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Abstract

A self-consistent simulation method is developed for the
study of coherent synchrotron radiation effects by using a
perturbation expansion of retarded radiation field and the
particle-in-cell method. With this method, the particle-
radiation interaction can be calculated self-consistently
without memorizing the history of the bunch particle dis-
tribution during a beam tracking.

INTRODUCTION
In the study of collective particle-field interactions, the

chief of difficulties is that the calculation of the field re-
quires a knowledge of particle distribution while the distri-
bution itself is perturbed by the field. Currently, the most
effective numerical method for a self-consistent treatment
of such a collective interaction is the particle-in-cell (PIC)
method in which the time evolution of the particle distribu-
tion is calculated on a mesh in configuration space by using
a large number of macroparticles [1]. For the interaction
between an ultra short bunch and its coherent synchrotron
radiation (CSR), however, one additional difficulty for a
self-consistent treatment is the retardation of the radiation
field as the particle-radiation interaction involves a retarded
bunch particle distribution. A direct use of the PIC method
is very inefficient, if not impossible, because with a rea-
sonable density of the mesh and a reasonable number of
macroparticles, keeping the history of the particle distri-
bution in computer memories during a beam tracking is
technically impractical (expect maybe in the case of a very
short beam path.)

To overcome the difficulty of the retardation in a self-
consistent treatment of the CSR problem, we have devel-
oped a perturbative-PIC method based on a perturbation
expansion of the retarded radiation field. For the perturba-
tion expansion of the radiation field, we utilize the fact that
the time dependence of a bunch particle distribution has
two significantly different time scales. A fast time scale of
the distribution is related to the linear dynamics of a bunch
as its centroid moves along the lattice and its beam sizes
vary with lattice functions while a slow time scale of the
distribution is of the slow beam-size growth due to non-
linear perturbations. The retardation on the fast time scale
can be eliminated from the distribution analytically since
the linear dynamics is known. As the retardation of the ra-
diation is usually much shorter than the slow time scale of
the distribution, the retardation on the slow time scale in the
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distribution can be approximated by an expansion in terms
of the retardation. The use of the PIC method provides a
smooth distribution constructed on a mesh in configuration
space so that the expansion of the retarded radiation field
can be calculated numerically on the mesh with a desired
accuracy. With this method, the retarded radiation field can
be calculated self-consistently without a need of memoriz-
ing the history of the distribution during a beam tracking.

In a simulation of the CSR problem, the radiation field
can be calculated either directly in the form of the Lorentz
force or indirectly through the Liénard-Wiechert potential
in configuration or frequency space. The direct force cal-
culation is faster but it is more prone to the numerical sin-
gularity of the radiation field as the radiation from an ultra-
relativistic charge is concentrated inside a radiation cone
with an angular width of ∼ γ−1. This perturbative-PIC
method can be used for both the direct and indirect calcu-
lation of the radiation field. Note that the use of the PIC
method can significantly reduce the numerical singularity
of the radiation field.

PARTICLE-RADIATION INTERACTION
Consider a bunch that moves along a plane circular de-

sign orbit of radius R with a constant speed of v0, where
β0 = v0/c ∼ 1. Let �X(s) = �Xc(s)+�x(s) be the global co-
ordinate of a bunch particle in the lab frame, where s = v 0t
is the independent (“time”) variable, �Xc(s) is the global
coordinate of the bunch centroid along the design orbit,
and �x = (x, y, z) is the coordinate of the particle respect
to the bunch centroid where x, y, and z are the horizon-
tal, vertical, and longitudinal coordinates, respectively. Let
f̃( �X, �P , s) be the bunch particle distribution in the phase
space of the global coordinate. The Lorentz force on a test
particle at �X due to the synchrotron radiation from a bunch
or the vector potential of the radiation field at �X can be
calculated from

�FSR =

∞∫

−∞

�G( �X − �X1, s, τs) f̃( �X1, �P1, s − τs) d �X1 d�P1

(1)
where �G( �X− �X1, s, τs) is the Lorentz force on a test charge
at ( �X, s) (for the direct calculation of the force) or the
Liénard-Wiechert potential (for the calculation of the po-
tential) of the electromagnetic field radiated from a charge
at ( �X1, s1) in the lab frame, and τs = s−s1 = β0| �X− �X1|
is the retardation. Note that �G, in general, could also be a
function of �P1 of the particle that radiates the field at s1 and
of �P of the test particle at s. For an ultra-relativistic beam,
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the dependence of the velocities or accelerations in �G can
be well approximated by the velocity or acceleration of the
bunch centroid motion and, therefore, �G does not depend
on �P1 or �P in Eq. (1). The integral in Eq. (1) can thus be
simplified as an integral with the bunch particle density in
configuration space.

a. Elimination of Fast Time Dependence of f̃( �X, �P , s)

The fast time scale in f̃( �X, �P , s) is of the linear beam
dynamics that includes the motion of the bunch cen-
troid and the linear variation of the beam size around
an accelerator. Since the linear dynamics is known, the
retardation of the fast time scale in f̃( �X1, �P1, s − τs)
can be eliminated by transferring to the normalized vari-
ables. Let �x = (

√
βx(s) q1,

√
βy(s) q2, q3) and �x1 =

(
√

βx(s − τs) q′1,
√

βy(s − τs) q′2, q′3), where βx(s) and
βy(s) are beta functions with known s-dependence. Since
the transformation from ( �X1, �P1) to (�q ′, �p ′) is symplectic,
where �p ′ is the momentum conjugate to �q ′, the integral in
Eq. (1) simply becomes

�FSR(�q, s) =

∞∫

−∞

�G1 (�q, �q ′, τs) ρ(�q ′, s − τs) d�q ′ (2)

where �G1(�q, �q ′, τs) = �G( �X − �X1, s, τs),

ρ(�q ′, s − τs) =

∞∫

−∞
f(�q ′, �p ′, s − τs) d�p ′,

and f(�q, �p, s) is the bunch particle distribution in the nor-
malized phase space. Note that τs is a function of (�q, �q ′)
and does not depend on �p ′. Without any nonlinearity
and if the bunch matches with the linear lattice initially,
∂ρ(�q, s)/∂s = 0. With nonlinear perturbations such as
CSR, ρ(�q, s) may weakly depend on s explicitly and the re-
tardation of the weak explicit s-dependence of ρ(�q, s− τs)
can be treated perturbatively. If a bunch is mismatched with
the linear lattice, as long as the oscillation of the bunch due
to the mismatch is not significant during the retardation, the
perturbative treatment of the retardation for ρ(�q, s − τs) is
still valid.

b. Expansion of Explicit τs-Dependence of ρ(�q, s − τs)

Consider the situation that the emittance growth
is small in the time scale of the retardation, i.e.〈
(τmax/ρ)(∂ρ/∂s)

〉 ∼ (τmax/σ)(dσ/ds) << 1, where
τmax = max(τs) and σ is the r.m.s. beam emittance. The
retardation of the explicit s-dependence of ρ(�q, s− τs) can
be expanded as

ρ(�q, s − τs) =
∑
n=0

1
n!

∂nρ(�q, s)
∂sn

(−τs)n (3)

Note that this expansion preserves the normalization con-
dition of ρ. The integral in Eq. (2) can then be calculated

through the expansion as

�FSR(�q, s) =
∑
n=0

�Fn(�q, s) (4)

where

�Fn =
1
n!

∞∫

−∞

�G1(�q, �q ′, τs)(−τs)n ∂nρ(�q ′, s)
∂sn

d�q ′ (5)

Note that the convergence of the expansion in Eq. (4) is
usually better than the expansion of the distribution in Eq.
(3) since the integration in Eq. (5) smoothes the time evolu-
tion of a numerically constructed distribution in a PIC sim-
ulation. If the time step in the simulation is small enough,
keeping the first-order term is sufficient, then

�FSR(�q, s) � �F0(�q, s) + �F1(�q, s) + O

(
τ2
max
σ

∂2σ

∂s2

)
(6)

where �F0 can be evaluated with the standard PIC method.
To evaluate �F1, one needs ∂ρ/∂s that could be obtained di-
rectly on the mesh with a numerical differentiation during a
PIC simulation. The direct calculation of ∂ρ/∂s, however,
requires a memorization of ρ for a couple of time steps in
the simulation and could be numerically unstable at some
mesh points if the time evolution of the numerically con-
structed distribution is not smooth enough. In fact, it is
not really necessary to calculate ∂ρ/∂s directly. Because
�G1(�q, �q ′, τs) does not depends on the momenta, ∂ρ/∂s in
Eq. (5) can be converted into the derivatives of the un-
perturbed Hamiltonian (Hamiltonian of the linear motion)
with respect to phase-space variables and can thus be ob-
tained in a closed form. For this purpose, we start with the
Liouville’s equation for the bunch particle distribution,

∂f

∂s
= −d�p

ds
· ∂f

∂�p
− d�q

ds
· ∂f

∂�q
(7)

In beam tracking, the Lorenz force from the synchrotron
radiation can be approximated as momentum kicks applied
on beam particles successively along the beam path. With
this kick approximation, the equation of motion is

d�q

ds
=

∂H0

∂�p

d�p

ds
= −∂H0

∂�q
+

∑
k

�KSR(�q, s) δ(s − sk) (8)

where H0 is the Hamiltonian for the motion without the
radiation field, �KSR is the kick of the radiation field �FSR,
and sk is the location of the radiation kick on the beam
path. With an ultra-relativistic beam, �FSR does not depend
on �p explicitly and the symplectic condition is preserved in
Eq. (8). Substituting Eq. (8) into Eq. (7) and integrating
over momenta on the both sides of Eq. (7) yields

∂ρ

∂s
= − ∂

∂�q
·
〈

∂H0

∂�p

〉
�p

(9)
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where 〈· · ·〉�p is the average over the beam in the mo-
mentum space. Since the Hamiltonians for other nonlin-
ear perturbations does not depend on the momenta nei-
ther, only the Hamiltonian of the linear motion is relevant
to ∂H0/∂�p and ∂ρ/∂s does not depend on nonlinear per-
turbations explicitly. With the unperturbed Hamiltonian
of a linear lattice for an ultra-relativistic beam, one has
〈∂H0/∂p1〉�p = 〈 p1 〉�p /βx , 〈∂H0/∂p2〉�p = 〈 p2 〉�p /βy ,

and 〈∂H0/∂p3〉�p = −[1 + β
1/2
x q1/R] ρ. Note that 〈 �p 〉�p =

0 if a bunch is symmetric in �p. With nonlinear perturba-
tions, a bunch usually cannot maintain such a mirror sym-
metry in each dimension of the momentum space and, in
general, 〈 �p 〉�p �= 0 even in the case that the bunch is ini-
tially symmetric. In the PIC simulation, 〈 �p 〉�p as functions
of �q can be constructed on the mesh using a similar compu-
tational procedure as that for ρ(�q, s). Substituting Eq. (9)
into �F1 in Eq. (5) and using integration by parts yields

�F1(�q, s) = −
3∑

i=1

∞∫

−∞

�Gi(�q, �q ′, τs)
〈

∂H0

∂pi

〉
�p

d�q ′ (10)

where

�Gi(�q, �q ′, τs) =

(
�G1 +

∂ �G1

∂τs

)
∂τs

∂q′i
+ τs

∂ �G1

∂q′i

Note that �G1 is a function of (�q, �q ′, τs) and τs is a function
of (�q, �q ′). The �q ′-dependence of τs can be solved from

τs = β0| �Xc(s) − �Xc(s − τs) + �x − �x1| (11)

either numerically during the tracking or approximately in
a closed form. The closed form of ∂τs/∂�q ′ can be obtained
by taking the derivative of both sides of Eq. (11) with re-
spect to �q ′. As the closed forms of �G1 and �Gi are available,
the quadratures for �F0 in Eq. (5) and �F1 in Eq. (10) can
be evaluated after ρ(�q, s) and 〈 �p 〉�p are constructed on the
mesh during a PIC simulation.

PIC METHOD FOR EVALUATING �FSR

In simulation, a particle bunch is represented by a large
number of macroparticles in phase space. The initial par-
ticle distribution can be any distribution but is usually
a Gaussian. During the tracking, the synchrotron radi-
ation field is calculated with a numerically constructed
self-consistent bunch particle distribution by using the PIC
method. In the traditional PIC simulation, the particle den-
sity ρ(�q, s) = 〈 1 〉�p is constructed on a mesh in configura-
tion space with the macroparticles by using a cloud-in-cell
technique [1]. Similarly, 〈 �p 〉�p as a function of �q is also

constructed on the mesh for the evaluation of �F1. For ex-
ample, in the case of a three-dimensional mesh that covers
the transverse and longitudinal configuration space, both
ρ(�q, s) and 〈 �p 〉�p on the mesh can be obtained by assigning
each macroparticle to its eight nearest mesh points based

on the weights of the macroparticle at the mesh points.
The contributions of a macroparticle to ρ(�q, s) or 〈 �p 〉�p at
a mesh point are simply the weight of the macroparticle at
that point or the weight multiplied by the momentum of
the macroparticle, respectively. After ρ(�q, s) and 〈 �p 〉�p at

all mesh points are known, �F0 and �F1 are first calculated at
all mesh points with numerical integrations of Eq. (5) with
n = 0 and Eq. (10). The radiation field is then interpolated
to positions of every macroparticles for beam tracking. One
advantage of the PIC calculation with a direct integration
of the field is the possibility to use a relatively small mesh.
Since usually almost all beam particles are inside a phase-
space region of three to four r.m.s. beam sizes, a mesh that
extends to six r.m.s. beam sizes and is dynamical adapted
to beam-size growth is usually larger enough for the PIC
simulation.

FINAL REMARKS
Because of the difficulty in treating the retardation nu-

merically, most simulation codes currently developed for
the CSR problem have adapted following approaches [2]:
(a) non-self-consistent (The radiation field is calculated
from a bunch distribution that is not perturbed by CSR.),
(b) direct tracking of a limited number of macroparti-
cles and the particle-radiation interaction is calculated with
particle-to-particle individually, and (c) solving the Vlasov-
Maxwell equation in phase space. For the approach (b),
the calculation of a collective interaction with particle-to-
particle individually has been known to be not reliable due
to a nonsmooth field. For the approach (c), the challenge
is how to solve the Vlasov-Maxwell equation with a rea-
sonable efficiency for the case of a long beam path such
as in a storage ring. The perturbative-PIC method provides
an order-by-order approach to examine the importance of
the retardation to the collective CSR effects, especially the
instabilities induced by CSR. One question we can pursuit
with this method is how important the retardation of the
high-order variation of a bunch distribution due to CSR.

It should be noted that our current approach of the
perturbative-PIC method neglects the effect of beam pipe
on the radiation field and, therefore, can only be applied to
the unshielded CSR problem. To check our perturbative-
PIC code, we have calculate the radiation field of a one-
dimensional Gaussian bunch (a line charge) and the result
is consistent with the analytic solution [3]. Due to a lim-
ited space here, our numerical result will be discussed else-
where in a full length paper.
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