{peak}/E_{acc} while using current cleaning techniques. G 270 283 [Ω] 280 280 (R/Q)·G 31,050 33,768 $[\Omega^2]$ 36,103 34,673 2.38 FILL [%] 1.87 1.49 2.09 DRAIN k_{cc} R_{iris} 3.5 3.5 2.65 3.34 [cm] This can be done by making a cavity Flip 180° reentrant, at the expense of E_{pk}/E_{acc} . By using a reentrant cell shape, Cornell lowered B_{nk}/E_{acc} 10% below CONCLUSION a TESLA cell. However, a multi-cell reentrant cavity may be difficult to clean. Two new half-reentrant shapes have been developed. Simulations show that all electromagnetic parameters are comparable to a fully By using a half-reentrant cell shape reentrant shape, except for a lower k_{cc}. The truly desirable property FLOW with a k_{cc} of 1.5%, B_{nk}/E_{acc} could be of a multi-cell half-reentrant cavity is that it can be cleaned with lowered 15.5% below a TESLA cell. current technology. For the proposed low-k half-reentrant shape, with a B_{peak} of 185mT, an accelerating gradient of 51 MV/m is foreseeable. Positioned to avoid gas pockets Acid/water can drain

1,300

2.38

3.60

135

283

38,021

1.51

2.97