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Abstract 
 In order to reduce non-propagating (“trapped”) higher-

order modes in multicell cavities with 90° cell wall slope 

angles, attempts were made to modify cavity geometry so 

as to broaden the bandwidths of these modes. The best 

geometry modifications were determined for both 

broadening the bandwidth of a single mode and 

broadening the net bandwidth of the first seven modes, 

and these modifications yielded results comparable with 

existing TESLA and ERL shapes. 

 

INTRODUCTION 

 When an SRF cavity is created, its geometry is fitted 

for a working π-mode frequency [1]. However, the 

geometry of a cavity is very exact and can be difficult to 

fabricate precisely. As a result, even in a very well-made 

multicell cavity there will be many minor defects in each 

cell. The problem is that slight changes to any of a 

cavity’s geometric parameters, even on the order of less 

than 1 mm, can alter the frequency of a mode – 

sometimes drastically. If the altered frequency is not a 

propagating frequency, then the mode is trapped. For 

higher-order modes (HOMs), this means that the mode 

cannot travel from the inner cells to the damping couplers, 

and its energy cannot be removed. To avoid this 

unfortunate consequence, it is important to stop trapped 

modes from occurring.  

 One way to stop modes from becoming trapped is to 

increase the bandwidth of each mode until all modes are 

as broad as possible. By increasing the range of 

frequencies at which propagation occurs in a mode, we 

reduce the potential for trapping, in spite of any 

imperfections a cavity might have. In this way, a cavity’s 

geometry can be “tuned”. Work has already been done to 

tune the end cells for extraction [2], but in this paper, 

methods for broadening a single mode and for a net 

broadening of all modes are explored for the inner cells. 

Throughout this broadening of bandwidths, the cell 

wall slope angle of the cavity, α, is kept at 90°, as this 

angle is determined to be the best compromise of function 

and practicality. That is, although a reentrant cavity shape 

(with a wall slope angle less than 90°) will theoretically 

perform best, a non-reentrant cavity (with an angle greater 

than 90°) will be easier to build and use. The 90° shape, 

neither reentrant nor non-reentrant (as shown in Fig. 1), 

offers the best qualities of both. Furthermore, this cavity 

shape is interesting because it has also been studied and 

implemented by other researchers. The LSF, NLSF, and 

Ichiro cavities, for instance, all have a cell wall slope 

angle of 90° [3, 4]. As such, these cavities can be useful 

to us for comparison purposes. 

 

Figure 1. Cavity geometry from non-reentrant, reentrant, 

and 90° shapes, with elliptic arc parameters A, B, a, and b 

shown. 

PROGRAMS USED 

SLANS 

 SLANS [5] was used to calculate figures of merit of the 

fundamental (monopole) mode for cells with different 

wall slope angles and phase shifts. Additionally, SLANS 

was used to plot electric field vectors for each geometry. 

SLANS2 

 SLANS2 [5] was used to calculate figures of merit of 

the HOM (dipole) modes for cells with different wall 

slope angles and phase shifts.  Additionally, SLANS2 was 

used to plot electric field vectors for each geometry, see 

Appendix. 

TunedCell 

 TunedCell [6], a wrapper program for SLANS and 

SLANS2, was used, like these two programs, to calculate 

e, h (defined below), and many other figures of merit for a 

given set of elliptic arc parameters. This program was also 

used to create half-cell geometry files. 

MathCAD 

 MathCAD was used to create graphs and fit spline 

curves to data, create multicell and single-cell geometry 

files, and to generate the random numbers used for the 

Monte Carlo technique. 
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Fig 2. Six-cell, single-cell, and half-cell cavity meshes created using TunedCell and SLANS. 

 

GEOMETRY USED 

 Fig. 2 shows the meshes created for each of the three 

types of cavity geometry used in this paper – six-cell, 

single-cell, and half-cell. The six-cell geometry was used 

when it was necessary to calculate many phase shifts 

between 0 and π modes – for instance, when plotting 

dispersion curves. The single- or half-cell cavities were 

used for efficiency when only the 0 and π modes were 

thought to be necessary, such as when calculating the 

bandwidths of higher-order modes. 

FUNDAMENTAL MODE 

For easier comparison with the well-known TESLA 

cavity shape (which is also the prototype for the ILC), we 

will use the following normalized values: e = Epk/2Eacc, 

where Epk is the maximal electric field and Eacc is the 

accelerating field, and h = Hpk/42Eacc, where Hpk is the 

maximal magnetic field. The coefficients 2 and 42 

(Oersted/(MV/m)) are chosen so that e and h are close to 

1 for the TESLA shape. 

The frequencies shown in Fig. 3 were calculated using 

SLANS at an accuracy level of 1.0·10
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 (in frequency) to 

analyze six-cell meshes with geometries optimized for 

minimum h. For a set of geometries optimized for 

minimum h, the shapes with smaller wall slope angles 

generally have the largest bandwidths for a given e, where 

bandwidth is defined to be the difference between the 

frequency of the π-mode and the 0-mode (B0 = fπ - f0).  For 

the fundamental mode, this is important because a larger 

bandwidth means that the difference in frequency 

between the π-mode and the mode nearest to it (for 

example, the 6π/7 mode when end-cells are added to the 

six-cell inner portion) will be greater, making it easier to 

tune for the working π-mode frequency. 

 
Figure 3. Dispersion curves plotting the dependence of 

frequency on phase shift, φ, for e = 1.0 (left) and e = 1.2 

(right). Geometries with α ≤ 90° are plotted in red while 

those with α > 90° are plotted in blue. TESLA is plotted 

as a thick black line (the upper curve) while ERL is 

plotted as a dashed black line, both on the e = 1.0 graph. 

 

In terms of cell-to-cell coupling, as well, cavities with 

smaller wall slope angles generally yield better results 

than those with larger wall slope angles. Moreover, 

despite concerns about cell-to-cell coupling in reentrant 

cavities, these cavities produce equally good if not better 

results than their non-reentrant counterparts, as shown in 

Table 1.  Cell-to-cell coupling (k) is calculated using the 

following equation: 

 

 



Table 1. Parameters of several cells optimized for min h, 

with ERL and TESLA cells included for comparison. 

e = 1.0 α,° B0, MHz k, % h 

Reentrant 
82.70 25.336 1.968 0.9500 

85 25.450 1.977 0.9502 

90° 90 25.442 1.976 0.9523 

Non-

Reentrant 

95 25.301 1.965 0.9579 

100 24.987 1.941 0.9701 

105 24.399 1.894 0.9947 

ERL 

(e=1.0018) 
102.366 27.353 2.126 0.9826 

TESLA 

(e=0.9938) 
103.354 24.290 1.886 0.9902 

e = 1.2 α,° B0, MHz k, % h 

Reentrant 

67.79 31.440 2.448 0.8997 

70 31.317 2.457 0.8997 

75 31.507 2.468 0.9006 

80 31.931 2.471 0.9028 

85 31.662 2.466 0.9067 

90° 90 31.468 2.444 0.9135 

Non-

Reentrant 

95 30.899 2.406 0.9246 

100 30.071 2.340 0.9410 

105 28.866 2.245 0.9664 
 

 

As shown in Fig. 4 and Table 1, the difference in 

coupling value between the best reentrant shape and the 

90° shape is very small, especially in the e = 1.0 case, 

where the best reentrant k-value is 1.977 and the 90° k-

value is 1.976, a difference of only 0.001. For e = 1.2, the 

difference between the best reentrant and 90° k-value is 

only 0.027. These small differences suggest that the 90° 

shape has only small and perhaps imperceptible 

disadvantages compared with the reentrant shape.  

 
Figure 4. Plot showing the cell-to-cell coupling for 

various wall slope angles for ERL, TESLA, e=1.0, and 

e=1.2 cavities. 

 

Because e = 1 is the most common case (ERL, 

TESLA), we will study this case more thoroughly.  Let us 

imagine a reference cavity with e = 1, h = 1 and B0 and k 

identical to TESLA values. Table 2 shows how each of 

the e = 1 cavities described above differ from such a 

reference cavity. 

Table 2. Increase in B0, h, and k for several cells 

compared to reference cavity. 

e = 1 α,° 
ΔB0, 

MHz 
Δk, % Δh 

Reentrant 
82.70 1.046 0.082 -0.0500 

85 1.160 0.091 -0.0498 

90° 90 1.152 0.090 -0.0477 

Non-

Reentrant 

95 1.011 0.079 -0.0421 

100 0.697 0.055 -0.0299 

105 0.109 0.008 -0.0053 

ERL 

(e=1.0018) 
102.693 3.063 0.240 -0.0174 

TESLA 

(e=0.9938) 
103.354 0.000 0.000 -0.0098 

 

 
From Table 2, one can see that the improvement of h 

from α = 105° to α = 90° is 0.0424 while the improvement 

of h from α = 90° to α = 82.70°, the limiting angle, is only 

0.0023. So 94.9% of the total improvement in h occurs 

from 105° to 90°. 

 
Figure 5. Plot showing dependence of h on α when e = 1. 

 

That is, although h continues to improve as α decreases, 

gains tend to become much smaller below 90°, as Fig. 5 

shows. This suggests that in terms of h, as well, the 90° 

shape will only have a slight disadvantage when 

compared with reentrant shapes. 

 

Additionally, the 90° shape has definite practical 

advantages compared with the reentrant shape. Reentrant 

cavities have the unfortunate property of trapping water 

and chemicals or gases during chemical treatment or 

rinsing which cannot be easily removed due to their 

inward curving shape. Moreover, the reentrant shape is 

somewhat more complicated in fabrication. The 90° 

shape, however, does not share these problems despite, as 

described above, yielding almost identical results for 

bandwidth, cell-to-cell coupling, and h value in the e = 1 



case. Since the 90° cavity performs just as well as the 

reentrant cavity, we can use this shape to enjoy some of 

the reentrant cavity’s benefits without its drawbacks. 

 
Figure 6. Plot showing h vs e for our normalized curves 

and for various other 90°-cavities [3,4]. 

 

Furthermore, our particular 90°-cavities compare 

favorably to other 90°-cavities created by other groups, 

such as the NLSF, LSF, LL, and Ichiro cavities [3,4] 

shown in Fig. 6.  From the plot, it is clear that these other 

cavities fall at or below our curves for each value of Ra 

(radius of cavity aperture). That is, for a given value of e 

they have a greater or equal value of h than our cavities. 

This indicates that our cavity geometry will be a good 

starting point for broadening modes, as it is already 

optimized for other figures of merit. 

DIPOLE MODES 
 

Broadening One Dipole Mode 

 
The frequencies shown in Fig. 7 and Fig. 8 were again 

calculated using SLANS at an accuracy level of 1.0·10
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to analyze six-cell geometries created using MathCAD. In 

the 1
st
 dipole mode, the bandwidths for the 90°- and 

reentrant cavities are larger than the ERL and TESLA 

bandwidths, in addition to being very similar to one 

another, as shown in Fig 7.  

For the 3
rd

 dipole mode, however, the TESLA and ERL 

bandwidths remain relatively large (106.810 MHz and 

105.792 MHz) while the 90° and reentrant bandwidths 

shrink to 13.105 and 6.056 MHz, respectively, as shown 

in Fig 7. Clearly these bandwidths need to be improved if 

either 90°- or reentrant cavities are to be used at this 

frequency.  

 

 
Figure 7. Dispersion curve plotting dependence of 

frequency on phase shift, φ, for the 1st dipole mode for 

several geometries. 

 

 
Figure 8. Dispersion curve plotting frequency against 

phase shift for the 3rd dipole mode for several geometries. 
 

In order to improve the 90°-cavity’s bandwidth, the 

derivatives of bandwidth with respect to three of the four 

elliptic arc parameters (A, B, and b) were calculated. 

Additionally, the derivatives of e and h with respect to the 

elliptic arc parameters were found, as well as the 

derivatives of bandwidth with respect to e and h. All of 

these derivatives were calculated from the same initial 

point: the 90° wall slope cavity with e = 1. The 

calculations were done by modifying each elliptic arc 

parameter (separately) by 0.01 mm and using TunedCell 

to calculate the changes in each of the variables, which 

were used to create a single-cell geometry file with 

MathCAD. The geometry file was then analyzed by 

SLANS2 in order to obtain fπ and f0 at an accuracy level 

of 1.0·10
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 and ultimately determine the change in 

bandwidth (B3). A single-cell rather than six-cell 

geometry file was used in this case because it was thought 

that the only frequencies necessary to calculate bandwidth  

were fπ and f0, so only one phase shift was thought to be 

necessary. A case where this does not hold true is 

examined later in the paper. 



 Then the change in, for instance, bandwidth, was 

divided by the change in A in order to obtain a derivative. 

The fourth elliptic arc parameter, a, was treated as a 

dependent variable throughout these calculations (and 

throughout the rest of this paper), held at a = L – A (where 

L is half the length of the cavity, 57.6524 mm) in order to 

maintain a wall slope angle of 90°. The results of these 

calculations are shown in Table 3. 

Table 3. Results of small changes to elliptic arc parameters A, 

B, and b. Effects on limiting factors e and h as well as 

derivatives with respect to these parameters are shown. 
 

 B3 e h ∂B3/∂_ ∂h/∂_ ∂e/∂_ 

ΔA= 

0.01 
11.872 1.000246 0.952236 -15.300 -0.0070 0.0255 

ΔB= 

0.01 
12.075 0.999998 0.952319 5.000 0.0013 0.0007 

Δb= 

0.01 
12.048 0.999991 0.952315 2.300 0.0009 0.0000 

 

From Table 3, it is clear that changing A has the 

greatest effect on the bandwidth. So the first method used 

to widen the bandwidth was incrementally changing A in 

the direction of increasing bandwidth while recording the 

change in the other variables. It was decided that e and h 

should not be allowed to increase more than 5% from 

their initial values, meaning that e should not exceed 

1.04999 and h should not exceed 0.999213. A was 

increased until one of these values was exceeded, as 

shown in Table 4.  

Table 4. Results of incrementally decreasing A. Effects on 

limiting factors e and h as well as derivatives with respect 

to A are shown. 

ΔA B3 e h ∂B3/∂A ∂h/∂A ∂e/∂A 

-0.10 13.362 0.997279 0.953427 -13.370 -0.0112 0.0271 

-0.20 14.725 0.994994 0.954614 -13.500 -0.0115 0.0250 

-0.50 18.899 0.989688 0.958220 -13.748 -0.0118 0.0206 

-1.00 26.103 0.984082 0.964379 -14.078 -0.0121 0.0159 

-2.00 41.490 0.982584 0.977281 -14.732 -0.0125 0.0087 

-3.50 68.181 0.983568 0.998176 -16.045 -0.0131 0.0047 
 

 

The bandwidth was increased by over 400% before h 

exceeded the given limit. From Table 3 we can see that 

although decreasing A has the largest effect on B3 of all 

the elliptic parameters, it also has the largest effect on h. 

With this method exhausted, a second method was 

attempted. Starting from the same initial point, the 

derivatives of bandwidth with respect to three of the four 

elliptic arc parameters were used to determine the 

direction of the gradient of increasing bandwidth. A three-

dimensional gradient vector of length k with components 

ΔA, ΔB, and Δb was determined using the following 

formulas:  

, 

 , 

 . 

The length of the gradient vector, k, was then 

incrementally increased and the change in each of the 

variables was recorded in Table 5.  

Table 5. Results of incremental increase in k for several 

parameters (“gradient method”). 

k B3 e h 

0.10 13.418 0.997490 0.953280 

0.20 14.956 0.995086 0.954440 

0.50 19.371 0.989698 0.957726 

1.00 27.079 0.983444 0.963388 

2.00 43.301 0.979504 0.975299 

3.50 69.948 0.976538 0.994670 

3.75 74.713 0.976259 0.998152 

3.80 75.747 0.976413 0.998884 
 

 

For k values greater than 3.80, the value of h exceeded 

0.999213, so calculations were stopped. Increasing the 

bandwidth using this gradient method was an 

improvement when compared with simply changing A, 

though not a large one. 

A third method of broadening the bandwidth was then 

attempted. In this method, a two-dimensional vector of 

length k with components of ΔB and Δb was to be 

incrementally increased in the direction of the gradient, 

using the same starting point as the previous method. 

These two elliptic arc parameters were chosen because 

their initial ∂h/∂_ and ∂e/∂_ values were the lowest (see 

Table 3). It was thought that because these values were so 

low, B3 could have larger increases before e or h exceeded 

the set limits. The components of the gradient vector, ΔB 

and Δb, were determined as follows: 

 , 

 . 

The length of the gradient vector, k, was then 

incrementally increased and the change in each of the 

variables was recorded in Table 6. 

For k values greater than 7.00, the value of e exceeded 

1.04999, so calculations were stopped. Increasing the 

bandwidth using this method also failed to yield better 

results than either of the previous two methods. The 

assumption that a low initial value of ∂e/∂k would predict 



consistently small increases in e proved false in this case, 

as ∂e/∂k increased by a factor of 10 over the course of a 7 

mm change in k. ∂h/∂k, however, did remain fairly 

consistent throughout – increasing by only 0.0003 over 

the course of a 7 mm change in k.  

Table 6. Results of incremental increase in k 

(corresponding to a change in B and b) for several 

parameters. 

k B3 e h ∂e/∂k ∂h/∂k 

0.01 12.073 0.999998 0.952319 0.0007 0.0013 

0.02 12.146 0.999995 0.952340 0.0002 0.0017 

0.05 12.320 0.999962 0.952385 -0.0006 0.0016 

0.10 12.557 0.999933 0.952461 -0.0006 0.0016 

0.20 13.087 0.999879 0.952595 -0.0006 0.0014 

0.50 14.705 0.999771 0.953039 -0.0004 0.0015 

1.00 17.421 1.001393 0.953792 0.0014 0.0015 

2.00 22.806 1.009676 0.955307 0.0048 0.0015 

5.00 38.726 1.033939 0.960013 0.0068 0.0015 

6.00 45.532 1.041768 0.962101 0.0070 0.0016 

7.00 49.273 1.049858 0.963315 0.0071 0.0016 
 

 

 Of these methods, the gradient method was the most 

effective for an increase in B3. All three methods, 

however, successfully proved that an increase in B3 could 

be possible through the manipulation of elliptic arc 

parameters A, B, and b. 

Broadening First Seven Dipole Modes 

In SRF cavities, it is important to avoid “trapped 

modes”, which occur at non-propagating frequencies. 

That is, it is important both to increase the bandwidths of 

each dipole mode (above the cutoff frequency, 1600 

MHz) and to decrease the space between each band. 

Several possible mathematical ways of writing this goal 

(“goal functions”) were proposed. Ideally, the goal 

function, G, should be written in such a way that its 

optimization (maximization in our case) will help to 

achieve the goal of reducing the number of trapped 

modes. Below are two possible goal functions. 

 

 

 

 

G1 simply states that the net bandwidth should be as 

large as possible while G2 emphasizes relative increases 

in bandwidth (where i refers to a new bandwidth and o 

refers to the initial bandwidth). G1 was used in this 

attempt to reduce the number of trapped modes due to its 

simplicity. 

First, the bandwidths of each of the first seven dipole 

modes were calculated at the same initial point as in the 

previous section (where α = 90° and e = 1), as well as for 

ERL, TESLA, and reentrant cavities for comparison. 

Although the true number of dipole modes is infinite, our 

calculations were limited to the first seven modes because 

frequencies were limited to values below 4 GHz. These 

calculations were done using SLANS2 to analyze a half-

cell geometry file created by TunedCell at an accuracy 

level of 1.0·10
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 with boundary conditions modified to 

match each mode – for instance, a half-cell mesh of B4’s 

π-mode should have a magnetic boundary on its left side 

and an electric boundary on its right side. The half-cell 

fields are shown in Table 7 in the appendix. The half-cell 

mesh was used for convenience in this case because, as 

before, it was believed that only fπ and f0 modes were 

necessary for bandwidth calculation. 

Table 8. Initial bandwidths and G1 for each of the seven 

dipole modes for 90°, reentrant, ERL and TESLA 

cavities. 

 
90° RE ERL TESLA 

B1 195.877 196.303 178.635 173.394 

B2 102.024 103.759 70.354 62.352 

B3 14.064 7.080 87.590 107.451 

B4 286.023 291.641 232.265 215.784 

B5 55.038 54.973 50.148 47.790 

B6 6.987 5.760 16.992 17.710 

B7 442.660 438.907 484.957 487.394 

G1 1102.673 1098.423 1120.941 1111.875 
 

 

From Table 8, we can see that the seven dipole modes 

have a wide range of possible bandwidths, with some 

bands very broad and others very narrow. In terms of the 

goal function, the ERL cavity has the best G1 while the 

reentrant cavity has the worst, with our 90° cavity falling 

in the middle.  

Next, as before, the derivatives of each bandwidth with 

respect to three of the four elliptic arc parameters (A, B, 

and b) were calculated by modifying each elliptic arc 

parameter, separately, by 0.01 mm and recording the 

changes in bandwidth. The derivatives of e and h with 

respect to these parameters were also calculated. All 

derivatives were recorded in Table 9.  

 

 

 

 



Table 9. Various derivatives taken with respect to A, B, 

and b. 

 ∂Bn/∂A ∂Bn/∂B ∂Bn/∂b 

B1 15.7 -1.0 1.4 

B2 20.5 -1.7 1.1 

B3 -13.0 5.0 2.1 

B4 3.8 -5.0 -1.6 

B5 -3.5 0.8 -0.8 

B6 -6.2 0.8 0.0 

B7 -23.8 1.8 -0.3 

 ∂e/∂_ ∂h/∂_ 

A 0.0309 -0.0072 

B -0.0007 0.0012 

b -0.0002 0.0009 
 

 

The derivatives shown in Table 9 were used to create 

equations describing the change in each of the bandwidths 

(ΔBn) corresponding to the change in each elliptic arc 

parameter. Formulas for Δe and Δh were created as well. 

Then, the Monte Carlo technique was used to estimate an 

optimized ΔG1 value. That is, a random number generator 

was used to generate 10,000 random numbers in the range 

of (-0.1, 0.1) for each of ΔA, ΔB and Δb, which were then 

plugged in to the ΔBn, Δe and Δh equations. Using these 

values, 10,000 ΔG1 values were found, and of these, the 

largest ΔG1 whose Δe and Δh values did not exceed 0.05 

was recorded, as were its corresponding ΔA, ΔB and Δb 

values. These elliptic arc parameters were used by 

TunedCell to create a half-cell geometry file which was 

fed into SLANS2 to determine the actual ΔB values for 

each mode, and in turn the actual ΔG1 value was 

determined. The predicted values were compared with 

these actual values for accuracy. This process was 

repeated three more times, with random number ranges 

increased to (-0.5, 0.5), (-1.0, 1.0), and finally (-5.0, 5.0). 

Data was recorded in Table 10. 

 
Figure 9. ΔG1 plotted against the amplitude of the range 

of random numbers given to each elliptic arc parameter. 

 

From Table 10, it is apparent that increasing the range 

of random numbers available to each of the elliptic arc 

parameters increases ΔG1 but decreases the accuracy of 

the prediction, as indicated by the greater and greater 

differences between actual and predicted values as the 

range increases. The range was increased no further after 

(-5.0, 5.0) because it was assumed that the derivatives of 

bandwidth with respect to the various elliptic arc 

parameters had changed significantly from their original 

values in such a large range. Next, ΔG1 was plotted 

against range to determine to what extent range should be 

allowed to increase for a given set of derivatives, as 

shown in Fig. 9. 

Table 10. Predicted ΔBn and ΔG1 values compared to 

actual values for several ranges of random numbers given 

to each of the elliptic arc parameters. 

 Predicted Actual Difference 

(-0.1, 0.1) ΔA = -0.0985, ΔB = 0.1000, Δb = 0.0937 

ΔB1 -1.516 -1.506 0.010 

ΔB2 -2.087 -2.069 0.018 

ΔB3 1.977 1.998 0.021 

ΔB4 -1.024 -1.022 0.002 

ΔB5 0.350 0.325 -0.025 

ΔB6 0.691 0.678 -0.013 

ΔB7 2.497 2.501 0.004 

ΔG1 0.888 0.905 0.017 

(-0.5, 0.5) ΔA = -0.4967, ΔB = 0.4593, Δb = 0.4611 

ΔB1 -7.612 -7.590 0.022 

ΔB2 -10.456 -10.390 0.066 

ΔB3 9.722 9.961 0.239 

ΔB4 -4.922 -4.932 -0.010 

ΔB5 1.737 1.302 -0.435 

ΔB6 3.447 3.101 -0.346 

ΔB7 12.510 12.753 0.243 

ΔG1 4.426 4.205 -0.221 

 (-1.0, 1.0) ΔA = -0.9888, ΔB = 0.4902, Δb = 0.9626 

ΔB1 -14.667 -14.721 -0.054 

ΔB2 -20.046 -20.000 0.046 

ΔB3 17.328 18.133 0.805 

ΔB4 -7.749 -7.891 -0.142 

ΔB5 3.083 1.651 -1.432 

ΔB6 6.523 5.280 -1.243 

ΔB7 24.128 25.150 1.022 

ΔG1 8.600 7.602 -0.998 

 (-5.0, 5.0) ΔA = -3.0612, ΔB = -4.5832, Δb = 4.1551 

ΔB1 -37.661 -39.215 -1.554 

ΔB2 -50.393 -52.097 -1.704 

ΔB3 25.606 32.861 7.255 

ΔB4 4.635 1.429 -3.206 

ΔB5 3.724 -4.368 -8.092 

ΔB6 15.313 9.091 -6.222 

ΔB7 63.361 73.180 9.819 

ΔG1 24.524 20.881 -3.643 
 

 

From Fig. 9, one can see that the slope of ΔG1 becomes 

less steep and linear when the range amplitude reaches 



values greater than 1.0. This was thought to indicate that 

derivatives of bandwidth with respect to elliptic arc 

parameters should be recalculated from this point. These 

new derivatives were found as before, but with the (-1.0, 

1.0) geometry as an initial point. The derivatives of e and 

h with respect to these parameters were also recalculated. 

Using the new derivatives, new values for ΔBn and ΔG1 

were predicted for a (-1.0, 1.0) range from that point – or, 

(-2.0, 2.0) range from the original initial point. This 

process of recalculating derivatives for each 1.0 increase 

in range amplitude was repeated for (-3.0, 3.0), (-4.0, 4.0) 

and (-5.0, 5.0). Then, actual values were compared with 

these predicted values, and all values were recorded in 

Table 11. 

 
Figure 10. ΔG1 plotted against the amplitude of the range 

of random numbers given to each elliptic arc parameter 

for both methods – keeping the same derivatives the 

entire time and recalculating derivatives for every 1.0 

increase in range amplitude. 

 

From Table 11, it is clear that the accuracy for these 

ΔG1 predictions changes erratically despite the fact that 

derivatives for ΔBn, e, and h with respect to the elliptic arc 

parameters were recalculated for each point. Moreover, 

the overall increase in G1 for this procedure is only 

20.100 MHz, which is actually less than the increase in G1 

achieved using the same derivatives the whole time, 

(20.881 MHz), as shown in Fig. 10. Hence, recalculating 

derivatives for every 1.0 increase in range amplitude 

doesn’t yield improvement when compared with simply 

using the same derivatives the entire time.  

Both of these methods yield very small increases 

compared with the original G1 value (1102.673 MHz, 

from Table 8). However, both methods also yield better 

final G1 values than the TESLA and ERL cavities 

(1120.941 MHz, 1111.875 MHz, from Table 8); using the 

same derivatives each time yields a final G1 value of 

1123.554 MHz and recalculating derivatives for each 1.0 

increase in range yields a final G1 of 1122.773 MHz. So 

both methods are successful in this respect, with the 

“same derivatives” method slightly more successful. The 

dispersion curves for each dipole mode for the most 

improved goal function are shown in Fig 11. 

Table 11. Predicted ΔBn and ΔG1 values compared to 

actual values for several ranges of random numbers, with 

derivatives recalculated at each point.  

 Predicted Actual Difference 

(-2.0, 2.0) ΔA = -1.9741, ΔB = 1.4898, Δb = 1.8995 

ΔB1 -29.170 -30.039 -0.869 

ΔB2 -40.780 -40.922 -0.142 

ΔB3 39.380 40.088 0.708 

ΔB4 -18.218 -18.349 -0.131 

ΔB5 2.085 0.374 -1.711 

ΔB6 9.616 8.270 -1.346 

ΔB7 51.903 52.518 0.615 

ΔG1 14.816 11.940 -2.876 

(-3.0, 3.0) ΔA = -2.9680, ΔB = 0.5820, Δb = 2.8828 

ΔB1 -43.942 -43.939 0.003 

ΔB2 -59.057 -59.186 -0.129 

ΔB3 53.319 54.133 0.814 

ΔB4 -20.117 -20.377 -0.260 

ΔB5 -2.511 -3.472 -0.961 

ΔB6 9.480 8.919 -0.561 

ΔB7 77.795 78.446 0.651 

ΔG1 14.967 14.524 -0.443 

(-4.0, 4.0) ΔA = -2.0352, ΔB = -0.3732, Δb = 3.7811 

ΔB1 -25.794 -26.134 -0.340 

ΔB2 -36.260 -36.540 -0.280 

ΔB3 35.015 35.595 0.580 

ΔB4 -13.494 -13.374 0.120 

ΔB5 1.032 -0.783 -1.815 

ΔB6 9.468 8.189 -1.279 

ΔB7 49.269 49.793 0.524 

ΔG1 19.236 16.746 -2.490 

(-5.0, 5.0) ΔA = -3.0333, ΔB = -1.1896, Δb = 4.9606 

ΔB1 -40.104 -40.145 -0.041 

ΔB2 -54.893 -55.006 -0.113 

ΔB3 49.483 50.117 0.634 

ΔB4 -15.865 -16.014 -0.149 

ΔB5 -2.917 -4.124 -1.207 

ΔB6 10.031 9.333 -0.698 

ΔB7 75.288 75.939 0.651 

ΔG1 21.023 20.100 -0.923 
 

 



 
Figure 11. Dispersion curves for the 90°-cavity improved 

by the Monte Carlo technique (without changing 

derivatives) for each of the first seven dipole modes, with 

frequency plotted against phase shift. Original curves are 

included for comparison and shown as solid lines, while 

improved curves are dashed lines. Dotted lines show 

Brillouin light lines. 

 

The Sixth Dipole Mode 

 During, earlier calculations, it was mentioned that only 

f0 and fπ were thought to be necessary for calculating the 

bandwidth of a given band. In fact, the standard formula 

for calculating bandwidth throughout this paper has been 

B = |f0 - fπ|. The sixth dipole mode, however, is a case 

where this does not appear to hold true. 

From Fig. 11, B6 looks like a straight line compared with 

the other, broader bandwidths. When the B6 dispersion 

curve is examined more closely, however, we see that its 

shape is strange. That is, the assumption underlying the B 

= |f0 - fπ| formula is that one of f0 and fπ should be the 

maximum frequency in the band and one should be the 

minimum. From Fig. 12, however, it is clear that this is 

not the case for B6. Although the maximum frequency 

occurs when φ = π, the minimum frequency occurs at fπ/4, 

not f0. A true bandwidth calculation for this mode would 

be B6 = |fπ - fπ/4|, which yields more than double the B6 

value of the original formula (14.312, compared with 

6.987). 

 
Figure 12. Dispersion curve plotting dependence of 

frequency on phase shift for the sixth dipole mode. 

 

So a more accurate measure of bandwidth than the B = 

|f0 - fπ| formula must be devised. Ideally, bandwidth 

should be determined by the highest and lowest frequency 

of each mode, but describing an algorithm for this 

calculation could be difficult if minimums and maximums 

appear in unexpected places as in B6. For now, a new 

formula could simply be B = fmax – fmin, which coincides 

with the original bandwidth formula in each of the seven 

dipole modes but the sixth. Furthermore, the assumption 

from earlier on in the paper that calculating a single- or 

half-cell geometry is enough to determine the bandwidth 

of each HOM appears to be false, as a six-cell geometry is 

necessary to calculate fπ/4.  

SUMMARY 

 For a 90°-cavity with constraints on the upper limits of 

e and h, several methods of reducing trapped modes are 

described. These methods entail both broadening a single 

mode and broadening the sum of all higher-order modes 

through modification of the elliptic arc parameters A, B, a 

and b. The most successful method of broadening a single 

mode (the third dipole mode) was increasing changes in 

the elliptic arc parameters in the direction of the gradient 

of increasing B3. This method increased B3 from 12.025 

MHz to 75.746 MHz before h exceeded its limit. For 

broadening the sum of all dipole modes, the most 

successful method was using the derivatives of each 

bandwidth with respect to each elliptic arc parameter to 

determine a goal function equation, and then using the 

Monte Carlo technique to optimize this equation without 

exceeding the e or h limits. This method increased the 



sum of all dipole mode bandwidths from 1102.673 MHz 

to 1123.554 MHz, a value slightly larger than TESLA or 

ERL’s HOM bandwidth sum.  

However, examination of the sixth dipole mode’s 

dispersion curve shows that we may need to use a 

different method of calculating bandwidth in the future to 

obtain more accurate results for bandwidth increases, 

possibly invalidating some earlier data. 

AKNOWLEDGEMENTS 

Thanks to everyone who made the CLASSE REU 

program possible. This work was supported by the NSF 

grant PHY-0849885. 

REFERENCES 

[1] H. Padamsee et al., RF Superconductivity for 

Accelerators (John Wiley & Sons, New York, 1998). 

[2] V. Shemelin. Optimal choice of cell geometry for a 

multicell superconducting cavity. Physical Review Special 

Topics – Accelerators and Beams 12 114701 (2009). 

[3] Z. Li and C. Adolphsen. A new SRF cavity shape 

with minimized surface electric and magnetic fields for 

the ILC. In Proceedings of LINAC08, Victoria, BC, 

Canada. 

[4] N. Juntong, R. M. Jones, and I. R. R. Shinton. SRF 

cavity geometry optimization for the ILC with minimized 

surface E.M. fields and superior bandwidth. In 

Proceedings of EPAC08. Genoa, Italy.  

[5] D. G. Myakishev and V. P. Yakovlev, in Proceedings 

of the Particle Accelerator Conference, Dallas, TX, 1995 

(IEEE, New Jersey, 1995), pp. 2348 – 2350. 

[6] D. Myakishev. TunedCell. Cornell SRF Group 

Internal Report No. SRF 942008-13, 1994. 

 

  



 

APPENDIX 

 
Table 7. π and 0 modes for the first seven dipole bands of a 90°-cavity. 

Band 
Boundary Conditions 

Magnetic, Magnetic Magnetic, Electric Electric, Magnetic Electric, Electric 

1, 2 

B1, 0 B2, π 
 

B1, π 
 

B2, 0 

3, 4 

 
B3, 0 

 
B4, π 

 
B3, π 

 
B5, 0 

5, 6 

 
B4, 0 

 
B5, π 

 
B6, π 

 
B6, 0 

7, 8 

 
B7, 0 

 
B8, π  

 
B7, π 

 
B8, 0  

 

 

 




