First Observation of $\psi(3770) \rightarrow \gamma \chi_{c 1} \rightarrow \gamma \gamma J / \psi^{*}$

P. Rubin, ${ }^{1}$ C. Cawlfield, ${ }^{2}$ B. I. Eisenstein, ${ }^{2}$ G. D. Gollin, ${ }^{2}$ I. Karliner, ${ }^{2}$ D. Kim, ${ }^{2}$ N. Lowrey, ${ }^{2}$ P. Naik, ${ }^{2}$ C. Sedlack, ${ }^{2}$ M. Selen, ${ }^{2}$ E. J. White, ${ }^{2}$ J. Williams, ${ }^{2}$ J. Wiss, ${ }^{2}$
K. W. Edwards, ${ }^{3}$ D. Besson, ${ }^{4}$ T. K. Pedlar, ${ }^{5}$ D. Cronin-Hennessy, ${ }^{6}$ K. Y. Gao, ${ }^{6}$ D. T. Gong, ${ }^{6}$ J. Hietala, ${ }^{6}$ Y. Kubota, ${ }^{6}$ T. Klein, ${ }^{6}$ B. W. Lang, ${ }^{6}$ S. Z. Li, ${ }^{6}$ R. Poling, ${ }^{6}$ A. W. Scott, ${ }^{6}$ A. Smith, ${ }^{6}$ S. Dobbs, ${ }^{7}$ Z. Metreveli, ${ }^{7}$ K. K. Seth, ${ }^{7}$ A. Tomaradze, ${ }^{7}$ P. Zweber, ${ }^{7}$ J. Ernst, ${ }^{8}$ H. Severini, ${ }^{9}$ D. M. Asner, ${ }^{10}$ S. A. Dytman, ${ }^{10}$ W. Love, ${ }^{10}$
S. Mehrabyan, ${ }^{10}$ J. A. Mueller, ${ }^{10}$ V. Savinov, ${ }^{10}$ Z. Li, ${ }^{11}$ A. Lopez, ${ }^{11}$ H. Mendez, ${ }^{11}$ J. Ramirez, ${ }^{11}$ G. S. Huang, ${ }^{12}$ D. H. Miller, ${ }^{12}$ V. Pavlunin, ${ }^{12}$ B. Sanghi, ${ }^{12}$ I. P. J. Shipsey, ${ }^{12}$ G. S. Adams, ${ }^{13}$ M. Cravey, ${ }^{13}$ J. P. Cummings, ${ }^{13}$ I. Danko, ${ }^{13}$ J. Napolitano, ${ }^{13}$ Q. He, ${ }^{14}$
H. Muramatsu, ${ }^{14}$ C. S. Park, ${ }^{14}$ E. H. Thorndike, ${ }^{14}$ T. E. Coan, ${ }^{15}$ Y. S. Gao, ${ }^{15}$ F. Liu, ${ }^{15}$ M. Artuso, ${ }^{16}$ C. Boulahouache, ${ }^{16}$ S. Blusk, ${ }^{16}$ J. Butt, ${ }^{16}$ O. Dorjkhaidav, ${ }^{16}$ J. Li, ${ }^{16}$ N. Menaa, ${ }^{16}$ R. Mountain, ${ }^{16}$ R. Nandakumar, ${ }^{16}$ K. Randrianarivony, ${ }^{16}$ R. Redjimi,,16 R. Sia, ${ }^{16}$ T. Skwarnicki, ${ }^{16}$ S. Stone, ${ }^{16}$ J. C. Wang, ${ }^{16}$ K. Zhang, ${ }^{16}$ S. E. Csorna, ${ }^{17}$ G. Bonvicini, ${ }^{18}$ D. Cinabro, ${ }^{18}$ M. Dubrovin, ${ }^{18}$ R. A. Briere,,19 G. P. Chen, ${ }^{19}$ J. Chen,,${ }^{19}$ T. Ferguson, ${ }^{19}$ G. Tatishvili, ${ }^{19}$ H. Vogel, ${ }^{19}$ M. E. Watkins, ${ }^{19}$ J. L. Rosner, ${ }^{20}$ N. E. Adam, ${ }^{21}$ J. P. Alexander, ${ }^{21}$ K. Berkelman, ${ }^{21}$ D. G. Cassel, ${ }^{21}$ V. Crede, ${ }^{21}$ J. E. Duboscq, ${ }^{21}$ K. M. Ecklund, ${ }^{21}$ R. Ehrlich,,${ }^{21}$ L. Fields, ${ }^{21}$ R. S. Galik, ${ }^{21}$
L. Gibbons, ${ }^{21}$ B. Gittelman, ${ }^{21}$ R. Gray, ${ }^{21}$ S. W. Gray, ${ }^{21}$ D. L. Hartill, ${ }^{21}$ B. K. Heltsley, ${ }^{21}$ D. Hertz, ${ }^{21}$ C. D. Jones, ${ }^{21}$ J. Kandaswamy, ${ }^{21}$ D. L. Kreinick, ${ }^{21}$ V. E. Kuznetsov, ${ }^{21}$ H. Mahlke-Krüger, ${ }^{21}$ T. O. Meyer, ${ }^{21}$ P. U. E. Onyisi, ${ }^{21}$ J. R. Patterson, ${ }^{21}$ D. Peterson, ${ }^{21}$ E. A. Phillips, ${ }^{21}$ J. Pivarski, ${ }^{21}$ D. Riley, ${ }^{21}$ A. Ryd, ${ }^{21}$ A. J. Sadoff, ${ }^{21}$ H. Schwarthoff, ${ }^{21}$ X. Shi, ${ }^{21}$ M. R. Shepherd, ${ }^{21}$ S. Stroiney, ${ }^{21}$ W. M. Sun, ${ }^{21}$ D. Urner, ${ }^{21}$ T. Wilksen, ${ }^{21}$ K. M. Weaver, ${ }^{21}$ M. Weinberger, ${ }^{21}$ S. B. Athar, ${ }^{22}$ P. Avery, ${ }^{22}$ L. Breva-Newell, ${ }^{22}$ R. Patel, ${ }^{22}$ V. Potlia, ${ }^{22}$ H. Stoeck, ${ }^{22}$ and J. Yelton ${ }^{22}$
(CLEO Collaboration)
${ }^{1}$ George Mason University, Fairfax, Virginia 22030
${ }^{2}$ University of Illinois, Urbana-Champaign, Illinois 61801
${ }^{3}$ Carleton University, Ottawa, Ontario, Canada K1S 5B6 and the Institute of Particle Physics, Canada
${ }^{4}$ University of Kansas, Lawrence, Kansas 66045
${ }^{5}$ Luther College, Decorah, Iowa 52101
${ }^{6}$ University of Minnesota, Minneapolis, Minnesota 55455
${ }^{7}$ Northwestern University, Evanston, Illinois 60208
${ }^{8}$ State University of New York at Albany, Albany, New York 12222
${ }^{9}$ University of Oklahoma, Norman, Oklahoma 73019
${ }^{10}$ University of Pittsburgh, Pittsburgh, Pennsylvania 15260
${ }^{11}$ University of Puerto Rico, Mayaguez, Puerto Rico 00681
${ }^{12}$ Purdue University, West Lafayette, Indiana 47907
${ }^{13}$ Rensselaer Polytechnic Institute, Troy, New York 12180
${ }^{14}$ University of Rochester, Rochester, New York 14627
${ }^{15}$ Southern Methodist University, Dallas, Texas 75275
${ }^{16}$ Syracuse University, Syracuse, New York 13244
${ }^{17}$ Vanderbilt University, Nashville, Tennessee 37235

${ }^{18}$ Wayne State University, Detroit, Michigan 48202 ${ }^{19}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
${ }^{20}$ Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
${ }^{21}$ Cornell University, Ithaca, New York 14853
${ }^{22}$ University of Florida, Gainesville, Florida 32611
(Dated: June 22, 2005)

Abstract

We observe a highly significant signal for $\psi(3770) \rightarrow \gamma \chi_{c 1}$, detected in two-photon cascade to J / ψ, followed by $J / \psi \rightarrow l^{+} l^{-}$. We determine $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right) \times \mathcal{B}\left(\psi(3770) \rightarrow \gamma \chi_{c 1}\right)=$ $(21.1 \pm 3.9 \pm 2.4) \mathrm{pb}$. Combining this result with the measurement of $\sigma\left(e^{+} e^{-} \rightarrow D \bar{D}\right)$, we obtain $\mathcal{B}\left(\psi(3770) \rightarrow \gamma \chi_{c 1}\right)=(3.3 \pm 0.6 \pm 0.4) \times 10^{-3}$. We also set 90% C.L. upper limits for the transition to $\chi_{c 2}: \sigma \times \mathcal{B}<5.5 \mathrm{pb}$ and $\mathcal{B}<0.9 \times 10^{-3}$, respectively. All results are preliminary.

[^0]Transitions from $\psi(3770)$ to other charmonium states are interesting because they test models of $2^{3} S_{1}-1^{3} D_{1}$ mixing, and probe amplitudes for direct transitions from $1 D$ to $1 S$ or $1 P$ states. The latter have been of considerable interest since the discovery of the narrow $X(3872)$ state in $\pi^{+} \pi^{-}$transitions to $J / \psi(1 S)[1,2]$ and its possible interpretation as a $1^{3} D_{2}$ state, competing with the $D \bar{D}^{*}$ molecule hypothesis. Measurement of hadronic transitions between $\psi(3770)$ and $J / \psi(1 S)$ is a subject of a separate paper [3]. In this article, we present preliminary analysis of photon transitions between $\psi(3770)$ and $\chi_{c J}(1 P)$ states, followed by another photon transition to J / ψ, with J / ψ annihilating to $e^{+} e^{-}$or $\mu^{+} \mu^{-}$.

The data were acquired at a center-of-mass energy of 3773 MeV with the CLEOc detector [4] operating at the Cornell Electron Storage Ring (CESR), and correspond to an integrated luminosity of $281 \mathrm{pb}^{-1}$. The CLEOc detector features a solid angle coverage of 93% for charged and neutral particles. The cesium iodide (CsI) calorimeter attains photon energy resolutions of 2.2% at $E_{\gamma}=1 \mathrm{GeV}$ and 5% at 100 MeV . For the data presented here, the charged particle tracking system operates in a 1.0 T magnetic field along the beam axis and achieves a momentum resolution of 0.6% at $\mathrm{p}=1 \mathrm{GeV} / \mathrm{c}$.

We select events with exactly two photons and two oppositely charged leptons. The leptons must have momenta of at least 1.4 GeV . We distinguish between electrons and muons by their energy deposition in the calorimeter. Electrons must have a high ratio of energy observed in the calorimeter to the momentum measured in the tracking system $(E / p>0.7)$. Muons are identified as minimum ionizing particles, and required to leave $150-550 \mathrm{MeV}$ of energy in the calorimeter. Stricter lepton identification does not reduce background in the final sample, since all significant background sources contain leptons. Each photon must have at least 60 MeV of energy and must be detected in the barrel part of the calorimeter, where the energy resolution is best. The invariant mass of the two photons must be at least 3 standard deviations away from the nominal π^{0} or η mass. The total momentum of all photons and leptons in each event must be balanced to within 50 MeV . The invariant mass of the two leptons must be consistent with the J / ψ mass within $\pm 40 \mathrm{MeV}$. The measured recoil mass against two photons is required to be within -4 and +3 standard deviations from the J / ψ mass. The average resolution of the recoil mass is 16 MeV . To reduce Bhabha background in the dielectron sample we require an average of the cosine of the angle between the electron (positron) direction and the direction of the electron (positron) beam to be less than 0.5. The event selection efficiency is $30 \%(24 \%)$ for the $\chi_{c 1}\left(\chi_{c 2}\right)$ state for $\gamma \gamma \mu^{+} \mu^{-}$ events, and $18 \%(14 \%)$ for $\gamma \gamma e^{+} e^{-}$events, respectively.

After all selection cuts, we employ kinematic fitting of events to improve resolution on the photon energy. We constrain the total energy to twice the beam energy and total momentum to zero. We also impose a J / ψ mass constraint. These constraints improve energy resolution for the first transition photon by 20%.

The photon energy distribution for the less energetic photon in the event is plotted in Fig. 1. We fit this distribution with two Gaussian peaks representing the $\psi(3770) \rightarrow \gamma \chi_{c 1,2}$ signals on top of smooth background represented by a quadratic polynomial. The widths of the signal peaks are fixed to the values predicted by the Monte Carlo simulations ($\sigma_{E_{\gamma}}=8.1$ $\mathrm{MeV})$. Peak amplitudes and energy of the $\chi_{c 1}$ peak are free parameters in the fit. The energy of the $\chi_{c 2}$ peak is constrained to the latter minus the mass difference between these two states.

In addition to $e^{+} e^{-} \rightarrow \psi(3770), \psi(3770) \rightarrow \gamma \chi_{c 1,2}$, also $e^{+} e^{-} \rightarrow \gamma \psi(2 S), \psi(2 S) \rightarrow \gamma \chi_{c 1,2}$ can contribute to the observed peaks. The cross-section for the latter process peaks for small energies of the initial state radiation photon. Hence the produced $\psi(2 S)$ mass from

FIG. 1: Energy of the lower energy photon for the selected $e^{+} e^{-} \rightarrow \gamma \gamma J / \psi, J / \psi \rightarrow l^{+} l^{-}$events at the $\psi(3770)$ resonance. The solid line shows the fit. The dashed lines show the smooth background and the expected background peaks from radiatively produced tail of the $\psi(2 S)$ resonance (see the text). The latter saturates the $\chi_{c 2}$ contribution. The excess of data over the $\chi_{c 1}$ peak indicated with the dashed line represents the evidence for $\psi(3770) \rightarrow \gamma \chi_{c 1}$ transitions.
the high-mass tail of this resonance peaks at the center-of-mass energy. This makes the $\psi(2 S)$ background indistinguishable from the $\psi(3770)$ signal. We estimate the size of this background from the theoretical formulae [5], which fold in radiative flux, the Breit-Wigner shape of $\psi(2 S)$, the branching ratio for $\psi(2 S) \rightarrow \gamma \chi_{c 1,2} \rightarrow \gamma \gamma J / \psi \rightarrow \gamma \gamma l^{+} l^{-}[6]$ at the $\psi(2 S)$ peak and a phase-space factor rescaling the latter to the actually produced mass of $\psi(2 S)$ at its resonance tail. Estimation of the $\psi(2 S)$ background is discussed more fully in Ref. [3]. The phase-space factor is $\left(E_{\gamma} / E_{\gamma}^{\text {peak }}\right)^{3}[7]$, where E_{γ} and $E_{\gamma}^{\text {peak }}$ are the energies of the photon in $\psi(2 S) \rightarrow \gamma \chi_{c 1,2}$ transition at the $\psi(2 S)$ resonance tail and peak, respectively. The $\psi(2 S)$ resonance parameters in the Breit-Wigner formula are fixed to the world average values [8]. The effect of our selection cuts is to limit energy of the radiative photon in $e^{+} e^{-} \rightarrow \gamma \psi(2 S)$ to less than 50 MeV . Integrating the theoretical cross-section in this range, and multiplying it by the event selection efficiencies given previously, we estimate that the $\psi(2 S)$ background contributes 18.5 and 10.7 events to the $\chi_{c 1}$ and $\chi_{c 2}$ peaks, respectively. The systematic uncertainty in these estimates is 25%. We represent these background peaks in the fit to the energy spectrum (Fig. 1) by Gaussians with the same energy and widths as the signal peaks and the amplitudes fixed to the estimated number of events.

The fitted signal amplitudes are 64 ± 12 and 0_{-0}^{+7} events for $\chi_{c 1}$ and $\chi_{c 2}$, respectively. The statistical significance of the evidence for $\chi_{c 1}$ signal is 6.5 standard deviations as estimated from the change of the fit likelihood when this component is excluded in the fit. The fitted peak energy, $254.2 \pm 1.3 \mathrm{MeV}$ (statistical error only), is in good agreement with the value expected from the center-of-mass energy and the $\chi_{c 1}$ mass (253.6 MeV).

The systematic error in luminosity measurement is 1%. The systematic error in efficiency simulation is 4%. Variations in the fit range, order of the background polynomial, bin size and the signal width result in a variation of the $\chi_{c 1}$ signal yield by 5%, while the systematic uncertainty in the subtraction of the $\psi(2 S)$ background contributes 7%. To obtain an upper limit on $\chi_{c 2}$ transition rate, we combine statistical and systematic errors in quadrature. The results for $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right) \times \mathcal{B}\left(\psi(3770) \rightarrow \gamma \chi_{c J}\right)$ are $(21.1 \pm 3.9 \pm 2.4) \mathrm{pb}$ for $\chi_{c 1}$ and $<5.5 \mathrm{pb}$ (at 90% C.L.) for $\chi_{c 2}$. The branching ratios for $J / \psi \rightarrow l^{+} l^{-}$and $\chi_{c J} \rightarrow \gamma J / \psi$ used in the calculations of the results given above are taken from our own measurements [6].

Using $\sigma\left(e^{+} e^{-} \rightarrow \psi(3770)\right)=(6.4 \pm 0.2) \mathrm{nb}$, based on our recent measurement of $\sigma\left(e^{+} e^{-} \rightarrow\right.$ $D \bar{D})[9]$ and accommodating the measured non- $D \bar{D}$ decays of $\psi(3770)[6,10]$ (the latter are predicted to be less than 2% [11] of all decays), we obtain following branching ratio results: $\mathcal{B}\left(\psi(3770) \rightarrow \gamma \chi_{c 1}\right)=(3.3 \pm 0.6 \pm 0.4) \times 10^{-3}$ and $\mathcal{B}\left(\psi(3770) \rightarrow \gamma \chi_{c 2}\right)<0.9 \times 10^{-3}(90 \%$ C.L.).

We turn the branching ratio results to transition widths using $\Gamma_{\text {tot }}(\psi(3770))=(23.6 \pm 2.7)$ $\mathrm{MeV}[8]$. This leads to: $\Gamma\left(\psi(3770) \rightarrow \gamma \chi_{c J}\right)=(78 \pm 14 \pm 13) \mathrm{keV}$ for $\chi_{c 1}$ and $<20 \mathrm{keV}$ (90% C.L.) for $\chi_{c 2}$. These results agree well with most of the theoretical predictions[11-13] as shown in Table I.

Combining this measurement with our determination of the $\pi^{+} \pi^{-}$rate [3] we obtain $\Gamma\left(\psi(3770) \rightarrow \gamma \chi_{c 1}\right) / \Gamma\left(\psi(3770) \rightarrow \pi^{+} \pi^{-} J / \psi\right)=1.75 \pm 0.38 \pm \pm 0.21$. The transition widths measured for $\psi(3770)$, which is predominantly the $1^{3} D_{1}$ state, are theoretically related to the expected widths for the $1^{3} D_{2}$ state. The ratio above is expected to be a factor 2-3.5 larger for the $1^{3} D_{2}$ state with a mass of 3872 MeV than for the $\psi(3770)$ [12, 14, 15]. In view of the Belle's upper limit $\Gamma\left(X(3872) \rightarrow \gamma \chi_{c 1}\right) / \Gamma\left(X(3872) \rightarrow \pi^{+} \pi^{-} J / \psi\right)<0.9(90 \%$ C.L.) [1], the $1^{3} D_{2}$ interpretation of $X(3872)$ is strongly disfavored, which is also supported by other recent Belle's results[16].

All results presented here are preliminary.

TABLE I: Our measurements of the photon transitions widths (statistical and systematic errors have been added in quadrature) compared to theoretical predictions.

	$\Gamma\left(\psi(3770) \rightarrow \gamma \chi_{c J}\right)$ in keV	
	$J=2$	$J=1$
CLEO data	<20	78 ± 19
Rosner[11]	24 ± 4	73 ± 9
Eichten-Lane-Quigg[12]		
naive	3.2	183
with coupled-channels corrections	3.9	59
Barnes-Godfrey-Swanson[13]		
non-relativistic potential	4.9	125
relativistic potential	3.3	77

We gratefully acknowledge the effort of the CESR staff in providing us with excellent luminosity and running conditions. This work was supported by the National Science Foundation and the U.S. Department of Energy.
[1] Belle Collaboration, S. K. Choi et al., Phys. Rev. Lett. 91, 262001 (2003).
[2] CDF-II Collaboration, D. Acosta et al., Phys. Rev. Lett. 93, 072001 (2004); D0 Collaboration, V.M. Abazov et al., Phys. Rev. Lett. 93, 162002 (2004); BaBar Collaboration, B. Aubert et al., Phys. Rev. D71, 071103 (2005).
[3] CLEO Collaboration, T.K. Pedlar et al., "Observation of $\psi(3770) \rightarrow \pi \pi J / \psi$ and Measurement of $\Gamma_{e e}(\psi(2 S))$ ", CLEO-CONF $05-02$, Submitted to the XXII International Symposium on Lepton and Photon Interactions at High Energies, June 30-July 5, 2005, Uppsala, Sweden (LP 2005-440).
[4] CLEO Collaboration, Y. Kubota et al., Nucl. Instrum. Methods Phys. Res., A320, 66 (1992); D. Peterson et al., Nucl. Instrum. Methods Phys. Res., A478, 142 (2002); M. Artuso et al., Nucl. Instrum. Methods Phys. Res., A502, 91 (2003).
[5] J. Schwinger, Phys. Rev 76, 760 (1949); G. Bonneau and F. Martin, Nucl. Phys. B27, 381 (1971); E.A. Kuraev and V.S. Fadin, Sov. J. Nucl. Phys. 41, 466 (1985); J.P. Alexander et al., Nucl. Phys. B320, 45 (1989).
[6] CLEO Collaboration, Z. Li et al., arXiv:hep-ex/0503027 (to be published in Phys. Rev. D); N.E. Adam et al., Phys. Rev. Lett. 94, 232002 (2005).
[7] See e.g. Eq. (4.118) in N. Brambilla et al., arXiv:hep-ph/0412158.
[8] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[9] CLEO Collaboration, Q. He et al., arXiv:hep-ex/0504003.
[10] CLEO Collaboration, "Decay of the $\psi(3770)$ to Light Hadrons", CLEO-CONF 05-01, Submitted to the XXII International Symposium on Lepton and Photon Interactions at High Energies, June 30-July 5, 2005, Uppsala, Sweden (LP2005-439).
[11] J. L. Rosner, Phys. Rev. D64, 094002 (2001); J. L. Rosner, arXiv:hep-ph/0411003.
[12] E. J. Eichten, K. Lane and C. Quigg, Phys. Rev. D69, 094019 (2004).
[13] T. Barnes, S. Godfrey and E. S. Swanson, arXiv:hep-ph/0505002.
[14] E. J. Eichten, K. Lane and C. Quigg, Phys. Rev. Lett. 89, 162002 (2002).
[15] T. Barnes and S. Godfrey, Phys. Rev. D 69, 054008 (2004).
[16] Belle Collaboration, K. Abe et al., hep-ex/0505037 (2005); hep-ex/0505038 (2005).

[^0]: *Submitted to the XXII International Symposium on Lepton and Photon Interactions at High Energies, July 30-July 5, 2005, Uppsala, Sweden

