Poster ThP37

CRYOMODULE DEVELOPMENT AT MICHIGAN STATE UNIVERSITY FOR THE RARE ISOTOPE ACCELERATOR

W. Hartung, J. Bierwagen, S. Bricker,
C. Compton, P. Glennon, T. Grimm, D. Harvell,
M. Johnson, F. Marti, A. Moblo, J. Popielarski,
L. Saxton, R. York, A. Zeller
National Superconducting Cyclotron Laboratory Michigan State University

The Rare Isotope Accelerator (RIA) is being designed to supply an intense beam of exotic isotopes for nuclear physics research. Superconducting cavities are to be used to accelerate the CW beam of heavy ions to 400 MeV per nucleon, with a beam power of up to 400 kW. Because of the varying beam velocity, several types of superconducting structures are needed.

Туре	λ_{λ}	/4	$\lambda/2$	6	5-cell ellipt	cical
β_{opt}	0.041	0.085	0.285	0.49	0.63	0.83
f (MHz)	80	.5	322		805	
V_a (MV)	0.46	1.18	1.58	5.12	8.17	13.46
T (K)	4	.5	2		2	
Q_0	5.	10 ⁸	$5 \cdot 10^{9}$	$7 \cdot 10^{9}$	$1 \cdot 10^{10}$	$1.4 \cdot 10^{10}$
P_0 (W)	1.0	6.7	2.5	21.6	23.9	26.8
$R/Q(\Omega)$	424	416	199	173	279	483
$G(\Omega)$	15.7	19.0	61.0	136	180	260
Rs (n Ω)	31.4	38.0	12.2	19.4	18.0	18.6
E_p	16.5	20	25		32.5	
(MV/m)						
$B_p (mT)$	28.2	46.5	68.6	64.2	68.6	70.2
Aperture	30		77	86	98	
(mm)						
Magnets	NbTi solenoids		Cu quads			
# cavities	18	104	208	68	64	32
# cryo-	2	13	26	17	16	8
modules						

Cavity Parameters

10th Harmonic Driver Linac for RIA

Cavities for RIA

Cavity and Cryomodule development was done in collaboration with Jefferson Lab (G. Ciovati, P. Kneisel, L. Turlington) and INFN-Legnaro (A. Facco).

Production Cryomodules for RIA

Production Cryomodules for RIA

Medium- β Cryomodule Design Parameters

Item	Prototype	Production	
Cavities	2	4	
Length	2.1	4.0	
2 K cold mass	210 kg	460 kg	
Total mass	2200 kg	3600 kg	
Bayonets	2	4	
Support links	4	4	
77 K heat load	< 50 W	< 100 W	
2 K Heat Load			
Input coupler	1.6 W (each)		
Tuner	0.8 W (each)		
Total (RF off)	9 W	15 W	
Total (RF on)	53 W	103 W	

RF Input Coupler

Impedance	50 Ω		
Туре	Planar Coax (KEK/SNS)		
Cooling	conduction		
Q_{ext}	$2 \cdot 10^{7}$		
Bandwidth	40 Hz		
Design power	5 kW		
Max power	100 kW		

He Vessel

Medium- β Prototype Cryomodule Components

Construction of Medium- β Cryomodule

(Completed in February 2004)

(1) Cold mass

(3) Inner μ -metal

(5) 77 K shield

(2) Top plate

(4) Multi-layer insulation

(6) Completed module

Experimental Results: Medium- β Cryomodule

	Meas		
Item	Cavity #1	Cavity #2	Design
Fixed Q _{ext}	$1.4 \cdot 10^{7}$	$1.3 \cdot 10^{7}$	$2.0 \cdot 10^{7}$
Variable Q_{ext}	$6 \cdot 10^4$ to $6 \cdot 10^9$		
$\frac{df}{dP}$ (kHz/torr)	0.36	0.46	
$\frac{df}{dE_a^2}$ [Hz/(MV/m) ²]	-16		-14
Static load at 4.3 K	9 W		
Static load at 2 K	10–11 W		9 W

Variable Q_{ext} = standing wave in input coupler Measured static load includes the liquid He reservoir

Tuner with Actuator at Room Temperature

Item	Design	Measured
Range	± 250 kHz	± 500 kHz
Tuning coefficient	> 200 kHz/mm	208 kHz/mm
Cavity spring constant	< 1750 N/mm	1910 N/mm
Resolution	1 Hz	
Compliance	0.7 (rigid)	0.5

Prototype Low- β Cryomodule Design Parameters

Magnets				
Item	Quadrupole	Solenoid (Dipole)		
Effective length	50 mm	100 mm		
Aperture	40 mm	40 mm		
Strength	31 T/m	9 T (0.01 T·m)		
Turns	78	16 813 (40)		
Current	63 A	68 A (50 A)		
Heat Load to Liquid He				
Item	QWR	HWR		
Input coupler	0.40 W	0.60 W		
Tuner	0.63 W	0.38 W		
Total/RF off	6 W			
Total/RF on	15.2 W			
Cryomodule				
77 K shield load	< 100 W			
Length	1.54 m			
Cold mass	310 kg			
Total mass	2000 kg			

Cold Box: testing in progress

RF Couplers: conditioned to 1.1 kW (QWR) and 2 kW (HWR)

Tuners with Actuators at Room Temperature

Vertical tests: low- β cavities and magnets

HWR + Solenoid

HWR + Quadrupole

Construction of Low- β Cryomodule

(In progress)

(1) Cold mass

(2) Top plate

(3) 77 K shield

Future plans: complete the construction of the low- β cryomodule in 2005. Test the low- β cryomodule in 2006. Finish the RF control and microphonics studies on the medium- β cryomodule in 2006.