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Abstract

In an energy recovery linac (ERL) where beam-loss has
to be minimal, and where beam positions and emittances
have to be very stable in time, optic errors and beam insta-
bilities due to ion effects have to be avoided. Possibly the
least unattractive way of eliminating ions in an ERL is the
installation of clearing electrodes. We present calculations
of the remnant ion density and its effect on the beam.

INTRODUCTION

Ions can damage electron beams in various ways. It is
therefore important to reduce the density of ions in the
vicinity of the beam to a tolerable amount. Storage rings
typically use ion-clearing gaps. These are short gaps in the
filling pattern that lead to an absence of focusing forces for
the ions every time this gap travels around the ring. The
length of the beam-filled region and of the gap are chosen
to overfocus ions and let them oscillate to large amplitudes
out of the beam center. In pulsed linacs, the gaps are often
long enough to allow ions to drift out of the beam region.

In rings with coasting beams, there is no ion-clearing
gap, and obviously the beam cannot be turned off regularly.
Similarly, in Energy Recovery Linacs (ERLs) [1] where the
beam’s energy is dumped in RF cavities and is immediately
used to accelerate new electrons, one cannot easily turn off
the beam (because this would interrupt the ERL process)
and one can also not easily introduce short gaps in the beam
(because this would disrupt the gun or the linac that injects
large currents into the ERL). In both of these cases, ion-
clearing electrodes may have to be used [2, 3].

The electron diameter varies along the accelerator, and
this variation produces longitudinal forces, guiding ions to
a location where the electron density is relatively large, typ-
ically close to the waists of the electron beam. Clearing
electrodes are placed along the beam-line at such places of
ion accumulation.

Because the motion to clearing electrodes that are spaced
many meters apart takes several milliseconds, such elec-
trodes tend to produce a linear ion density that is in the
order of about one part in a thousand of the linear charge
density in the beam.

Computing an equilibrium ion density is typically very
time consuming. Here we use scaling properties of the
Maxwell equations and the Lorentz force, as well as the
adiabatic invariance of the action integral, to compute the
equilibrium ion density very efficiently. We have applied
this technique to analyze the Cornell ERL project [4].

∗This work has been supported by NSF cooperative agreement PHY-
0202078.

Table 1: Parameters of the Cornell ERL used for the exam-
ples in this paper

Normalized emittances εnx = εny 0.3 · 10−6m
Energy spread σδ 2 · 10−4

Electron current I 0.1A
Bunch charge Q 77pC
Injected energy Ein 10MeV
Top energy Etop 5GeV
Dominant ion abundance H + 98%
Ionization cross-section σcol 3.8 · 10−23m2

ρ(Gas): warm sections pline 3 · 1013m−3

ρ(Gas): cryogenic linac pLINAC 3 · 1011m−3

THE ION EQUILIBRIUM

For a rotationally symmetric electron beam, the density
is given by

ρe(r, s) = λ
1

2πσ(s)2
e
− r2

2σ(s)2 , (1)

where λ is the linear particle density. With Gauss’ law, the
transverse velocity kick on a singly charged, non relativis-
tic ion becomes

Δvr = − 2Ncrp

Ar

(
1 − exp

[−r2

2σ2

])
, (2)

where σ is the rms width of the electron-beam profile, r
is the distance from the beam centerline, N the number of
electrons in the bunch, rp the classical proton radius and A
the atomic weight of the ion. The longitudinal kick in the
special case of a round beam is given by [5]

Δvs = −αε

(
∂ Δvx

∂x
− ∂ Δvy

∂y

)
. (3)

In a brute force simulation, the state of each ion is char-
acterized by its x and s position, as well as by the velocities
in both directions. Such a simulation would be very inef-
ficient because there are two different timescales: A large
number of kicks is required to resolve the sharply focused
transverse ion motion, but the longitudinal motion hardly
changes in a single oscillation. It is therefore not possible
to simulate the motion of a realistic number of ions in this
way.

During one transverse oscillation the longitudinal posi-
tion s of the ion changes typically only by a fraction of
a millimeter even at the largest possible ion speeds. Ions
thus oscillate in a potential that slowly changes over many
periods. Because of this, an ion’s action integral over one
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oscillation period is an adiabatic invariant of the motion. In
our improved simulation, the state of the ion is therefore de-
scribed by its longitudinal position s, its longitudinal speed
vs and its action integral J . Solving the motion in (J, s)
rather than in (x, s) coordinates has two advantages: (1)
The degrees of freedom are reduced from 2 to 1. (2) Be-
cause Δvs changes much slower than Δvx, the integration
steps can be vastly increased, typically by about a factor of
10000. If the density at s is to be computed, it is not enough
to know the action at s, but one oscillation is sufficient to
compute the density contribution of particles with action J.

The longitudinal acceleration averaged over one oscil-
lation is given by the time average over individual kicks.
Calculating this time average again and again for each ion
is computationally demanding and wasteful. Instead, we
pre-compute a table of possible values of this time average
for many beam sizes σ and amplitudes a of the oscillation.

The program was further accelerated by noting that the
time averaged kick as a function of J can be calculated for
a typical standard beam size and then rescaled for regions
with other beam sizes,

〈
∂ Δvx

∂x
+

∂ Δvy

∂y

〉
=

1
σ2

f(J/σ) . (4)

This is due to scaling properties of the Maxwell equations
[6]. The longitudinal acceleration of the ions is then given
by

v̇s = −αε

σ2
f(J/σ) . (5)

Ions are created with equal rate at all locations along the
beam. Under the influence of the longitudinal beam force,
the ions will then slowly propagate to the point with min-
imal potential. In our simulation, we assume that clearing
electrodes have been placed at the waist, so that ions cross-
ing the s = 0 line are removed. An equilibrium situation
is reached when an equal number of ions are produced and
removed during a given time interval.

Fig.1 shows one half of a L=12.6m long part of the
beam with a waist of β∗ = 28.97m at its center. There
is a sharp increase in the ion density near the electrode at
s = 960.15m

Close to the beam axis, the transverse ion density di-
verges approximately as 1/r, so that it is not appropriate
to fit the ion distribution to a Gaussian. The 1/r distribu-
tion leads to a constant radial electric field near the beam
axis which strongly affects beam dynamics. As long as the
number of ions per length is much smaller than the number
of electrons per length the 1/r scaling of the ion density is
not altered by ion-ion forces in by far the largest part of the
beam [6].

ELECTRON MOTION WITH IONS

As a worst case scenario, we simulated a drift region
with 200m length and a beam waist of β ∗ = 100m at the
center. The final phase-space distribution with and without
the ion field is shown in Fig. 2. While passing through the

Figure 1: Simulated and analytically approximated linear
ion densities near s=960m in the Cornell ERL.

Figure 2: Electron beam phase-space distribution after
transversing the 200m ion field with β ∗ = 100m at its cen-
ter. Dark-red +: phase space in a free drift, Light-green ×:
phase space for motion through the ion field.

ion field once, the beam emittance was found to increase
from 36.6pm to 50.7pm.

This example shows that sections of only a few times 10
meters between clearing electrodes can produce intolerable
emittance growth if the β-function is large. It therefore has
to be tested whether the optics in the Cornell ERL provides
fast enough ion motion to clearing electrodes, so that emit-
tance growth is limited.

Because ions travel to the minima of the electrostatic po-
tential, a clearing electrode has to be located at every such
minimum. We therefore first calculate the potential in the
beam’s center. For this we used the potential in [7] which
assumes a beam with uniform transverse charge density.
Fig. 3 (top) shows the resulting potential in the center of
the beam.

To find a round beam approximation suitable to our sim-
ulations, we first look at the minima of this potential and
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Figure 3: Top: Approximate longitudinal beam potential
for the Cornell ERL. Bottom: A section of the ERL illus-
trating the approximation of the beam’s potential (thick-
dark-red) by a round-beam model (thin-light-green).

calculate the β-function that would give the same potential
at those locations in the case of a round beam. We can then
define a round beam approximation for the entire ERL lat-
tice by using a free drift from one potential maximum to
the next. Fig.3 (bottom) shows that this is a good approx-
imation. The longitudinal ion velocities near the center of
the beam (where most of the ions are located) depend only
on this potential. Fig.1 shows that ions which are not in
the center have the same velocity to a good approximation.
This clearing speed determines the linear ion density also
for non-round beams, and our round beam model should
therefore be a good approximation.

Integrating over the relevant upstream points from the
nearest potential maximum to s yields the total local ion
density at s

ρ(s) =
∫ s

smax

σIρn(s0)
e

ds0√
2e

mion
[V (s0) − V (s)]

. (6)

Using this method, and assuming that the residual gas den-
sity in the linac sections is reduced by a factor 100 as speci-
fied in Tab. 1, we find the linear ion densities for the Cornell
ERL shown in Fig. 4.

The example in Fig.1 represents the section of the ERL
with the largest linear ion density. To reduce the impact
of high density sections like this, additional clearing elec-
trodes can be placed between the maximum and minimum
of the potential. We find that by including one extra elec-
trode, the emittance increase caused by this section can be
reduced from 1.04pm to 0.46pm.

To get a better estimate of the ion effects in the full ERL,
we also simulated the ion distribution in a 34m long re-
gion around s = 1530m, which corresponds to one of the
medium high peaks in Fig. 4. Sending the beam through
this section 1000 times results in the phase-space distribu-
tion in Fig. 5. We find that 6.2% of the beam electrons leave

Figure 4: Estimate of the linear ion density at the Cornell
ERL for a round beam approximation and clearing elec-
trodes at the minima of the linear potential.

Figure 5: Electron beam phase-space plot after transvers-
ing a 34m long region with medium high ion density 1000
times.

the main bunch and migrate to the four separated islands in
phase space.
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