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Abstract 
 Electric and magnetic fields near the cavity equator are 
presented in the form of Tailor series. Comparisons with 
numerical calculations made with the SLANS code for the 
TESLA cavity cells, as well as with the analytical solution 
for a spherical cavity are done. These fields are used for 
solving the equations of motion. It appears that for 
description of motion, only the main terms of the 
expansion are essential, but the value of coefficients for 
the electric field components depend on details of 
magnetic field behavior on the boundary. Equations of 
motion are solved for electrons moving in crossed RF 
fields near the cavity equator. Based on the analysis of 
these equations, general features of multipacting in this 
area are obtained. The “experimental” formulas for 
multipacting zones are explained and their dependence on 
the cavity geometries is shown. Developed approach 
allows evaluation of multipacting in a cavity without 
simulations but after an analysis of fields in the equatorial 
region. These fields can be computed by any code used 
for cavity calculation. 

 
INTRODUCTION 

 
 Results of multipacting simulations suggest a possible 
way of better understanding of the phenomenon. Let us 
consider the trajectory obtained for a cavity [1], Fig. 1. 
The calculations were performed with MultiPac [2]. One 
can see that the dimensions of the trajectory are very 
small in comparison with the cavity dimensions. It is clear 
that the magnetic field has as big influence on the motion 
as the electric field. At the same time the amplitude of the 
magnetic field is nearly constant within so small change 
of coordinates near the equator. These features can be 
used in derivation of the equations of motion. 
 Of course, integration of equations of motion is 
performed in any simulation. But these are most general 
equations taking into account fields in the whole cavity. 
We see our task in using simplified presentation of fields 
in the region of interest. The analytical presentation of the 
equations can give figures of merit that determine the 
phenomenon. For example, for multipacting in a flat gap, 
the value of fd, the frequency times the gap length, 
defines limits of normalized voltage 22dmeU ωξ =  
across the gap where the discharge takes place. It appears 
that in the case of multipacting near the cavity equator, 
the determining value is ωmeBM 0= . Here me  is the 
specific charge of electron, U is the voltage across the 
gap, 0B  is the magnetic field at the equator, and fπω 2=  
is the angular frequency of oscillations. 
 
 

 

 
Fig. 1. Resonant electron orbit at a peak surface field level 

about 37 MV/m [1]. 
 

FIELDS NEAR EQUATOR 
 

 We describe fields near the cavity equator in the 
cylindrical system of coordinates, ,,, ζϕρ  Fig. 2. Let 
us present the fields in a form of series up to the second 
( )ρζ EE ,  and the third ( ϕB ) order of increments: 
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Not all the powers of expansion are presented because 

ζE  and ϕB  are even and ρE  is an odd function of ζ . 

  For calculation of coefficients a, g, h, …, ,0α …, 0β ,… 
we used Maxwell equations in the form 

,0div ,rot,rot =∂∂=∂∂−= EtDHtBE
rrrrr

         (2) 

with HB
rr

0µ=  and ED
rr

0ε= . We equated coefficients 
standing before equal terms of the expansion. 

 The condition that the vector E
r

 is normal to the 
surface gives  
                          .22 300 ααβ cR+=                                (3) 

 For the value of ϕB , we can compare our results with 

the fields in a spherical cavity if we take into account the 
quadratic term along the border line:  

( )22
0 21 cRBB νζϕ −= . 

For a spherical cavity 1=ν  ( ,sinθϕ ∝B 2πθ ≈ ). 

This equation together with ϕB  from (1) gives: 



 
Fig. 2. Coordinate systems for calculations (a) and alternative geometry with a partly flat profile line (b). 

 
                           .02 =++ cc RhRa ν                            (4) 
 Now one can obtain the chain of solutions for the 
coefficients: 
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Here 001 εµ=c  is the speed of light. 

 If a cavity has a short flat region near the equator, Fig. 
2b, formulae for h and 3α  in (5) should be changed by 

                        22 cRh ν−=  and 03 =α                        (5a) 

if the trajectory is confined in a region dydx <<<< , . 

The values of 0α  and 0β  that will be needed further can 
be also taken directly from the field calculations. 
 To check validity of the proposed approach two cavities 
were analyzed: fields for the TESLA regular cell are 
calculated using SLANS [3], fields for the fundamental 
mode of the spherical 1.3 GHz cavity are found 
analytically. Then both solutions are found using the 
proposed expansion in the area with 5≤z mm and ≤y 2 

mm.  
 The differences between the solutions for the TESLA 
cell are: < 3 % for rE , < 1 % for zE , and < 0.01 % for ϕB .

 The differences for the spherical cavity are: < 0.3 % 
for rE , < 0.1 % for zE , and < 0.0003 % forϕB . 

 
EQUATIONS OF MOTION 

 
 The system of coordinates, fields in the equatorial area 
and a possible trajectory of an electron in the cavity are 
shown in Fig. 2. 
 Let us present the magnetic and electric field in this 
region in the form 
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Here ,tωθ =  t is time, α  and β  are coefficients of 

proportionality. We will use 0αα =  and 0ββ =  from 
(5). Adding of higher terms of the expansions has an 
insignificant effect on the results. However, for 
calculation of 0α  and 0β  the coefficient h describing 

dependence of the magnetic field on 2ζ  should be used, 
see (5) and (5a).  
 Now we can write the equations of motion taking into 
account these three components of fields: 
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The charge of electron is taken positive to simplify 
writing. Dots designate derivatives with respect to time. 
 Replacing derivatives with respect to time by 
derivatives with respect to the phase angle θ (designated 
by primes), so that  

xxxx ′′=′= 2, ωω &&& , and so on, 
one can obtain the equations of motion in a normalized 
form: 
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Here ωmeBM 0=  is the magnetic parameter of the 

motion and  ( ) 0Bp ωββαβ =+=  can be named the 
transverse parameter because it is proportional to the 
electric field component normal to the surface, i.e. 
transverse in relation to the main electric field on the axis. 
From (5), one can obtain 
        ( ) ( )222

cc RRacp νω +⋅=        (9) 
or, in the case (5a), 
                                   222

cRcp ων= .            (9a) 
 The set (8) can be rewritten as a set of first order 
equations that is convenient for solving, e.g., as a 
MathCAD task: 
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CONDITION OF STABILITY 
 

 In the case when multipacting occurs near the cavity 
equator, the starting electron should be described both by 
the phase of the field and the distance from the equator 
because the electric field yE changes with this distance x, 

see (6). If the electron has not an equilibrium initial phase 
and position, after the flight to the next impinge onto the 
surface, its phase and position will change: 
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where 1θ∆  and 1x∆  are deviations from the equilibrium 

phase and position, respectively, at the start point, 2θ∆  

and 2x∆  are deviations after the flight. The derivatives in 
(11) are taken for the equilibrium situation when the time 
of flight is equal to the integer odd number of half-
periods: 

πθθ )12(12 −=− n . 
The system (11) can be written as a matrix product: 
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After the Nth flight, the deviations are 
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So, for stability, it is necessary that  
0lim =

∞→

N

N
A , 

and this requirement is fulfilled if the characteristic roots 
of the matrix equation  
           0=− IA λ ,        (12) 
where I is a unitary matrix, meet the conditions 
          1,1 21 << λλ .          (13) 

Derivatives for (11) were found numerically solving the 
equations of motion (10) for different p and M, and 
substituted into equation (12). The area where the 
conditions (13) are met is the multipacting area. It is 
shown in Fig. 3 as the boundary of stability. 
 

COMPARISON WITH EXPERIMENT 
 
 Maximal energy of primary electrons for each value of 
p is reached on the line shown in Fig. 3. Lines of equal 
energy of primary electrons pE  for the most important 

region of p between 0.2 and 0.4 are also shown. Energy of 
secondary electrons sE  is taken to be 2 eV. Because of 

linearity of equations (8) the impact energy pE  is 

proportional to sE . So, if one takes 4=sE eV, all 

numbers for pE  should be doubled. It is seen that pE  is 

rather small for multipacting in the cavity 1 (see 
subscription to the figure) and the cavity 4 is most 
vulnerable to multipacting. To decreasepE , the lower 

value of p is needed. This can be done choosing the 

geometry. For example, a small flatness ( cRd << , 
Fig. 2b) should help, see (9) and (9a). 
 The formula for the magnetic parameter ωmeBM 0=  
can be rewritten in a form  

]GHz[7.35]mT[0 fMB ⋅= , 
where limits of M depend on the value of p. Cavities with 
the same frequency can have different regions of 
multipacting having different geometry. This formula is 
similar to experimental formulae [4, 5, 6] but now it gives 
a clear physical explanation. 

 Because of space limitations only the most important 
case of two-point multipacting of the first order )1( =n  in 

the crossed fields of equatorial area is shortly described. 
Other details will be presented somewhere. 
 The author wishes to express a great gratitude to Sergey 
Belomestnykh for numerous discussions and careful 
reading of the manuscript. I also thank Rongli Geng for 
useful remarks. 
 

 
Fig. 3. Equatorial cross-field multipacting zone with 

1=n . Examples for several geometries: 1 – Cornell 200 
MHz cavity, 2 – TESLA optimized [1], and 3 – TESLA 
original cavity, 4 – TRISTAN 500 MHz cavity [6].  
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