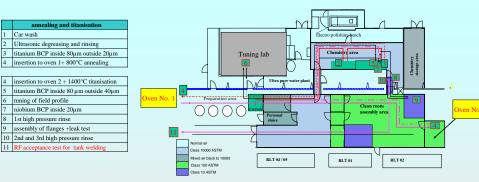


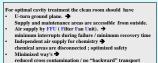
CLEANROOM FACILITIES FOR HIGH GRADIANT RESONATOR PREPARATION

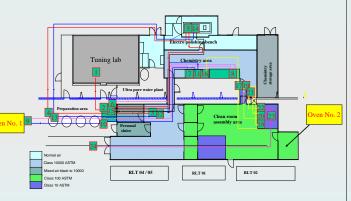
K.Escherich, A. Matheisen, N. Krupka, B. Petersen, M. Schmökel


Deutsches Elektronen Synchrotron DESY, Hamburg, Notkestraße 85,

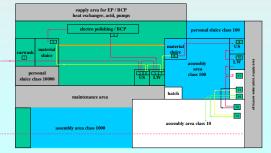
Abstract

22602 Hamburg, Germany


In 1991 a clean room facility to serve for high gradient super conducting cavity treatment- and preparation technique was set up at DESY. Since then several improvements on the infrastructure were made. A total of 88 multi cell TTF / TESLA design resonators with acceleration gradients of up to 39 MV/m have undergone treatments in this facility. We report on reliability experiences of the individual infrastructure components and the flow scheme of cavity preparation. Experiences on infrastructure maintenance procedures and improved quality control of the infrastructure will be presented. Basing on these experiences and the state of art of clean-room technology in 2005 a baseline lay out for an advanced cavity preparation and assembly infrastructure will be discussed.



Workflow inside DESY cleanroom for cavity preparation => ANNEALING and TITANIUM POST PURIFICATION

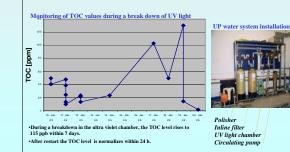

	Electro polishing						
1	Mechanical, visuelle inspection, tuning						
2 3	Degreasing, pre-cleaning						
3	Assembling flanges HOM,PIC, main coupler						
4	Assembling timing belt, rotation disk, electrical connections						
5	EP-bench, EP as described						
6	Pre-cleaning,						
7	US, conducted rinsing						
8	BCP Ti pickling						
9	800°C heat treatment						
10	Pre-cleaning,						
11	US, conducted rinsing						
12	Assembling flanges						
13	Assembling timing belt, rotation disk, electrical connections						
14	EP-bench, EP as described						
15	Pre-cleaning,						
16	US, conducted rinsing						
17	High pressure rinsing						
18	Drying Class 10, over night						
19	3 High pressure rinsing						
20	Drying Class 10, over night						
21	2 High pressure rinsing						
22	Drying Class 10, over night						
23	Install antenna, mass spectrum						
24	Hand over to insert, vertical cold test						

Proposal for optimized clean room lay out

Workflow inside DESY cleanroom for cavity preparation => ELECTRO-POLISHING

Proposal for a cleanroom lay out with minimum cross contamination by cavity work flow

Failure rate of components and infrastructure downtime


		L	totai uo	wn ume	III WOFF	ding day	sj			
year	2000 failure days		2001 failure days		2002 failure days		2003 failure days		2004 failure days	
Cleanroom	3 times	5	5times	14	2times	20	5times	21	5times	35
Chemistry	9times	42	2times	11	2times	25	4times	27	2times	40
Reverse osmosis	2times	2	2times	11	4times	40	5times	34	2times	31
Ultrasonic bath	3times	9	1 time	11	1 time	20	4times	28	0	0
HP - rinsing	7times	31	3times	122	2times	37	5times	40	4times	44

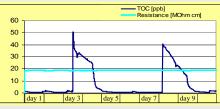
Reliability of the ultra pure water system

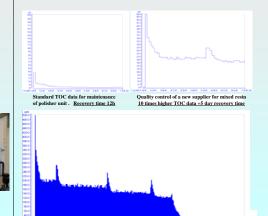
- AL	Reliability of the ultra pure water system						
EVENT	EVENT	ORIGIN	RESULT	RECOVERY TIME			
HPR Broken diaphragm	1 / 12 years	HP-pump steering	oil in system	16 weeks			
HPR Broken filter	6 / 12 years	installation	particle contamination	6 weeks			
HPR hardware of HP stand	2 / 12 years	wear out	mechanic blocked	12 weeks			
bacteria contamination	1 / 12 years	monitoring	broken UV lamp	8 weeks			
plumbing	3 / 12 years	vibrations	Particle contamination	6 weeks			
maintenance on Filter	1 / 1 year	live time	particle contamination	2 weeks			

Technical data of the DESY cleanroom infrastructure

	Total m ³ /h	Class 10 / 10 m ³ / h)	Class 100 Oven m ³ / h	Class 10000 chemistry+ assembly m ³ /h		Exchanged air m ³ /h		installed electrical power	
Clean room circulating air	158 000 for a total of (300 m ²)	126 000 for 20 m ² (80 m ² (10)	13 000 for 9 (m ²)	16 000 for 190 (m ²)		2 400		100 kW	
Utility			Technical data			capacity		Electrical power		
Reverse osmosis			1,2-2,5 µS/cm			1,4 m ³ /h		10 kW		
Air condition Chiller I			10 - 6 °C			230 kW		60 kW		
Air condition Chiller II			10 - 6 °C			150 kW		35 kW		
Chiller chemical treatment (BCP)			15 – 1 °C			40 kW		13 kW 0		
High pressure rinsing pump			25-200 bar operating pressure 100 bar			1,2 m ³ /h		11 kW		

Visualizing laminar flow by N2 air fog for air flow control


Conditions for clean room class 10 Laminar flow ; air velocity 0,45 m / s Pressure difference set correctly r flow set correctly



One van unit cut off and running down Laminar flow changes to turbulent condition

One van unit off and rotates backwards Laminar flow direction changes to vertical up wards

TOC data for maintenance on polisher ion exchange

TOC data for qualifying a new supplier for ion exchanger TOC recovery time 6 days/ Resistance recovery 1h