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Tuning of Multi-Cell Cavities using Bead Pull Measurements

Peter Schmuser

The equivalent electrical circuit of a single resonant cavity is an LC circuit with a series resistance R. In a
multicell cavity with N cells, these resonance circuits are coupled. In the following | assume that the
coupling is inductive ( in superconducting cavities, capacitive coupling dominates, but the mathematical
treatment is quite similar). Fig.1 is the equivalent electrical diagram of N inductively coupled cells. Initially
we will assume that the multicell cavity has the ideal shape, so that the inductivities L, L,,.. Ly are all

equal: L,=L,=L,=...=Ly=L. In the end cells, a small additional inductivity L' (L’ << L) has to be

introduced to obtain a ‘flat’ * mode, that is to obtain equal amplitudes in all cells for the x mode. The
magnitude of L’ will be computed in section 1.

1 Eigenmodes and eigenfrequencies of unperturbed cavity

In the ideal case, all inductivities are identical to L. The eigenfrequency and quality factor of a single
resonance circuit are:

0p=1/(LC)'/2, Q= (@yL)R (1)

The magnetic coupling between adjacent cells is given by the parameter x. For a periodic time
dependence exp(iwt) we get the following set of equations for the currents I,,....Iy in the cells 1,...N:

cell #1: iwL + 1/(ioC) +R] I, +iel’ I, +ioxL I, =0
cell# (1<j<N): [ioL + 1/(wC) +R] Ij +icm<L(Ij_1 - Ij+1) =0
cell #N: il + 1/(iwC) + R] Iy +ioL' I+ ioxL Iy, =0

Dividing by iwL and using (1) the following N equations resuit:

(1-91I, +yI, +xI, =0 (2) i=1
1-QL +x(L_;+L,)=0 (3) I<j<N
(1-9Q Ig+yIy+xIy,; =0 (4) j=N

where we have defined the quantities

Q = Qw)=(wy/ ®)*[1 +ief (®yQ], y=L/L (5)
To solve the equations the following ansatz is made:
I(m,j) = A sin[mn(2j - 1)/(2N)] (6) m,j=1,..N

Here m is the mode number (m=1,....N) and j the cell number ( j=1,...N).




For a given mode m and for a cell number 1 < j < N one has:

I(m,j-1) + I(m,j+1) = 2 I(m,j) cos(mn/N) (7)

Inserting (6) into (3) and using (7) one obtains a relation for the eigenfrequencies o, of the modes m:

Q. =QAoy) =1 +2 x cos(mn/N) ® l<mgN

Now in general Q>>1,50 Q , =(wo/ @) 2 and the frequency of mode # m is given in terms of the
eigenfrequency g of a single cell and the coupling parameter x by

o, =ay/ [1+ 2 xcos(mn/N) ]1/2 (9) m=1,.N

This formula is valid with x > 0 for capacitive coupling of the cells, as is realized in superconducting
cavities. In that case, the “xr mode”, given by m = N, has the highest frequency. The eigenfrequencies
are plotted in Fig.2 for cavities with 5 and 9 cells. ( For inductive coupling, x appears with a negative sign
and the = mode has the lowest frequency). The = mode is used for acceleration, since it features the
highest accelerating field for a given peak field at the superconductor surface. This is immediately evident
from Fig.3 where the eigenmodes of a 9-cell cavity are plotted. In this mode, the electric field on the axis
(corresponding to the current in our equivalent electrical circuit) has opposite sign in adjacent cells. The
length of the cells is chosen such that the field has just inverted when the electron has travelled from cell j
to cell j+1, so the field is in fact accelerating in each cell.

Normalized eigenmodes

In the perturbation treatment of section 2, the properly normalized eigenmodes are needed. They are
also denoted by I(m,j) but this should not necessarily imply that they describe currents. In a mutticell

cavity that is excited in the mode m, the electric field in cell # j is proportional to I(m, j). The amplitudes
of the normalized modes are:

A, = [(2-8,)/N]12 (10)

The modes are normalized and orthogonal in the sense that the Kronecker & results when the product of
two modes is summed over all cells:

N

E I(m,)I(n,j) = 8,, (1form=n, 0forn#m) (11)
=1

Detuning of end cells

The end cells are coupled to neighbours on one side only and have to be detuned to obtain a ‘flat’ * mode
with equal amplitude in all cells. In the equivalent electrical circuit we achieve this detuning by introducing
an additional inductivity L’ ( see Fig.1. One could modify the capacity as well ). The required magnitude of
L’ can be computed by inserting I(N, 1) and I(N,2) of equation (6) into (2):

(1 - @y +L'/L)sin[N=n/(2N)] + x sin[3N=n/(2N)] = 0




Using (8), it follows: y=L'/L = -« (12)

Matrix formalism
For a given mode number m, the function I(m,j) can be represented by a column vector V with
component # j givenby V;= I(m,j). The linear equations (2)....(4) can be written as an eigenvalue

equation with the eigenvalues Q  given by (8):
GV=Q_V (13)

The coefficient matrix, called G, is given in (14) for the general case and in (15) for N=5

Gy =8 +K[8;,1 k +8 k41 - 85181 - Ondynl (14)
1-x «x 0 0 0
K 1 K 0 0
G-= 0 K 1 K 0 (15)
0 0 K 1 K
0 0 0 K 1 -x

2 Perturbed Cells

Let the inductivities of the individual cells deviate by a small amount ¢ from the ideal value
Li=L(l-g), [g]<<1 (16)
The coupling between cell j and cell j+1 is now given by
L. )/2 ~ - . .
x(LiLi, ) KL[1 - 1/2(gj +&,)]

+1

and the generalizations of equations (2,3) read

(1-Q1+¢g)] I +4I, +x[1 - 1/2(&2 -e)l I =0 (17)
[1-Q+e)] L+l + L) +x/2[(g- & D, + (g - g, L,1=0 (18)
The coefficient matrix of this set of linear equations is G + 3G with

3G=-Q-g+x/2h (19)



N
g;=&9% 6 hy= Z B 8.1k~ Siv 1k Ok ¥ O S - S Sl & (20)
k=1

Explicitely, for N = 5 the correction matrices g and h are:

g 00 0 O 0 €1-&, 0 0 0

0 & 0 0 O &-§ 0 -5 0 0
g={0 0 & 0 O h= 0 €4-€, 0 g-g4 O

0 0 0 ¢ O 0 0 g4-85 0 g4-8

0 0 0 0 &g 0 0 0 es-g, O

Due to the perturbation both eigenfunctions and eigenvalues will change. These changes are denoted
by 8I(m,j) and 8Q_,. The eigenvalue equation is now

[G-Q, g+x/2h]J(m,j) = [Q, +5Q,] J(m,j) (21)
with  J(m,j) = I(m,j) + 3I(m,j)

First order perturbation theory is applied to compute the changes. The modifications of the eigenvalues

are obtained by calculating the expectation values of the perturbing matrix 3G for unperturbed
eigenstates:

N
30, =<mlsGlm>= > Imj( -Qug+x/2-h } (mj  (22)

j=1
The expectation value of the matrix h vanishes, so

N |
80 = U > (Ap)Psin?[mn(2j-1/2N)] ¢ (23)

j=1
For Q>>1one has

QO = (0 0)2 , 30/ = - 1/2 8Qu/Qn
For the n mode m = N this yields the frequency shift

N

San/og = 172 E (AN)?s; (242)
j=1

= 1/2<e> (since Ay = 1/N1/2) (24b)

o, =12 f . <e> (24¢)




The changes in the eigenmodes are computed in the following manner:

N
8I(m,j) = E R () (25)

g=1 (q#m)
N
i,j=1
Equation (25) can be used to calculate the modification of the eigenfunctions resulting from known
perturbations g in the cells. The task in tuning a cavity, however, is just the opposite: from the bead-
pull measurement the amplitude changes 8I(m,j) are derived (see sect. 3) and then the g have to be
deduced to permit tuning of the cells. Since the ¢ jare contained in the matrix 8G, (25) is not directly

suitable for performing this task. For this reason, expression (25) is rewritten in terms of a matrix H that is
independent of the perturbation, multiplied with a vector whose components are the g To this end,

expressions (19) and (20) are inserted into (25) and (26) and the summation over the €’s is done last.

After some reshuffling one finds

N
k=1
The m -dependent matrix H is given by
N
Hy=12 » (9 - 32,1/ Q] (a,)IgkI(m,k) (28)
q=1 (q#m)

3 Bead pull measurements

A small copper tube is pulled along the axis of the multi-cell cavity and the resulting frequency shift Af i is

recorded for all cells j = 1...N (a capital ‘A’ is used instead of a small ‘3’ to distinguish the changes caused
by the bead from those due to individual cell errors). The bead introduces a constant perturbation epgaq in

one cell after the other. If all cells were identical, the Af j would all be equal and (for the = mode with
frequency f ) would be given by expression (24)

Af; =<Af>=1/2(Ag)? £ €heaq = 1/CN) 80 G =1..N)  (29)

The frequency shifts are negative, S0 54 < 0. In the following, | consider the & mode only. The

amplitude of the unperturbed eigenfunction I(N,j) will be denoted by A, omitting the subscript “N”.
If a cavity is distorted, the yet unknown pertubations g induce changes 8I(N,j) of the eigenmode and




corresponding changes 8Aj of the amplitudes. Equation (24) tells us that the frequency shift Af i that is
measured when the bead is inside cell j, is proportional to the square of the amplitude Aj of the perturbed
n eigenmode (this mode has in general different amplitudes Aj =A+ SAJ- in all cells, but it must still be

normalized according to (11)).
In that case, the frequency shifts caused by the bead are:

Af; = 1/2(A) 8peaq = 1/(2N) fr€yeaq(1 + 8A /A )2 (30a)
Af; ~ 1/(2N) fr8,e,4(1 + 28A 5/ A) (30b)

In the following the perturbation is consequently treated in the first order, so equ. (30b) is used to
compute the frequency shifts. Now | assume that (in spite of the perturbations sj) the measured © mode
frequency f is identical to the desired frequency. (The generalization to an overall frequency shift is
straightforward and will be done later).

Under this assumption, we have to first order in 8A/A

N
<Af;>=1/N ZAfj =<Af>, therefore g,,,4=2<Af>/f;  (31)
=1
So from the average frequency shift < Af >we can deduce the unknown perturbation gpea4 caused by the
bead. Once this is known we can use (30b) to calculate the changes of the = eigenmode in cells 1,..N.

Using SI(N,J)/I(N,j) = 8A/ A

we get SI(N,j) = [ Af/<Af> - 1] I(N,j)/ 2 (32)
N

Recalequ. @7 BINj)= »  Hje =HZ
k=1

Here H is the matrix which computes the amplitude changes from the individual cell perturbations (here for
the = mode m=N). It might appear easy to invert (27) in order to compute the searched-for ¢’s from the
measured mode shifts 8I(N,j). Unfortunately this is not possible because the matrix H has a vanishing
determinant since among the N equations (27), only (N-1) are independent and there exist infinitely
many sets of solutions (ej). The physical reason for this is obvious: suppose we have a 5-cell cavity in
which cells 1 to 4 are identical but cell 5 is different. There is no way to tell from the bead-pull measurement
whether the cells 1 to 4 are ‘correct’ and cell 5 is ‘wrong’ or vice versa. It may even happen that the cells are
all ‘wrong’ and that an overall adjustment is needed to achieve the desired x mode frequency.

This last observation leads the way out of the difficulty. We assume that an arbitrary cell, say number N, is
‘correct’. Then gy = 0 and the N-th column of matrix H is of no importance. We define a ‘reduced’ matrix of

(N-1)dimensions as well as ‘reduced’ £- and 81 -vectors:

Hrjk=ij , €E&r;:=¢

j=g, Sln=8INj, jk=L..N-1) @33




N-1
Then of course 81 1; = E Hrer (34)
k=1

The reduced matrix, fortunately, can be inverted. Calling R the inverse matrix we have
N-1
er; = E R8I, with R = (Hr)! and j=1,...(N-1) (35)
k=1

The assumption that cell N happens to be just correct is of course a very artificial one and might lead to the
unpleasant situation that all remaining cells have to be tuned to compensate for a geometry error of this
cell. There is a way out, however, permitting to treat all N cells on the same footing. If the measured =
mode frequency (without bead in the cavity) coincides with the desired frequency, as was assumed

above, then from (24b) it is obvious that the average value of all g (j=1,..N) vanishes.
So  <e>=(g gy t...tg)/N=0
butin general ey # 0 , so <er >=(er, +er, +..+ery_ 1)/ N £0 (36)

If we took the ‘reduced’ e-vector gr for tuning we would not only fail to correct a possible error in cell N but
would in addition change the = mode frequency. Both can be avoided if we shift all er’s by their average

value, defining an N-dimensional ‘corrected’ ec-vector by (37). This vector is defined with a negative sign
with respect to er since the existing cell errors shall be cancelled.

&) = - (t»:rj -<er>) forj=1,..(N-1) and ey = <er> (37)

Since < €&c > =0, the frequency f is not affected by the tuning, and all cells, including number N, are
tuned according to their respective errors.
The frequency correction fco rr that is needed to remove the error in cell number j is finally:

fcorrj = €c; f./ (2N) (38)

The last step is to apply a constant frequency shift to all cells if one wants to move the = mode frequency
to another value:

df = (fdesired - fmeasured) IN (39)

A MathCAD program Multicell-Tuninghas been written based on the above formalism. Its results
agree quite well with the TUNE2 program for small errors. Slight discrepancies may be due to the fact that
in TUNE2 some approximations are not strictly kept to first order.

4 Practical example: tuning of the 5-cell nobium cavity LDP5-2

The 1300 MHz cavity LDP5-2 had a rather non-uniform initial field profile, shown in Fig.4a. Two reasons
may be responsible for this unusual property: the material used for the fourth cell has different elastic
properties and during the electron-beam welding a hole was burned into cell 3 due to a failure of the




electron gun. Having such a large deviation from field flatness, this cavity is of course particularly well
suited to check the performance of the Multicell-Tuningprogram. In the first tuning sequence, the n
mode frequency f_ was kept fixed, so equ. (38) was used to compute the frequency corrections of the

cells 1-5. Table 1 lists the computed values of the frequency corrections as well as the actually applied
corrections. Note that in order to achieve a negative frequency shift, the cell in question must be
squeezed, for a positive frequency shift it must be lengthened. This squeezing or lengthening must be
extended into the plastic regime of niobium to get a permanent deformation. Typically, during the squeeze
the frequency shift must exceed the target value by some 300 kHz, but in the stiffer cell 4 more than

400 kHz were required. This illustrates the difficulty of tuning to the desired accuracy of 1 kHz. The field
profile of the = mode after the first tuning is shown in Fig.4b. It is considerably better than the initial profile
but still a field non-uniformity of about 15% is present. The second tuning was made allowing the
frequency f to change according to (39) in order to save time. The computed and the applied frequency

corrections are again listed in Table 1. The resulting bead-pull data are displayed in Fig.4c. The field
flatness has again improved, the largest cell-to-cell difference in electric field being 5%. To check the
capability of the method, a final tune was made with quite small frequency corrections (see Table 1). Fig.4d
demonstrates that the cavity tuning is almost perfect after this step.

The very precise frequency corrections that are needed for obtaining a perfectly tuned cavity could be
more readily achieved if a set-up was designed that permits squeezing or expanding of one cell after the
other without having to remount the cavity in between the tuning steps.

Sections 1, 2 follow the paper “Standing Wave Modes in a Superconducting Linear Accelerator” by
T.1.Smith (Stanford HEPL note 437, 1966) with some modifications. Sections 3, 4 are new.

Table 1: Computed and actually applied frequency corrections df in kHz for the three tuning steps of
the 5-cell 1300 MHz cavity LDP5-2

first tune second tune third tune
cell # dfcomp dfappl dfcomp dfappl dfcomp dfappl
1 103 90 .0 0 0 0
2 199 200 -80 -85 -19 -18
3 190 208 -216 -216 -4 -3
4 - 365 - 369 -112 - 111 -32 - 31
5 -127 -109 -51 -43 -30 -32
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Fig.1: Equivalent electrical diagram for a multicell-cavity with inductive coupling. The small additional
inductivity L’ in the end cells is needed to obtain a ‘flat’ ®* mode with equal amplitudes in all cells.

In principle, L’ would also influence the coupling to the adjacent cell. This is neglected here
since L'/l << 1.

N=5 N=9
1.015 1.015
£ £
n n
£0 £0
0.985 0.985
1 n 5 1 n

Fig.2: The frequencies of the N eigenmodes in cavities with N =5 and 9 cells. The cell-to-cell coupling is
2x = 0.02.
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.:Prog"ram "Multicell-Tuning” for tuning of multicell cavities using bead pull data

For data input move to section (B) Wa_ﬁ erogrﬂ m

(A) Computation of important quantities
compute coupling parameter

2 2
fN - f1l
XK := 200-x = 2.001
2 2 L coupling in %
2-|fN + f1 -cos|-
N
normalized eigenmodes I(m,j) and eigenvalues Omega(m)
m = mode number, j = cell number

2 - 5(m,N) m-
I(m,3j) := -sin|—-(2-3 - 1)

N 2-N

o™
Q(m) := |1 + 2-x-cos|m-— ORIGIN = 1

N
Correction matrix Hr for pi mode (reduced to N-1 dimensions)
q:=1..(N-1) j:=1..(N-1) k=1 ..(N-1)

1 Q(g) - 3-Q(N)
Hr = - E -I(q,3)-I(q,k)-I(N k)
ik 2 Q(N) - Q(q) :
q
-1

R := Hr inverse matrix for N-1 dimensions




(B) Input of cavity parameters. Name of cavity: LDPS5-1

NE=ES number of cells (max. N=9)

fN = 1307.18 frequency of pi mode (m=N) in MHz

f1 = 1283.69 frequency of pi/N mode (m=1) in MHz

AfO := 0 frequency offset in kHz when bead is outside the cavity
j:=1..N

Af := measured frequency shifts in kHz for cells 1,...N

(frequency offset df0 is included)
insert as many df's as there are cells in the cavity
the remaining dfj are left with the default value of 1

fimeas := £fN measured pi mode frequency (MHz)

fN desired pi mode frequency
(insert here different value if you like)

frdes :

I—'HHHH!—'HHI—'|U-

Af := Af - AfO net frequency shifts
1
Afav = —- E Af average frequency shift in bead pull
3

(C) Calculation of frequency corrections
j:=1 ..(N - 1) k:=1..(N-1)

Af

3 I(N,3J)
- 11-
3 Afav 2

§Ir




exr = E R $Ir
3 (3,k) k
k
1
crav = —- E (3 €eC := erav - er teC = egrav
N J J J N
J
3 :=1..N
frmeas frdes - fmmeas
fcorr := ec - - fcorr := fcorxrr -1000
J j 2'N N 3 3

(D) Table of frequency corrections for all cells j=1,....N

cell #

u:.a-wroplu.

A positive value of fcorr in cell #j means that this cell must be lengthened
For negative fcorr it must be shortened

frequency correction in kHz
fcorr

OOOOO]
(W'}




Program "Multicell-Tuning" for tuning of multicell cavities using bead pull data

For data input move to section (B) %W(,& : LDP S\’Z

(A) Computation of important quantities
compute coupling parameter

X = 200-x = 1.987
2 2 n coupling in %
2-|fN + f£f1 -cos|-
N

normalized eigenmodes I(m,j) and eigenvalues Omega(m)

m = mode number, j = cell number
2 - §(m,N) m-
I(m,3j) := -sin|—-(2-3j - 1)
N 2-N
o
Q(m) := |1 + 2-x-cos|m-— ORIGIN = 1
N

Correction matrix Hr for pi mode (reduced to N-1 dimensions)

q:=1..(N-1) jo:i=1..(N-1) k=1 ..(N-1)
1 Q(q) - 3-Q(N)
Hr = - E "I(q,3)-I(q,k) I(N, k)
ik 2 Q(N) - Q(q)
q
-1

R := Hr inverse matrix for N-1 dimensions



(B) Input of cavity parameters. Name of cavity: LDP5-2

N=ES number of cells (max. N=9)

fN = 1306.778 frequency of pi mode (m=N) in MHz
f1 = 1283.459 frequency of pi/N mode (m=1) in MHz
AfO0 := 12.3 frequency offset in kHz when bead is outside the cavity
j:=1..N
Af := measured frequency shifts in kHz for cells 1,...N
3 (frequency offset df0 is included)
47.2 insert as many df's as there are cells in the cavity
47.4 the remaining dfj are left with the default value of 1
46.8
48.5
48.5 frmeas := £N measured pi mode frequency (MHz)
1
L1 frdes := fN desired pi mode frequency
1 (insert here different value if you like)
1

Af = Af - Af£O net frequency shifts
J J
1
Afav = -- E Af average frequency shift in bead pull
N j
J

(C) Calculation of frequency corrections
ji=1..(N-1) k :=1 ..(N - 1)

Af

3 I(N,3J)
- 11-

3 Afav 2

‘Lo;.[r



k
1
crav := —- E er ¢eC := erav - er eC := erav
N &~ 3 J J N
J
J =1 N
fnmeas (fndes - frmeas)
fcorr := ec - - fcorr := fcorr -1000
3 j (2-N) N J 3

(D) Table of frequency corrections for all cells j=1,....N

A positive value of fcorr in cell #jf means that this cell must be lengthened
For negative fcorr it must be shortened

cell # frequency correction in kHz
fcorr

—
3.841

-15.37

43.733

-32.369
0.165

mpwnn—alu.




