USAGE OF LIQUID METALS IN POSITRON PRODUCTION SYSTEM OF ILC

Alexander Mikhailichenko Cornell University, CLASSE, Ithaca, NY 14853

Presented at FRIB, Michigan State University, East Lansing, May 23, 2011

Abstract

The positron production system of ILC uses the hard undulator radiation (~20MeV) caring power up to 200 kW for irradiation of ~ $0.5X_0$ -thick target. We describe the target made of liquid Bismuth-Lead alloy in comparison with the spinning W or Ti target. For the focusing of positrons we suggested a compact lens where the Liquid Lithium used as a conductor and a coolant. Liquid Lithium (or Bi/Pb) alloy used as a coolant of Graphite in a gamma beam absorber. Some crucial elements of the system such as pumps, windows, nozzles, and dynamics of liquid Lithium flow in a lens are described also. Highly efficient positron collection system with liquid Lithium lens allows relaxed parameters of the undulator and target.

PLAN

1. HOW TO OBTAIN POSITRONS

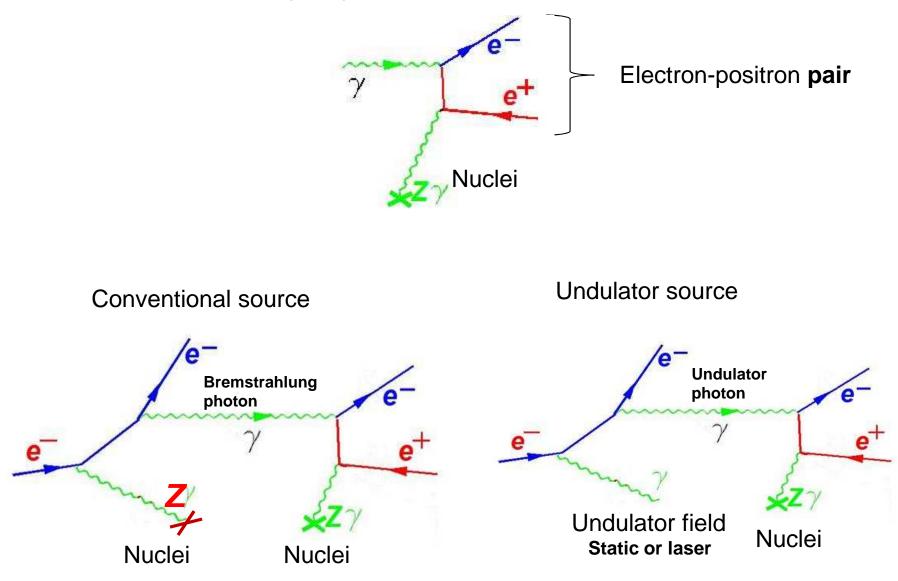
Conventional positron source. Undulator-based polarized-positron source Positron source for ILC

2. UNDULATOR

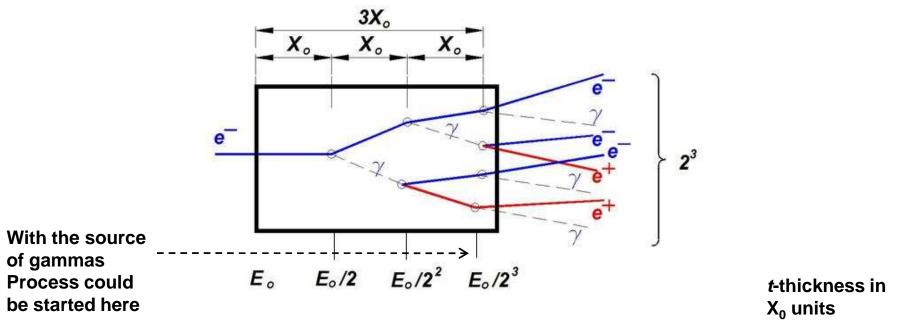
3. TARGET

W, Ti wheel target Liquid Lead/Bismuth target Cooling schemes

4. LITHIUM LENS


Design Lithium flow Pumps, etc

5. COLLIMATORS AND THE PHOTON DUMP


- 6. PRIMARY ACCELERATING STRUCTURE
- 7. EXPERIMENT E-166 AT SLAC
- 8. PERSPECTIVES
- 9. SUMMARY

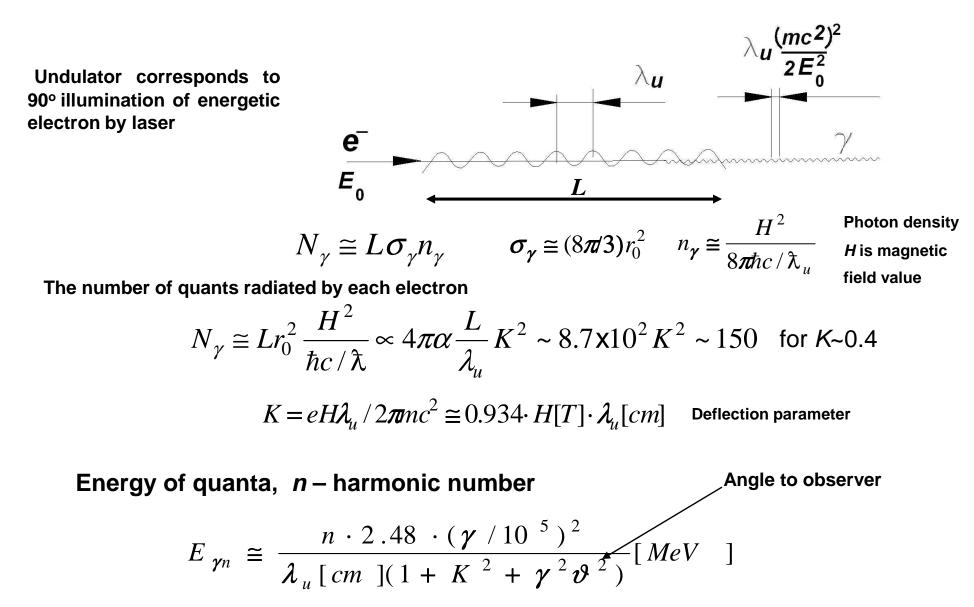
1. HOW TO OBTAIN POSITRONS

The only way to create a positron

CONVENTIONAL POSITRON SOURCE-CASCADE PROCESS

$$X_0^{-1} \cong 4r_0^2 \alpha \frac{N_0}{A} Z(Z+1) \ln(\frac{183}{Z^{1/3}}) [cm^2 / gramm] \quad \leftarrow \text{Radiation length}$$

Number of positrons ~ $N_{pos} \cong N_{\gamma} \cong N_e \cong N_{tot} / 3 = 2^t / 3$


The shower propagates until the energy of particles reaches $E_{crit} \cong 610/(Z+1.24)$ So the shower reaches its maximum at the depth $t_{max} \cong \ln(E_0/E_{crit})/\ln 2$ with the number of the particles there about $N_{max} \cong E_0/E_{crit}$

Transverse size of the cascade in maximum is of the order of Molière radius, $R_M \cong X_0 E_s / E_{crit}$ $E_s = \sqrt{4\pi / \alpha} \cdot mc^2 \cong 21.2 MeV$ —is a scale energy.

Effective thickness of target is
$$l \cong \frac{\langle xx' \rangle}{\langle x'^2 \rangle}$$
 ~1mm only

6

GAMMA SOURCE WITH UNDULATOR OR LASER

That is why undulator installed at ~150 GeV line, where E_{ymax} ~20 MeV

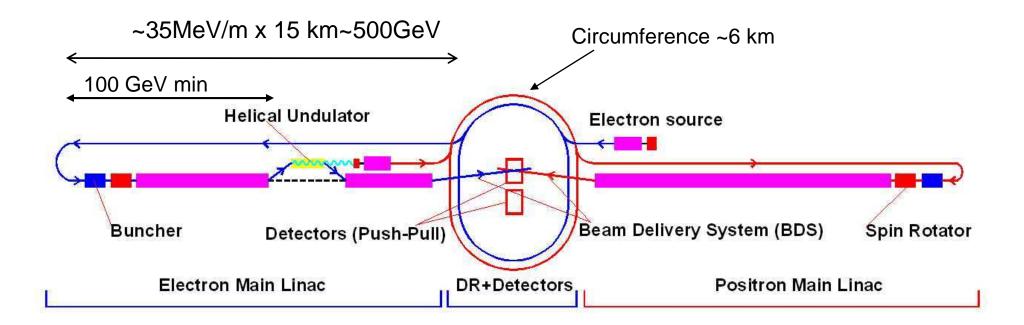
7

For the reference:

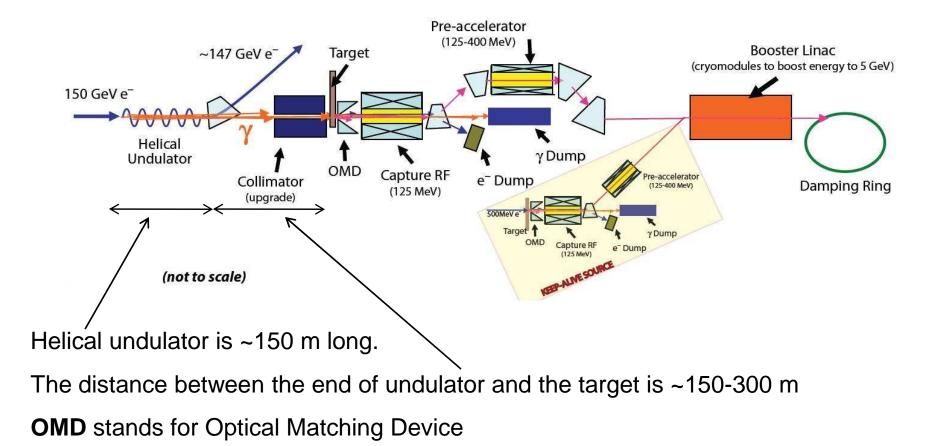
Total energy carried out by these photons~

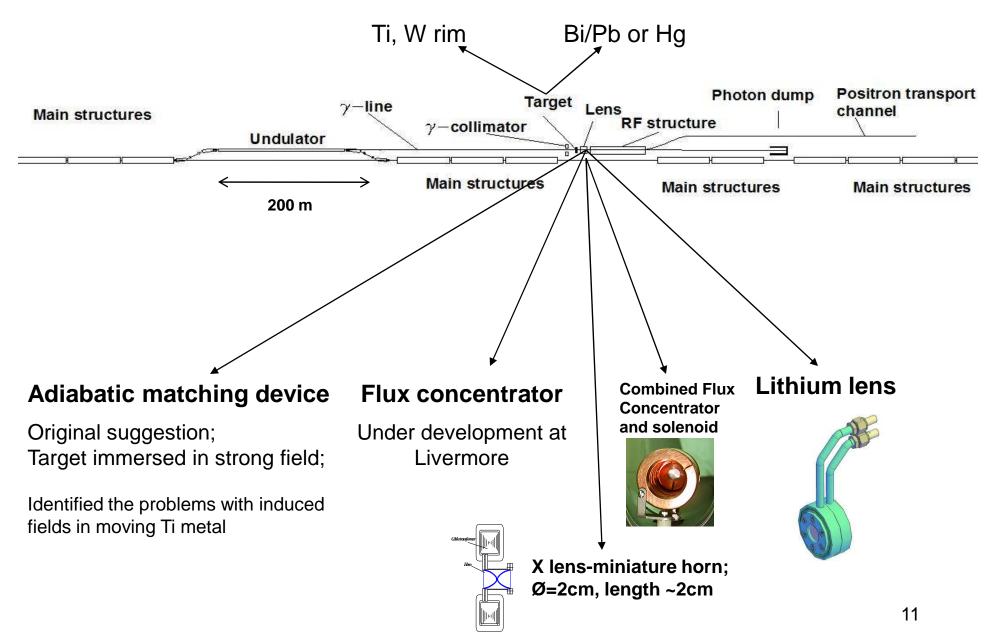
 $E = N_{\gamma}E_{\gamma} \cong 150 \times 20 MeV$

By all $2x10^{10}$ particles in a 2800 bunchs in 5 Hz (*K*=0.4)


 $E_{tot} = 150 \times 20 \times 10^{6} \times 2 \times 10^{10} \times 1.6 \times 10^{-19} \times 5 \times 2800 = 3 \times 2.8 \times 1.6 \times 5 \times 2800 = 135 \text{ kJ/sec}$

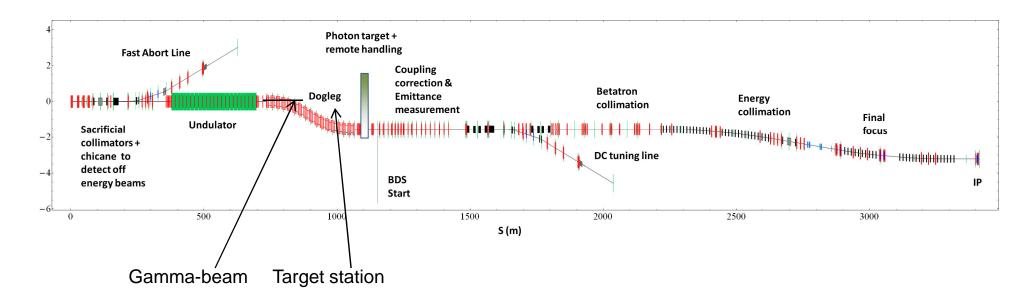
Only ~12% of photons interact with the target.

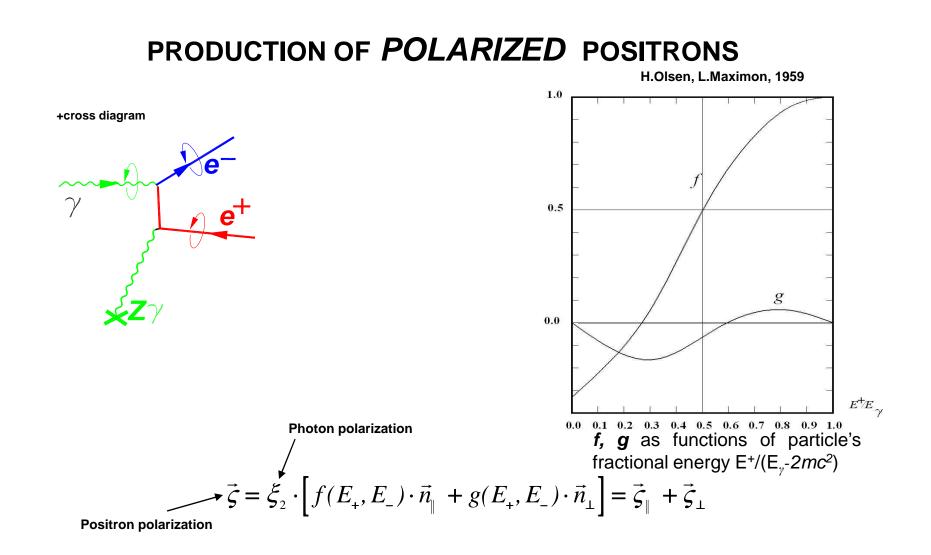

One can use the second target and combine the positrons in a damping ring. Rest amount should be dumped.


POSITRON SOURCE FOR ILC

The undulator scheme of positron production has been chosen as a baseline for ILC accommodated from TESLA design, originated for VLEPP (Novosibirsk, 1979)

Main advantage of this scheme is that it allows **POLARIZED** (>60%) positron production In principle, the positrons could be generated by positrons, so the linacs become independent Conversion system of ILC as it appears in ILC Reference Design Report, ILC-REPORT-2007-001, Vol.3, p.III-41



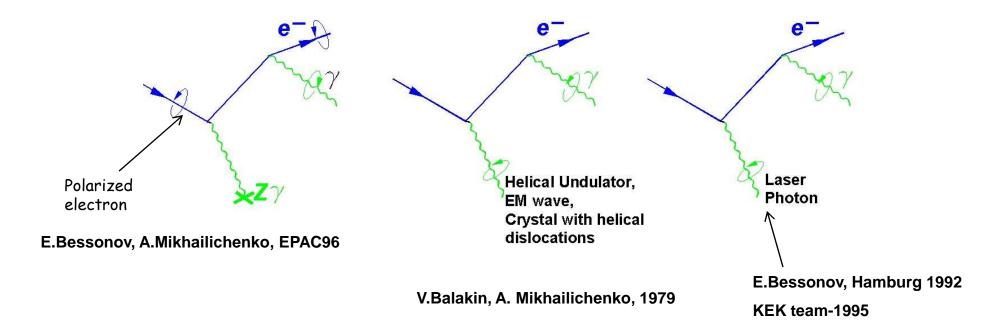

MORE DETAILED VIEW ON THE UNDULATOR POSITRON SOURCE

ONE AMONG LATEST LAYOUTS

Undulator located at the end of the linac

J.Jones, d.Angal-Kalinin, WEPP031, STFC (Science and Technology Facilities Council) Daresbury Laboratory, Proc of IPAC'10, Kyoto, Japann, 2010

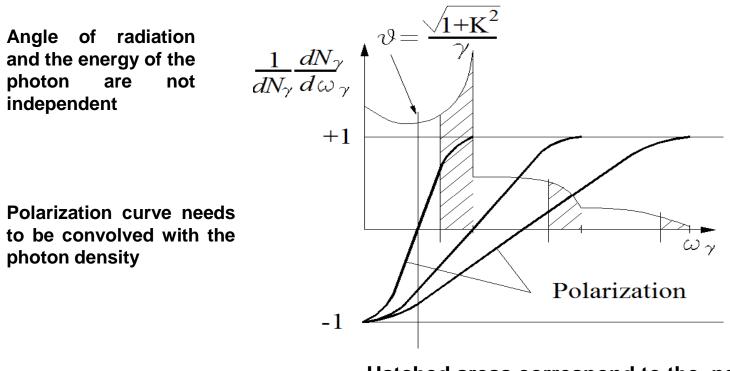
Polarization is a result of selection of positrons by theirs energy


Fragment from publication of Balakin-Mikhailichenko, Budker INP 79-85, Sept. 13, 1979.

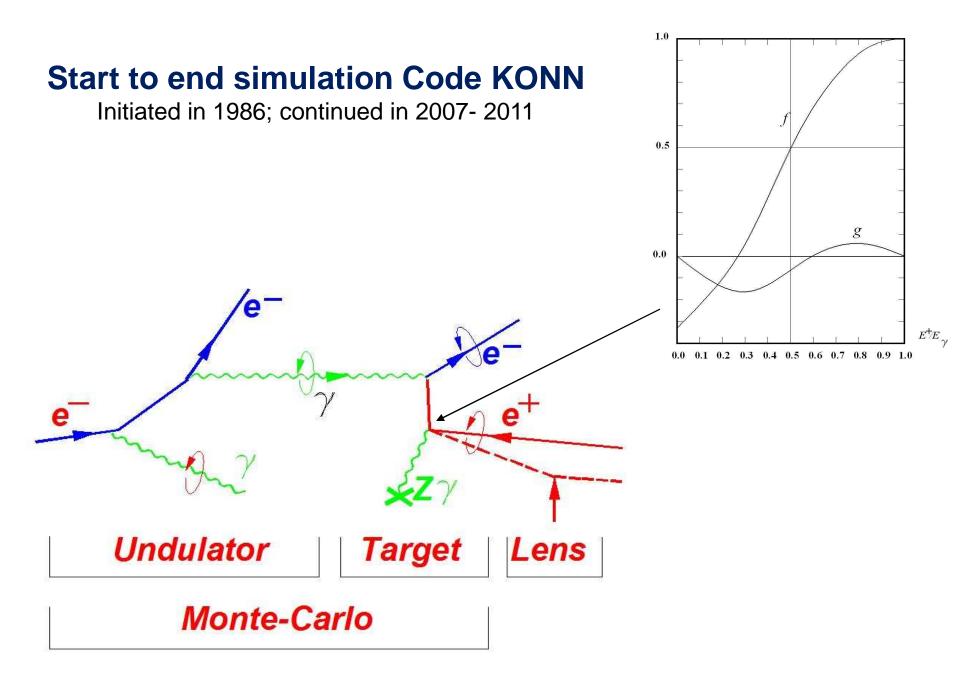
Circularly polarized photons are produced in helical fields of minimal period. Much more interesting is to obtain such fields with the help of the usual helical static fields and the electromagnetic waves. It may well be that the method of gamma production in helical crystals can be useful in future.

Scattering on the Laser radiation is the same process as the scattering on the electromagnetic wave.

PRODUCTION OF CIRCULARLY POLARIZED PHOTONS


Well known processes reviewed for practical utilization in a positron source

UNDULATOR SHOULD BE HELICAL


Spectral distribution and polarization schematics for Undulator Radiation

All higher harmonics have zero intensity in straight forward direction

Hatched areas correspond to the passage of radiation through the collimator

Collimator helps to enhance integrated photon polarization

PROGRAM KONN T.A.Vsevelezhskaya, A.A.Mikhallichenko

Monte-Carlo simulation of positron conversion

Energy of the beam; Length of undulator; Undulator period M=L/ λ_{u} ; K-factor; Emittance; Betu-function; Number of hormonics (four); Number of positrons to be generated;

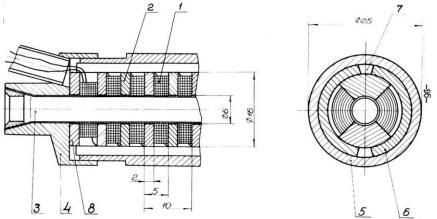
innananananananana.

CALCULATES at every stage: Efficiency in given phase volume; Polarization in given phase volume; Beam dimensions; Phase-space distributions; Beam lengthening; Energy spread within phase space; Target: Distance to the undulator Thickess; Diameter of target; Material; Diameter of hole at center; Step of calculation Acceleration: Distance to the lens; Length of structure; Gradient; Diameter of collimator at the entrance; Diameter of trices; External solenoidal field; Further phase volume captured;

Litium Lens: Distance to the target; Length; Diameter; Thicness of flanges; Material of flanges; Gradient; Step of calculations;

Interactive code, now is ~3000 lines

Resulting efficiency and polarization calculated with KONN


collimator
ð
nt of the radius
the
of
*readius of target is an equivalent of the radius of collimat
an e
get is
f tar
*readius o

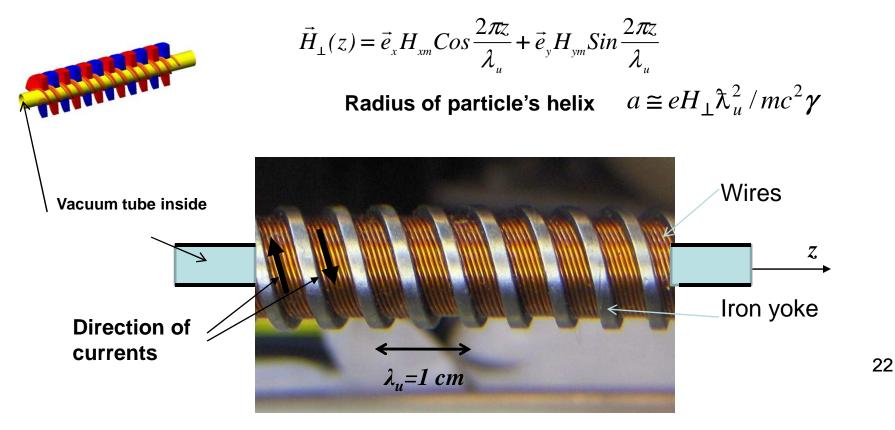
Beam energy, GeV	150	250	350	500
Length of undulator, <i>m</i>	170	200	200	200
K factor	0.44	0.44	0.35	0.28
Period of undulator, <i>cm</i>	1.0	1.0	1.0	1.0
Distance to the target, m	150	150	150	>150
Radius of target [*] , <i>cm</i>	0.049	0.03	0.02	0.02
Emittance, <i>cm</i> · <i>rad</i>	1e-9	1e-9	1e-9	1e-9
Bunch length, cm	0.05	0.05	0.05	0.05
Beta-function, m	400	400	400	400
Thickness of target $/X_0$	0.57	0.6	0.65	0.65
Distance to the length, cm	0.5	0.5	0.5	0.5
Radius of the lens, <i>cm</i>	0.7	0.7	0.7	0.7
Length of the lens, <i>cm</i>	0.5	0.5	0.5	0.5
Gradient, MG/cm	0.065	0.065	0.08	0.1
Wavelength of RF, <i>cm</i>	23.06	23.06	23.06	23.06
Phase shift of crest, rad	-0.29	-0.29	-0.29	-0.29
Distance to RF str., <i>cm</i>	2.0	2.0	2.0	2.0
Radius of RF collimator, cm	2.0	2.0	2.0	2.0
Length of RF str., <i>cm</i>	500	500	500	500
Gradient, MeV/cm	0.1	0.1	0.1	0.1
Longitudinal field, MG	0.015	0.015	0.015	0.015
Inner rad. of irises, <i>cm</i>	3.0	3.0	3.0	3.0
Acceptance, MeV·cm	5.0	5.0	5.0	5.0
Energy filter, $E > -MeV$	54	74	92	114
Energy filter, E< - <i>MeV</i>	110	222	222	222
Efficiency , e^+/e^-	1.5	1.8	1.5	1159
Polarization,%	70	80	75	70

2. UNDULATOR

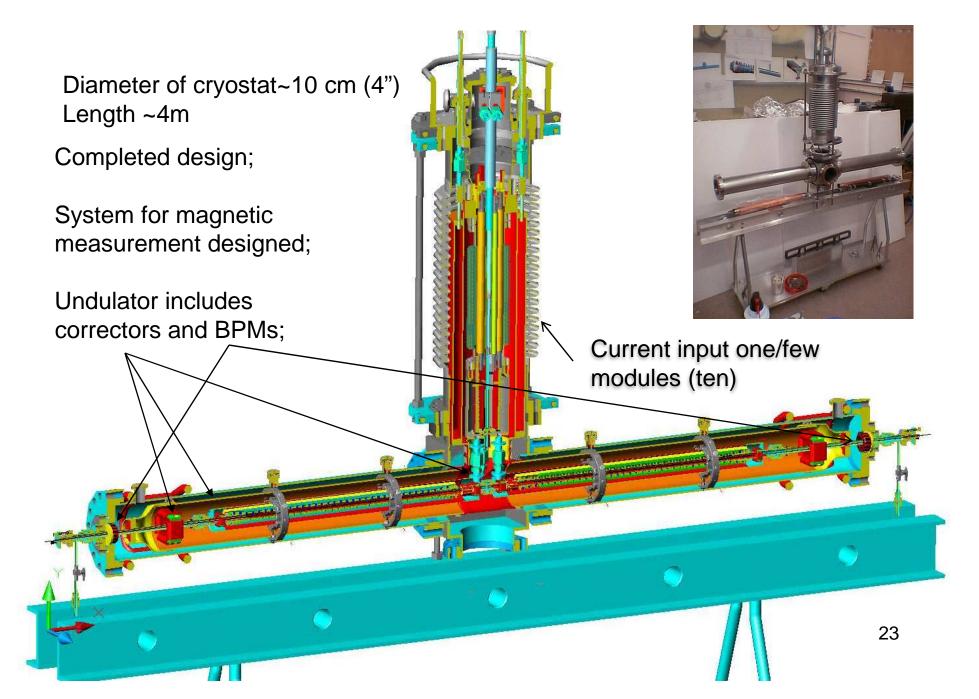
Historical remark: First SC undulator with period 10 mm was tested in 1986;

T.A.Vsevolozhskaya et al., "Helical Undulator for the Conversion System of the VLEPP Project", SLAC-TRANS-0225, 13th Int. Conf. on High-Energy Acc., Novosibirsk, 7-11 Aug, 1986.

1-windings, 2-iron yoke, 3-StSteel thin-wall tube, 4-end cup, 5-helium vessel, 6-Iron yoke, 7-groove for Helium.


Length of undulator ~30cm, K_{max} ~0.4 (required K=0.35), period 10mm

Undulator designed at Cornell

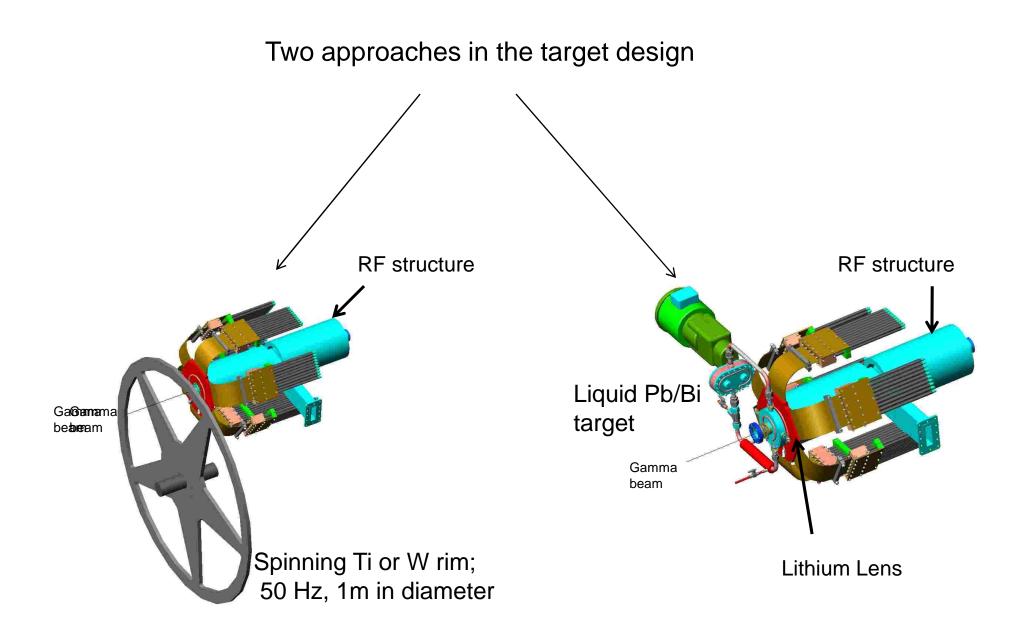


12 –mm period undulator core. Aperture available for the beam is 8 mm clear. Measured K~0.83 (Iron yoke removed)


Helical undulator is a device for generation magnetic field of a type

UNDULATOR DESIGN (CORNELL)

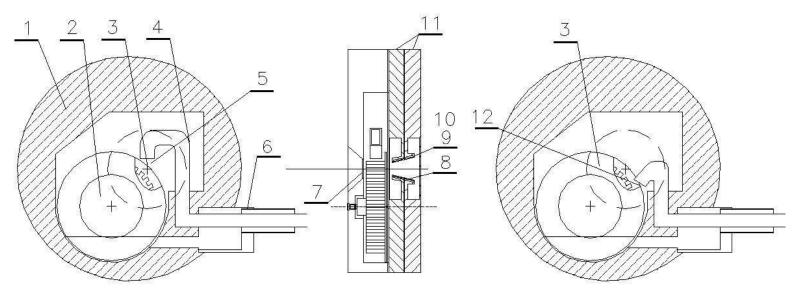
UNDULATOR DESIGN (UK)



Undulator period	11.5 mm		
Field on axis	0.86 T		
Peak field homogeneity	<1%		
Winding bore	>6 mm		
Undulator length	147m; 4 m-long sections		
Nominal current	215 A		
Winding concentricity	20 µm		
Winding tolerances	100 µm		
Straightness	100 µm		
NbTi wire Cu:SC ratio	0.9		
Winding block	9 layers x 7 wire ribbon		

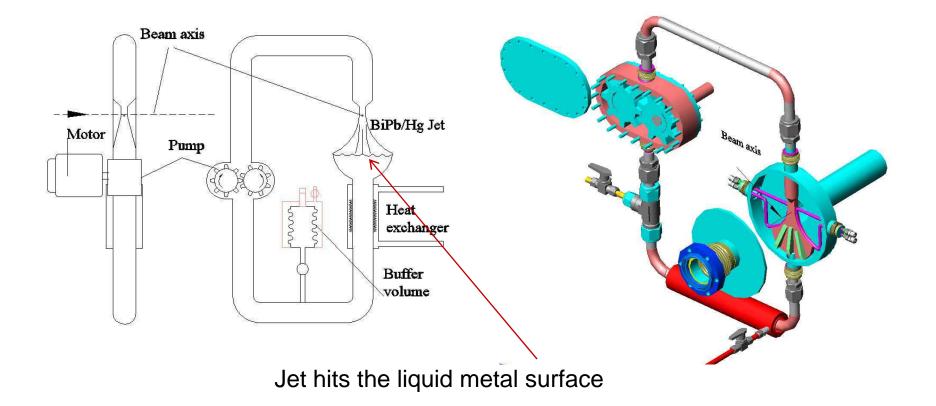
Ian Bailey, presentation at LCWS10 and ILC 10, Beijing, March 29, 2010

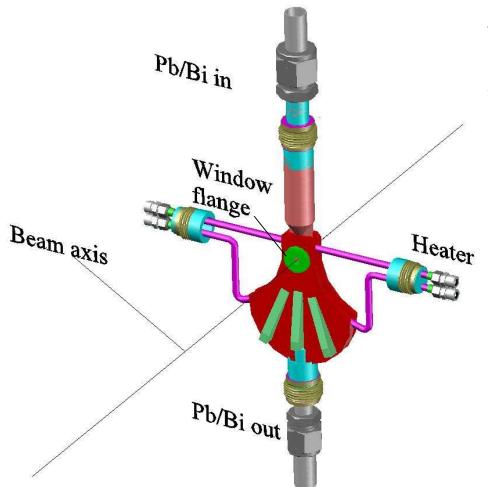
3. TARGET


A.Mikhailichenko, "Liquid Metal Target for ILC", EPAC06, MOPLS108, Edinburg, Schotland 2006, Proc., pp. 816-818.

Liquid Mercury target suggested for VLEPP, 1986 A.Mikhailichenko, PHD Thesis

Variant 1


Variant 2



Variant 1. 1-Titanium case, 2 is the teethed wheel, 3 is the target focusing point, 4 is the nozzle, 5 is the Mercury jet, 6 is the feeding tubes, 7 is secure Titanium foil, 8 is the conically shaped lens, 9 is the volume with liquid Lithium, 10 is Beryllium made flange, 11 are the current leads made from Titanium. Variant 2. 3 is the target focusing point, 12 is the nozzle.

Bunch population $N_e = 10^{12}$

Liquid metal target concept

The jet chamber could be made from Ti (Melt @1668°C) or Niobium (melt @ 2464°C)

Windows cooled by the metal jet itself.

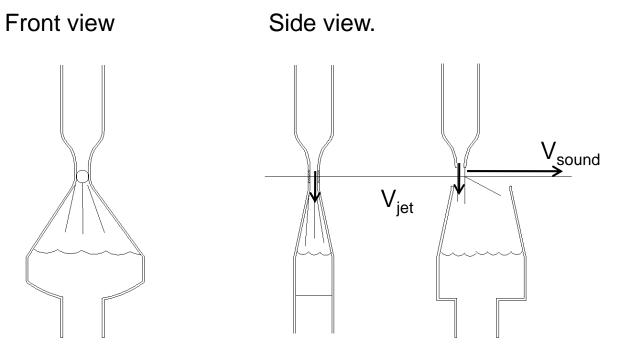
Material for windows: ⁴Be; ²²Ti;

Boron Nitride- BN (⁵B⁷N, sublimates @2700°C)

Boron Carbide (B4C) , melts @2350

Jet cross section is (width x thickness)= 1cmx0.24cm

Jet velocity~10m/s provides for 1 ms the distance ~1 cm


Hg can be used as well

Back window could be omitted; this requires differential pumping and cooled traps.

Careful design required in this case.

Temperature jump in *out*-window -150°C max after 1 ms train; front window not heated at all.

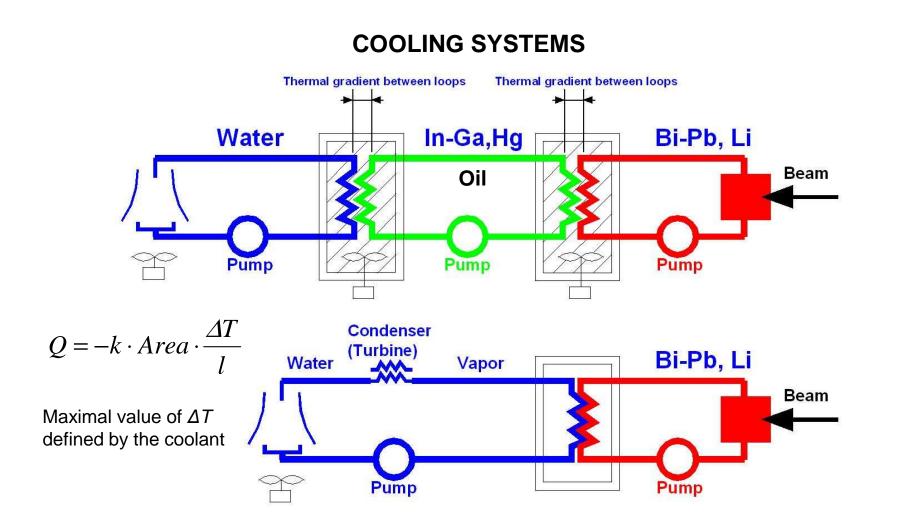
Windowless jet requires protective shield or distance

Droplets from the target have a speed of sound

Liquids used for the targeting and cooling

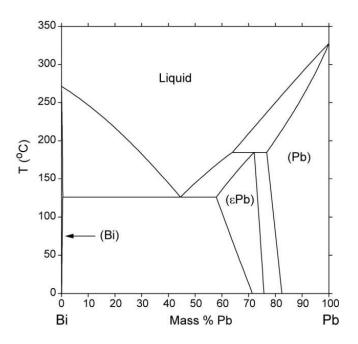
		H ₂ O	Lithium	Pb-Bi	Hg	Ga
				(55wt%/45wt%)		
ρ	g/cm ³	1.0	0.534	8.94	13.56	5.9
C _v	J/g/ºC	4.1813	3.58	0.197	0.1395	0.37
T _{melt} ,	°C	0	180.54	125.9	-38.83	29.76
T _{boil} ,	°C	100	1342	1670	357	2204
I _{Xo} ,	cm	36.08	152.1	0.709	0.48	2.11
Latent heat,	kJ/g	2.26	21.2	0.86(Pb)	0.294	3.6
Nucl.int.lengt	h, cm	83.3	133.6	17.6(Pb)	14.58	23.92
Ionization, Me	eV/cm	1.992	0.875	12.7(Pb)	15.31	8.1

Gallium has better performance with Indium.

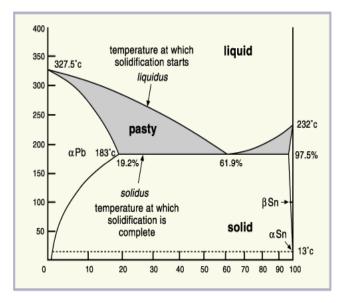

Gallium metal price is approaching 1000\$/kg, so the system containing 3L of Gallium will have a weight of Ga ~17.7kg and will cost ~18k\$, which is acceptable.

Addition of Indium with its ~750\$/kg will reduce the price, proportionally to percentage of Indium in the alloy. Savings are not drastic, however.

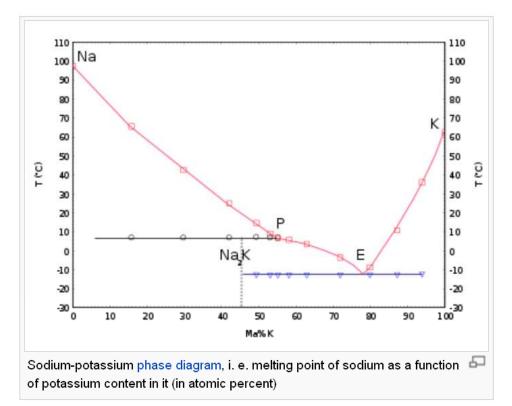
Lithium metal price ~\$64/kg is low at this scale.


Mercury metal trades at 700\$/34.5 kg; 34.5 kg represents so called flask=76 lb.

Na-K coolants in use for nuclear reactors, however extreme chemical activity makes usage of this coolant problematic in civil installations.


3-contour cooling system, at the top. 2-contour vapor cooling system at the bottom.

Bi-Pb alloy composed with 55.51Mass% of Bi and 44.49 Mass% of Pb has liquid phase at 125.9°C. Phase diagram of this alloy is rather branchy with different modifications of Pb sub-phases.


Pb- Sn diagram

Nuclear reactor cooling (Wikipedia)

Molten sodium is used as a coolant in some types of fast neutron reactors. It has a low neutron absorption cross section, which is required to achieve a high enough neutron flux, and has excellent thermal conductivity. Its high boiling point allows the reactor to operate at ambient pressure. However, using sodium poses certain challenges. The molten metal will readily burn in air and react violently with water, liberating explosive hydrogen. During reactor operation, a small amount of sodium-24 is formed as a result of neutron activation, making the coolant radioactive.

Sodium leaks and fires were a significant operational problem in the first large sodiumcooled fast reactors, causing extended shutdowns at the Monju Nuclear Power Plant and Beloyarsk Nuclear Power Plant.

Where reactors need to be frequently shut down, as is the case with some research reactors, the alloy of sodium and potassium called NaK is used. It melts at -11 °C, so cooling pipes will not freeze at room temperature. Extra precautions against coolant leaks need to be taken in case of NaK, because molten potassium will spontaneously catch fire when exposed to air. The phase diagram with potassium shows that the mixtures with potassium are liquid at room temperature in a wide concentration range. A compound Na₂K melts at 7 °C. The eutectic mixture with a potassium content of 77 % gives a melting point at -12.6 °C.^[22]

B.F.Gromov et al., "Use of Lead-Bismuth Coolant in Nuclear Reactors and Accelerator-Driven Systems", Nuclear Engineering and Design 173, (1997) 207-217.

LOSSES FOR DIFFERENT MATERIAL OF TARGET

If energy *Q* deposited in mass *m*, then the temperature rise is

$$\Delta T = \frac{Q}{mc_V},$$

where $\underline{c}_{\underline{k}}$ stands for the heat capacity. In its turn, for the $1 cm^2$ cross section

$$Q \cong l[cm] \times l[cm^{2}] \times 2[MeV/g/cm^{2}] \times \rho[g/cm^{3}].$$

For the gamma target, the length *l* is a fraction of radiation length, $l \cong \frac{1}{2}X_0 / \rho$,

$$Q \cong X_0 \times 1[MeV]$$

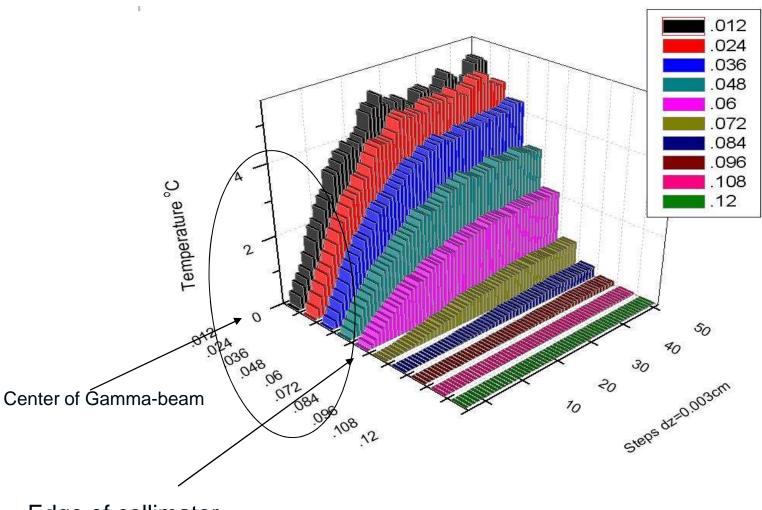
From the other hand

$$m = \rho \times \mathbf{l}[cm^2] \times \frac{X_0}{2\rho} = \frac{1}{2}X_0 \times \mathbf{l}[g],$$

so the temperature gain goes to be

$$\Delta T \cong \frac{2}{c_{V}[J/g/^{o}K]} \begin{bmatrix} {}^{o}K \end{bmatrix} \left(\cong \frac{2A}{25[Mol/g/^{o}K] \cong const : (D-P \ law)} \right)$$

For Ti $c_V=0.5 J/g/{}^{\circ}K$; for W $c_V=0.134 J/g/{}^{\circ}K$; for Pb $c_V=0.13 J/g/{}^{\circ}K$, So ratio of temperatures comes to


$$\Delta T_{Ti} : \Delta T_W : \Delta T_{Pb} \cong 1 : 3.7 : 3.8; \qquad (A_{Ti} : A_W : A_{Pb} \cong 47 : 183 : 207)$$

The ratio difference in temperature gain is not so drastic; however it is important if the temperature approaching the melting threshold.

Usage of heavier targets desirable from the point of lowering of focal depth (~10 times) needed to be serviced by capturing optics, however. Also, the positron production efficiency is higher for heavier materials. All together this gives ~50% higher yield for W compared with Ti.

THE TEMPERATURE ALONG THE **W** TARGET FOR DIFFERENT RADIUSES

per 1013 initial electrons; spinning target; KONN

Edge of collimator.

Each particle radiates 2.76 GeV in undulator

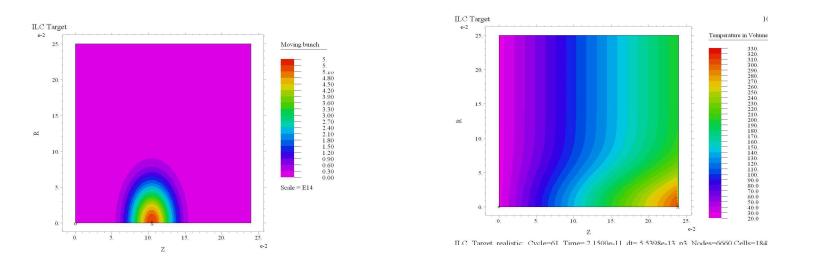
	DIST	RIBUTION (OF TEMPER	ATURE IN	TARGET TOR	,Z) DEG	PER 10^13	INITIAL	ELECTRONS	
Rim W target;		DELTA	AR = .	100 cm,	DELTA Z =	.003 cm				Coll ima
	R−►									
<i>R</i> =50 cm	.008	.005	.002 .030	.001	.000	. 000	.000	.000	.000	.000
	.300	.005 .113 .219 .317	.030	.004	.000	.000	. 000	.000	.000	.000
£_50 ∐→	.581 .840	-219	.051 .068	- 008	.000	.000	.000	.000	.000 .000	.000
<i>f</i> =50 Hz	1.106	.416	-068	.011 .010	.001 .001	. 000 . 000	. 000 . 000	. 000 . 000	.000	.000
	1.408	504	.083 .097 .113	.011	.001	.000	.000	.000	.000	.000
	1.654	.504	.113	.013	.001	.000	.000	.000	.000	.000
	1.858	.662	.122 .135 .143	.013	.001	.000	.000	.000	.000	.000
	2.060	.749	.135	.014	.001	. 000	. 000	. 000	. 000	.000
K=0.92	2.276	.816	.143	-013	.002	.000	.000	.000	.000	.000
	2.432 2.616	-886 -946 -997	.156	.014 .015	.002 .002	.000 .000	. 000 . 000	. 000 . 000	.000 .000	.000
	2.616	997	165	.015	.002	.000	.000	.000	.000	.000
Eff=1.6	2.874	1.051	.175 .181 .188 .203	.015	.001	.000	.000	.000	.000	.000
	3.001	1.051 1.118	.181	.016	.001	.000	.000	.000	.000	.000
	2 052	1.167	.188	.018	.001	.000	.000	.000	.000	.000
Effp=32%	3.240	1.220	.203	.019	. 001	. 000	. 000	. 000	. 000	.000
Lip=0270	3.322	1.276	-242	.018	.002	.000	.000	.000	.000	.000
	3.240 3.322 3.428 3.532 3.581	1.303 1.385 1.416	.213	.019	.001 .002	.000	.000	.000 .000	.000 .000	.000
Lund=35m	3.532	1.385	-221	.018 .018	.002	.000 .000	.000 .000	.000	- 000 - 000	.000
Lunu=35m	3.581	1 421	- 225	.018	- 001	.000	.000	.000	-000	.000
	3.732	1.410 1.431 1.483 1.479 1.511 1.534 1.562 1.590 1.643	.225 .227 .232	.018	.001 .002	.000	.000	.000	.000	.000
14Earra	3.807	1.479	.239	.019	.001	.000	.000	.000	.000	.000
λ =1.15cm	3.788	1.511	.249	.022	.002	. 000	.000	. 000	.000	.000
ŭ	3.845	1.534	-249 -246	.021	.002	.000	.000	.000	.000	.000
D' 000	3.901	1.562	-248	.020	.002	.000	. 000	. 000	.000	.000
Dis=300 m	3.984	1.590	.253	.021	.001	. 000	.000	.000	.000	.000
	3.966	1.643	.254	.020	.001	.000	.000	.000	.000	.000
/	4.029	1.636 1.699 1.712	-257 -260	.019 .019	.002 .001	.000 .000	.000 .000	. 000 . 000	.000 .000	.000
G=45kG/cm	4.131	1 712	.266	.021	.001	.000	.000	.000	.000	.000
	4.220	1.738	257	.021	.001	.000	.000	.000	.000	.000
	4.220 4.261	1.731	.257	.021	.001	.000	.000	.000	.000	.000
I=110kA	4.267 4.219	1.738 1.731 1.743	.268	.021	.001	.000	.000	.000	.000	.000
	4.219	1.748	270	.020	.001	. 000	. 000	.000	.000	.000
	4.278	1.748 1.750 1.769 1.773	.270 .274 .279	.024	.001	.000	. 000	.000	.000	.000
Rcoll=0.5cm	4.308	1.769	-274	- 022	.001 .001	- 000	.000	. 000 . 000	.000 .000	.000
RCOII=0.5CIII	4.278 4.308 4.334 4.315 4.342	1.773	-279	.021 .024	.001	. 000 . 000	.000 .000	.000	.000	.000
	4 342	1 924	279	.024	.001	.000	.000	.000	.000	.000
	4.307	1.808 1.824 1.830	.274 .275 .282	.024	.001	.000	.000	.000	.000	.000
	4.440	1.850	.277	025	.001	.000	.000	.000	.000	.000
	4.406	1.850	.277	.024	.001	. 000	.000	.000	.000	.000
	4.435	1.864	.275	.024	.001	.000	.000	.000	.000	.000
	4.421	1.865	.270	.024	.001	.000	.000	.000	.000	-000 37
	4.424	1.893	-277	.023	.001	.000	.000	.000	.000	. 616161
	4.394	1.912	.284	.022	.001	.000	.000	.000	.000	.000
	4.452	1.727	.276	.023	.001	.000	.000	.000	.000	.000

_		No	w the ta	arget is r	not spi	nning				
DIST	TRIBUTION	OF TEMPH	RATURE IN	TARGET TCR	Z) DEG	PER 10^13	INITIAL	ELECTRONS		
	DELT	AR =	.100 cm,	DELTA Z =	.003 cm				Со	llimator
R→►										
.178	.111	.052	.012	.001	.001	.000	.000	.000	.000	
6.306 12.211	2.380 4.606	.628 1.062	.076	.004	.001	.000 .000	.000 .000	.000 .000	. 000 . 000	
17.650	6.666	1.420	.233	.020	.001	.002	.000	.000	.000	
23.229	8.744	1.735	.215	.022	.001	.001	.000	.000	.000	
29.563	10.592	2.031	.237	.023	.000	.000	.000	.000	.000	
34.737	12.165	2.363	.272	.025	.001	.000	.000	.000	.000	
39.023	13.906	2.565	.268	.026	.001	.000	.000	.000	.000	
43.268	15.722	2.833	.297	.025	.000	.000	.000	.000	.000	
47.793	17.145	3.002	.270	.032	.000	.000	.000	.000	.000	
51.077	18.602	3.274	.302	.033	.000	.000	.000	.000	.000	
54.937 58.733	19.866 20.944	3.320	.311 .312	.042 .028	.000 .000	.000 .000	.000 .000	.000 .000	.000 .000	
60.357	22.063	3.681	.329	.025	.000	.000	.000	.000	.000	
63.027	23 468	3.808	.333	.029	.000	.000	.000	.000	.000	
64.106	23.468 24.499	3.939	.378	.030	.000	.000	.000	.000	.000	
68.045	25.610	4.259	.396	.025	.001	.000	.000	.000	.000	
69.764	26.800	4.235	.379	.032	.000	.000	.000	.000	.000	
71.979	27.366	4.476	.399	.026	.000	.000	.000	.000	.000	
74.173	29.083	4.638	.378	.038	.000	. 000	.000	.000	.000	
75.208	29.744	4.727	.378	-022	.001	.000	.000	.000	.000	
76.633 78.364	30.043 31.152	4.762 4.869 5.025	.397	.030	.000 .000	.000 .000	.000 .000	.000 .000	.000 .000	
79.947	31.063	5 025	.399	.031	.000	.000	.000	.000	.000	
79.545	31.740	5.219	.456	.038	.000	.000	.000	.000	.000	
80.736	32.216	5.176	448	.032	.000	.000	.000	.000	.000	
81.911	32.812	5.205	.423	. 033	.001	.000	.001	.000	.000	
83.666	33.400 34.506 34.365	5.312	.440	.029	.000	.000	.000	.000	.000	
83.296	34.506	5.341	. 428	.030	.001	.000	.000	.000	.000	
84.613	34.365	5.394	.392	.041	.000	.000	.000	.000	.000	
85.876	35.674 35.954	5.450	. 400	.030	.001	.000	.000	.000	.000	
86.751 88.622	35.954	5.579 5.402	.432	.027	.000 .000	.000 .000	.000	.000 .000	.000	
89.485	36.344	5.402	.434	.025	.000	.000	.000 .000	.000	.000 .000	
89.609	36.608	5.629 5.621	.433	.022	.000	.000	.000	.000	.000	
88.595	36.706	5.672	429	.030	.001	.000	.000	.000	.000	
89.832	36.755	5.675	. 494	. 026	.000	.000	.000	.000	.000	
90.468	37.159	5.675 5.757	.472	.029	.001	.000	.000	.000	.000	
91.011	37.239	5.867	.449	.026	.000	.000	.000	.000	.000	
90.623	37.963	5.753	.507	.022	.000	.000	.000	.000	.000	
91.176	38.300	5.777	.515 .494	.026	.001	.000	.000	.000	.000	
90.441	38.423	5.921	.494	.026	.000	.000	.000	.000	.000	
93.246 92.526	38.856 38.793	5.822 5.903	.534 .513	.028 .026	.000 .000	.000 .000	.000 .000	.000 .000	. 000 . 000	
93.128	39.141	5.767	496	.018	.001	.000	.000	.000	.000	
92.849	39.155	5.677	.496 .498	.025	.000	.000	.000	.000	.000	
92.913	39.756	5.822	. 493	.018	.000	.000	.000	.000	.000	38
92.267	40.144	5.969	.467	.017	.001	.000	.000	.000	.000	55
93.494	40.505	5.786	.490	.020	.000	.000	.001	.000	.000	

K=0.44; Eff=1.58; Effp=67%; Rcoll=0.06; Lamb=1cm;Lund=170m; 150 GeV Each particle radiates 1.07 GeV in undulator

and the second						and the second second		and days and the second second											
DIST	RIBUTION	OF TEMPE	RATURE IN	I TARGET T(R	,Z) DEG	PER 10^13	INITIAL	ELECTRONS		DIS	TRIBUTION	OF TEMPI	ERATURE IN	I TARGET T	(R,Z) DEG	PER 10^1	L3 INITIAL	ELECTRON	8
	DELT	AR =	.012 cm,	DELTA Z =	.003 cm						DEL	TAR =	.012 cm,	DELTA Z	= .003 cm				
R→►										R−►									
.000	.002 .276	.005 .205	.005 .168	.002 .110	.001 .003	.000 .000	.000 .002	.001 .000	.000 .000	.000	.366 46.252	.891 34.342	.766 28.174	.294 18.390	.231 .567	.000 .000	-000 -275 -000	.110	.000 .000
.630	.589	.400	.335	.208	. 009	.000	.000	.000	.000	105.617	98.783	67.078	56.238	34,923	1.450	- 000	.000	.000	.000
.804	.866	.643	.335 .526	.208 .347	.015 .023	.000	.000	.000	.000	134.738	145.274	107.852	88.149	58.141 73.655	2.573 3.934	.025	. 000	. 000	.050
.996	1.144	.844 1.092	.708 .853	.439 .550	.023 .041	.000 .000	.000 .000	.000 .000	.000 .000	166.932 226.272	191.743 219.360	141.460 183.026		73.655 92.135	3.934 6.916	.000 .000	.000 .070	.000 .000	.000 .000
1.756	1.601	1.381	1 003	.631	.059	.000	- 000	. 000	. 000	294.366	268.408	231.499		105.857	9.946	.000	.000	.000	.000
2.041	1.888	1.566	1.090 1.234	.631 .720 .826	.059 .083	.000	.000	.000	.000	342.125	316.534	262.530	182.721	120.720	13.948	.000 .231 .295	.000	. 000	.000
2.200 2.539	2.169 2.410	1.756	1.234	.826	.100 .131	.002 .004	.000 .000	.000 .000	.000	368.868	363.671 404.083	294.349 315.942	206.862 237.827	138.410 147.805	16.831	-295 -662	.000 .000	.000 .046	.000 .000
2.765	2.504	2.116	$\begin{array}{r} 1.418 \\ 1.522 \end{array}$.882 .970	.164	.006	. 000	.000	.000	463.673	419.850	354.846	255.157	162.570	22.008 27.548	1.023	.000	.000	.000
2.889	2.745	2.174	1.598	1.046	184	.011	.000	.000	.000	484.464	460.318	364.562	267.948	175.372	30.790	1.784	. 000	.000	.000
3.405 3.445	2.935	2.336 2.486	1.676	1.141 1.180	.215	.014 .019	.001 .003	.000 .000	.000 .000	570.879	492.064 508.118	391.750 416.767	280.971 290.663	191.264 197.778	36.087 37.072	2.275 3.208	.246	.000 .000	.000 .000
3.630	3.099	2.709	1.676 1.734 1.879	1.282	.215 .221 .255	.024	.003	.000	.000		519.617	454.206	314.976	214.973	42.696	4.064	.246 .565 .570 .131 .349	. 000	.000
3.804	3 366	2.830	2.012	1.255	- 1/14	.024 .036 .042	.001	.001	.000	637.811	564.410	474.500	337.353	210.375	50.997 52.550	6.041	.131	.123	. 000
3.820 3.997	3.389 3.618	2.844 2.998	2.121 2.189	1.300	.313	.042 .060	.002 .005	.001 .001	.000	640.545 670.182	568.291 606.625	476.761 502.650	355.608 367.037	218.024 235.150	52.550 52.199	7.114	.349	.242	.000 .000
3.872	3.878	3.013	2.248	1.475	.331	.075	- 008	.001	.001	649.275	650.198	505.209		247.331	55.479	12.514	1.405	.182	.105
4.001	4.074	3.173	2.340	1.531	363	.075	.012	.000	.001	670.760	683.094	532.002	392.349	256.708	60.871	12.514 11.425	2.056 2.675	.182 .054	.000
4.115 4.245	4.137 4.110	3.271 3.366	2.485 2.621	1.543 1.583	.398	.076 .078	.016	.001 .003	.000 .000	689.872 711.817	693.557 689.077	548.392 564.338		258.708 265.416	66.692 75.893	12.724 13.020	2.675 4.029	.251	.000 .000
4.678	4.128	3.461	2.563	1.694	.481	.086	.023	.005	.000	784.330	692.138	580.342	429.650	284.009	80.706	14.401	3 933	.506 .756 1.119	.000
4.814	4.149	3.584	2.633	1.698	.398 .453 .481 .524	.097	.018	.007	.000	807.120	695.661	600.961	441.406	284.761	87.820	16.322	3.081	1.119	aaa
4.803 5.067	4.301	3.690 3.619	2.614 2.682	1.685 1.803	.543 .547	.117 .138	.026 .026	.006 .007	.000 .001	805.369 849.548	721.066 771.024	618.735 606.704		282.589 302.273	91.042 91.773	19.697 23.204	4.382 4.288	1.046	.000
4.838	4.599 4.644	3.660	2.743	1.800	.569	.141	.039	.005	.003	811.220	778.575	613.700		301.816	95.389	23.658	6.522	.875	.000 .221 .459 .502 .727
4.777	4.696	3.764	2.846	1.845	-586	.141 .164 .174 .209	.045	.008	.003	800.987	787.428	631.179	477.260	309.269	98.307	27.423 29.215 35.071	6.522 7.545 7.787 8.403	.875 1.324 1.658	.502
4.601 4.773	4.571 4.570	3.884 3.850	2.951 2.987	1.909 1.909	.586	.174	.046 .050	.010	.004	771.494 800.309	766.389	651.142 645.544		320.040 320.038	98.310 98.435	29.215	7.787	1.658	.727 .715
4.615	4.601	3.955	2.980	1.953	.589	.199	.048	.017	.006	773.733	771.435	663.186		327.486	98.805	33 397	8.063	2.785	.939
4.778 4.536	4.607	3.991	3.097	1.988	.620	.199 .206	.060	.023	.006 .005 .008	801.143	772.357	669.241	519.308	333.390	103.875	34.529	8.063 10.058	3.871	.858
4.536	4.546	4.049 3.976	3.020 3.130	1.992	.649	.197 .216 .210	.071 .072	.022 .021	.008	760.605	762.134 787.192	678.826		333.931 325.880	108.824	33.058 36.224	11.834 12.129	3.699 3.596	1.287
4.549	4.695 4.763 4.773	3.918	3.164	2.030	.660 .673 .699	.210	.075 .089	.025 .027	.009	762.684	798.661	656.898		340.428	112.829	35.192	12.593	4.199	1.521
4.406	4.773	3.948	3.052	2.070	.699	2214	.089	.027	. 008	738.784	800.192	661.873	511.769	347.102	117.257	36.807	14.967	4.447	1.385
4.793	4.688	3.979 3.949	3.063 3.037	2.068 2.084	.706	.237	082	.026 .033	.009 .008	803.648 804.455	786.068	667.198		346.693 349.473	118.341 119.208	39.750 40.148	13.728 14.402	4.368 5.610	1.527
4.798 4.836	4.726 4.790	4.093	3.101	2.086	.711	.245	.086 .096	.038	.011	810.827	803.191	686.244		349.774	125.541	41.145	16.020	6.394	1.836
4.715	4.577 4.692	4.049	3.134	2.072	.750 .749 .787	.237 .239 .245 .252 .286	.093	.037	.009	790.541	767.371	678.829	525.540	347.476	125.695	42.285	15.628	6.230 5.715	1.579
4.563 4.610	4.692	4.043	3.169 3.145	2.004 2.051	-749	.286	.097	.034 .037	.013	765.124 772.885	786.768 813.800	677.815 683.430	531.287 527.345	335.965 343.876	125.630 132.009	48.003	16.346 17.887	5.715 6.214	2.203 2.796
4.703	4.731	4.053	3.276	2.035	.765	.277	.117	.044	.011	788.617	793.229	679.595	549,286	341.152	128.322	46.447	19.619	7.306	1.768
4.918	4.692	4.151	3.213 3.223	2.095	.765 .777 .809	.282	.130	.043	.012	824.523	786.624	695.988	538.730	351.329	130.290	47.276	21.816	7.198	1.981
5.080 4.997	4.635 4.797	4.091 4.176	3.223	$2.105 \\ 2.117$.807 798	.307	.135	.043 .041	.015	851.787 837.876	777.160 804.250	685.842 700.175		352.949	135.594	51.520 54.654	22.700 23.493	7.206	2.435 2.825
4.898	4.821 4.969	4.066 4.171	3.165	2.101	.798 .792 .762	.326 .296 .319	.133	.046	.015 .017 .021 .021	821.201	808.332	681.701	530.736	352.325	132.775	49.629	22.237	7.706	3.438
4.679	4.969	4.171	3.156	2.094	.762	.319	.117 .130 .135 .140 .133 .132	.053	.021	784.468	833.114	699.302	529.240	351.133	127.829	53.541	22.193	8.837	3.468
4.523 4.538	5.009	4.138 4.185	3.187	$2.137 \\ 2.138$.782 .764	.319 .316	.123 .131 .142	.063 .064	.020	758.353 760.916	839.836 804.293	693.726 701.618		358.301 358.503	131.182 128.069	53.518 53.013	20.638 21.894	10.598 10.654	3.311 4.053
4.531	4.797 5.012	4.166	3.277 3.228	2.116	.781	.319	.142	.062	.024 .022	759.666	840.416	698.492		354.832	130.926	53.415	23.809	10.373	3.694
4.705	4.771	4.190	3.206	2.133	.786	.308	.146	.058	023	788.896	799.929	702.600	537.479	357.705	131.744	51.558	24.539	9.651 9.896	3.926
5.104 5.189	4.749	4.259 4.317	3.182 3.128	2.099 2.129	.788	.312 .313	.134 .134	.059 .063	024	855.792 869.960	796.170	714.141 723.870	533.448 524.532	351.962 356.965	132.154 137.057	52.366 52.398	22.490	9.896 10.522	3.961 3.891
5.185	4.620	4.330	3.140	2.153	.825	.303	.138	.057	.024 .023 .028 .029	869.400	774.687	725.933		361.019	138.362	50.765	23.213	9.591	4.755
5.079	4.663	4.286	3.128	2.091	.823	.322	.134	.061	.029					350.632		53.952	22.394	10.235	4.802

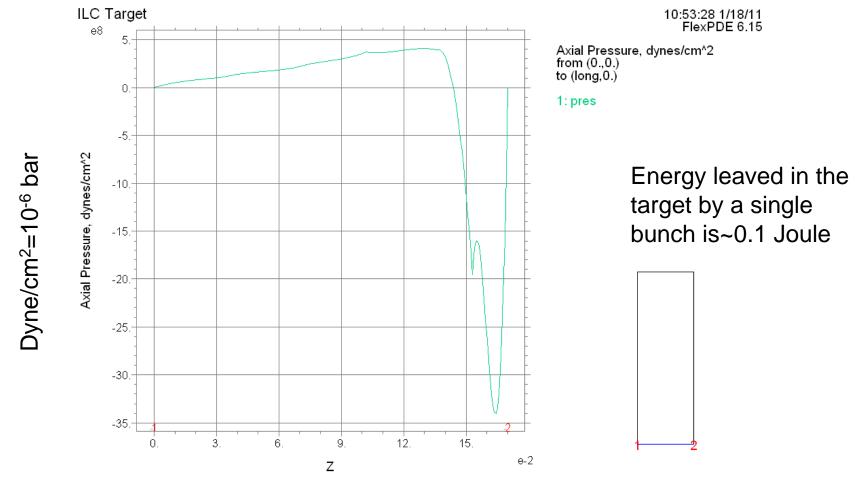
Moving target


Stationary target

We used FlePDE code also for calculation of temperature and pressure with equations;

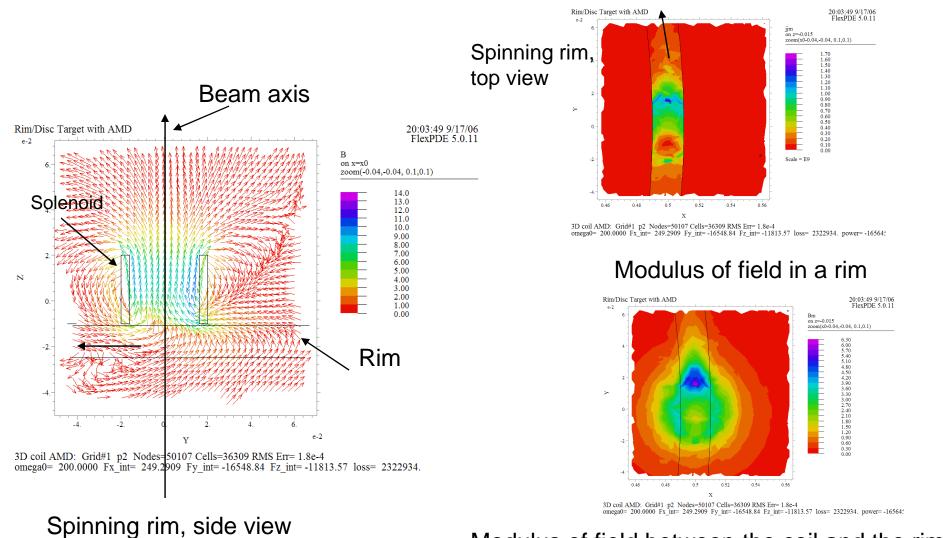
Temperature $\nabla(k\nabla T) + \dot{Q} = \rho c_V \dot{T}$ $\ddot{P} - \nabla(c_0^2 \nabla P) = \frac{\Gamma}{V_0} \ddot{Q}$ Pressure $\dot{Q} = \sum_i \frac{2cQ_{bunch}}{\pi\sqrt{\pi}\sigma_z \sigma_{\perp\gamma}^2 l_T} \frac{z}{l_T} \exp\left(-\frac{(z+z_0-c(t-i\cdot t_0))^2}{\sigma_z^2}\right) \cdot \exp\left(-\frac{r^2}{\sigma_{\perp\gamma}^2}\right)$

 $\Gamma(V) = V / c_V (\partial P / \partial T_V)$ characterizing the ratio of the thermal pressure to the specific


thermal energy called Grüneisen coefficient.

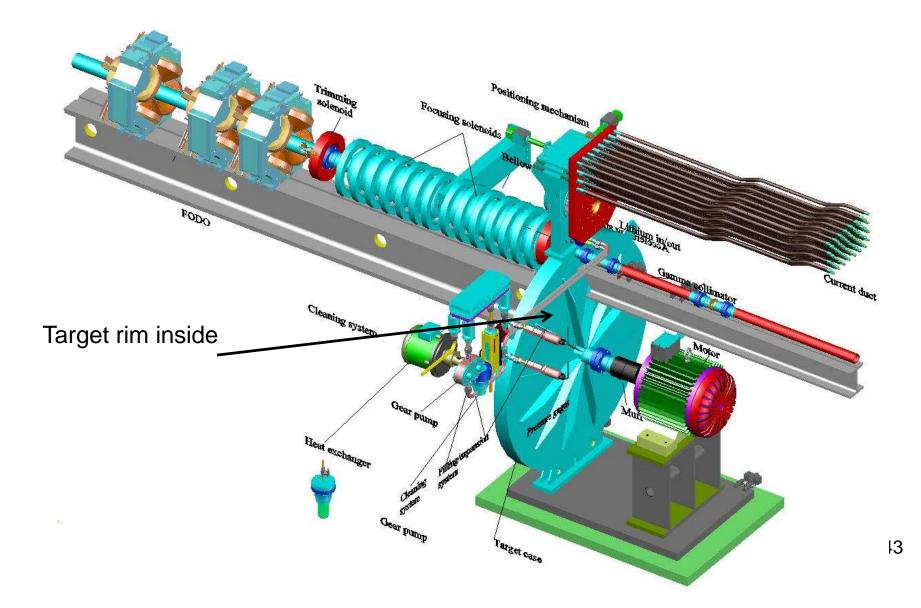
Instant position of the bunch moving in the target, at the left. Isotherms right after the bunch passage, at the right.

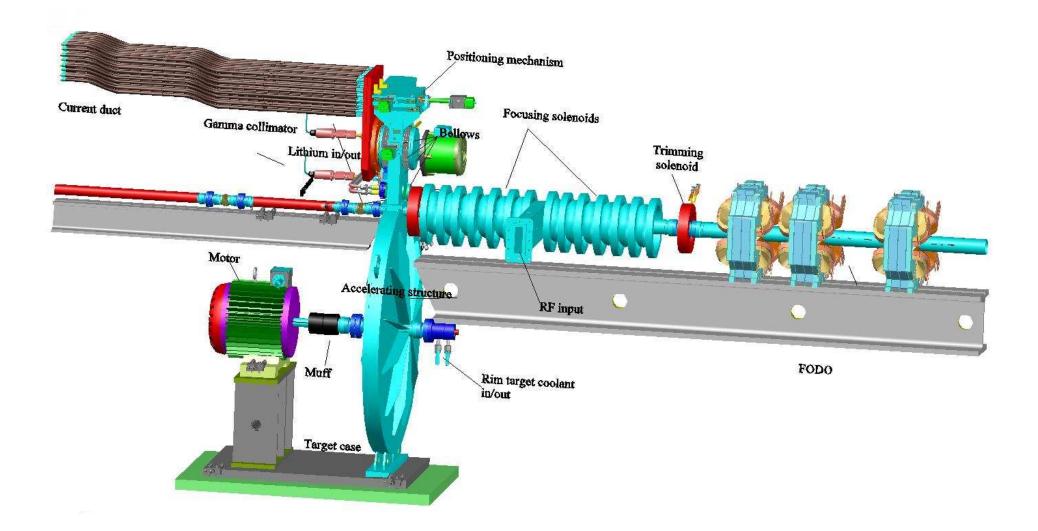
The negative pressure phenomenon confirmed here: after the bunch passed at the exit side the substantial negative pressure developed.


This effect is a general one and might be important for the targets made from Carbon.

ILC_Target_with _pressure: Cycle=10264 Time= 1.0000e-10 dt= 8.6496e-15 P3 Nodes=1500 Cells=394 RMS Err= ! sigmar= 0.250000 sigmaz= 0.050000 Surf_Integral= -9.271943

Pressure along the target; beam passed from the left to the right 0.1 ns ago 41


IT WAS FOUND, THAT MOVING METAL PERTURBS MAGNETIC FIELD OF OMD

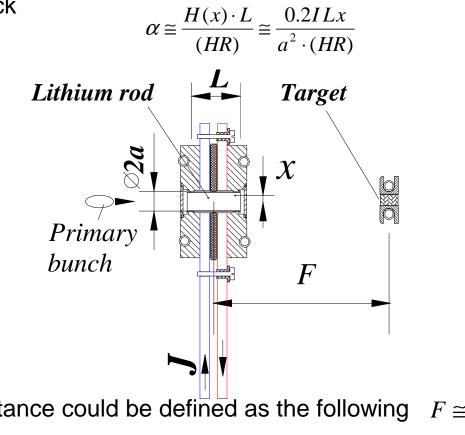

Modulus of field between the coil and the rim

Lithium lens has no stray fields

Target station. Spinning rim, Lithium lens.

View from the other side

4. LITHIUM LENS

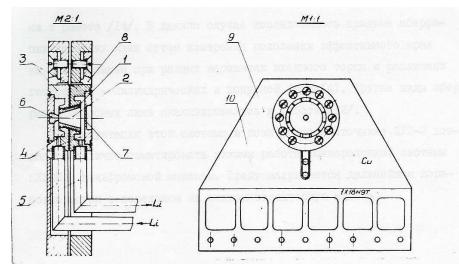

A.Mikhailichenko," Lithium Lens (I)", CBN -09-4, Aug 2009, 17pp. <u>http://www.lepp.cornell.edu/public/CBN/2009/CBN09-4/CBN%2009-04.pdf</u> A.Mikhailichenko," Lithium Lens (II)", CBN -10-3, Aug 2010, 37pp <u>http://www.lepp.cornell.edu/public/CBN/2010/CBN10-3/CBN%2010-03.pdf</u>

LITHIUM LENS BASICS

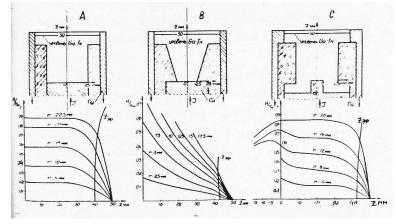
If steady current *I* runs through the round conductor having radius *a*, its azimuthal magnetic field inside the rod could be described as

$$H_{\vartheta}(r) = \frac{0.4\pi lr}{2\pi a^2}$$

where magnetic field is measured in *Gs*, *a*–in *cm*, *I* –in Amperes. Current density comes to $j_s = I/\pi a^2$. A particle, passed through the rod, will get the transverse kick H(x): L = 0.2ILx

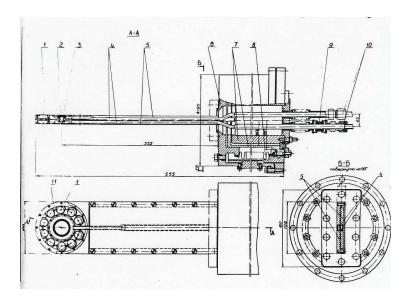


This picture drawn for the focusing of electron beam to the target

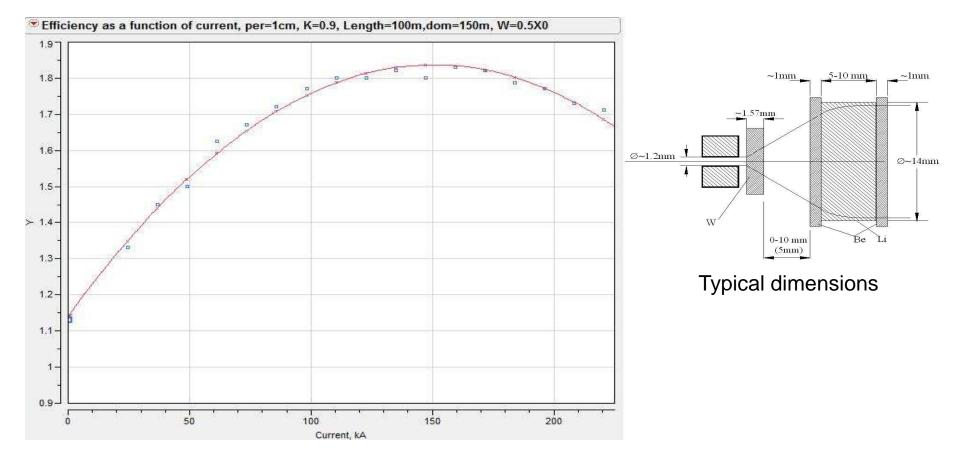

46

So the focal distance could be defined as the following $F \cong \frac{a^2 \cdot (HR)}{0.2IL} \sim 1cm$

T.A.Vsevolojskaja, A.A.Mikhailichenko, **G.I.Silvestrov**, A.D.Cherniakin, "To the Conversion System for Generation of Polarized Beams in VLEPP", BINP Internal Report, 1986



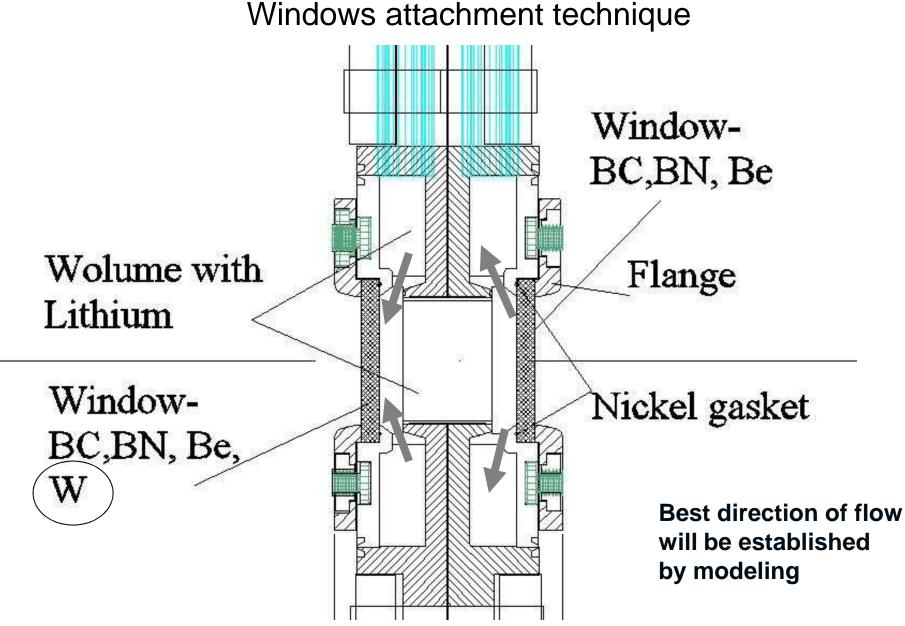
1-conic lens body; 2- working volume; 3- lens case; 4- buffer volumes; 5- feeding tubes for liquid Li; 6- target; 7- exit flange; 8- conic contacts; 9- flat current leads; 10- slots for heat flow reduction.


Field measured in liquid Gallium model.

- A-cylindrical lens with homogenous current leads supply at the end
- B- conical lens with the same current feed
- C –lens with cylindrical target at the entrance flange

1-ex-centric contact pushers;2-conic lens body; 3-W target; 4-Ti tubing for LI supply; 5-flat current leads; 6-vacuum chamber; 7-coaxial fraction of current leads; 8-bellows; 9-ceramic insulators; 10-conical gasket; 11-set of ex-centric pushers.

First of all, how important is the lens for the collection business?

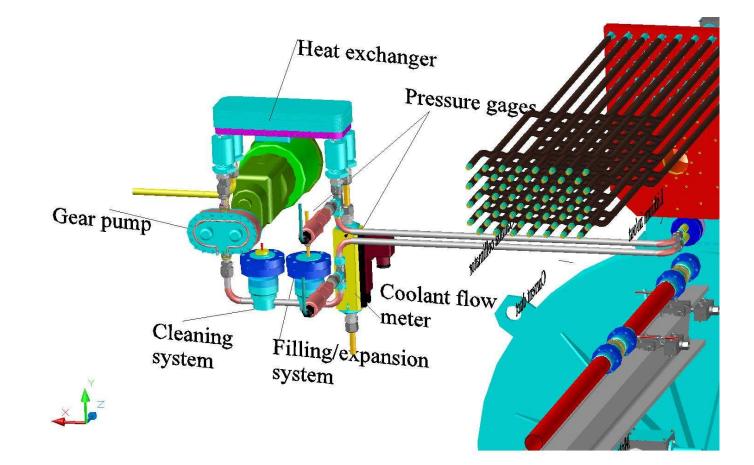

Efficiency of positron production normalized to the primary electron as function of feeding current in a lens. K=0.9, 100m long undulator, lens is 0.5 cm-long, ϵ `6MeV-cm.

One can see that LL potentially adds ~70% of positrons. But even without lens the efficiency is more than one already.

4 3 2 \bigcirc 95mm Classic collets contacts 2.54 cm

Lens with liquid Lithium for ILC design

Lithium Lens for ILC positron source; extended flanges serve for electrical contact. 1–volume with Lithium, 2–window (Be/BC/BN), 3–electrical contacts with caverns for Li, 4–tubing for Lithium in/out. At the center- the latest design. 49

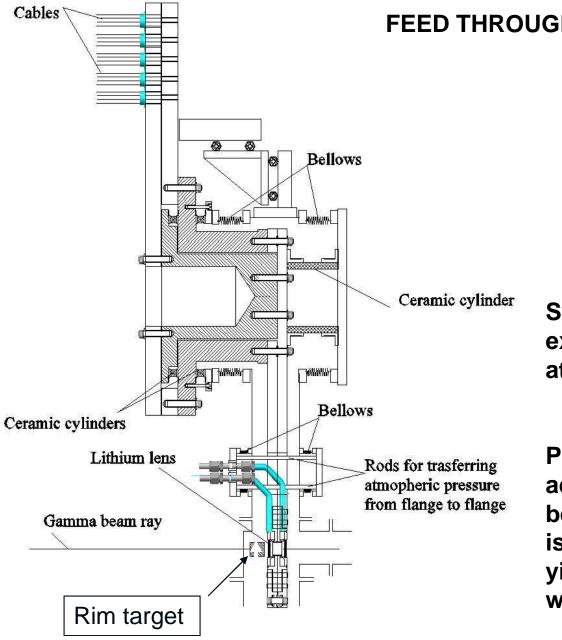


		Ta	able 1: prope	rties of Li ¹ , E	se, BC, BN,	W
	Units	Li	Be	BN	B ₄ C	W
Atomic number, Z	194	3	4	5/7	5/6	74
Yong modulus	<u>GPa</u>	4.9	287	350-400	450	400
Density, <i>p</i>	[g/cm ³]	0.533	1.846	3.487	2.52	19.254
Specific resistance	Ohm-cm	1.44 x10 ⁻⁵	1.9 x10 ⁻⁵	>1014	7.14 x10 ⁻³	5.5 x10-6
Length of Xo, <u>IXo</u>	ст	152.1	34.739	27.026	19.88	0.35
Boil temperature	<u>°C</u>	1347	2469	<u>Sublim</u> . at melt	3500	5660
Melt temperature	<u>°C</u>	180.54	1287	2973	2350	3410
Compressibility	cm ² /kg	8.7 x10 ⁻⁶	9.27 x10 ⁻⁷			2.93 x10
Grüneisen coeff.	1					2.4
Speed of sound (long)	m/sec	6000	12890	16400	14920	5460
Specific heat	J/g°K	3.6	1.82	1.47	0.95	0.134
Heat conductivity	W/cm/°C	0.848	2	7.4	0.3-0.4	1.67
Thermal expansion	1/°C	4.6x10 ⁻⁶	11×10-6	2.7x10 ⁻⁶	5x10 ⁻⁶	4.3x10 ⁻⁶

Table 1: properties of Li¹, Be, BC, BN, W

¹ Total mass of Lithium in ~ 70 kg human body is ~ 7 mg.

Lithium loop

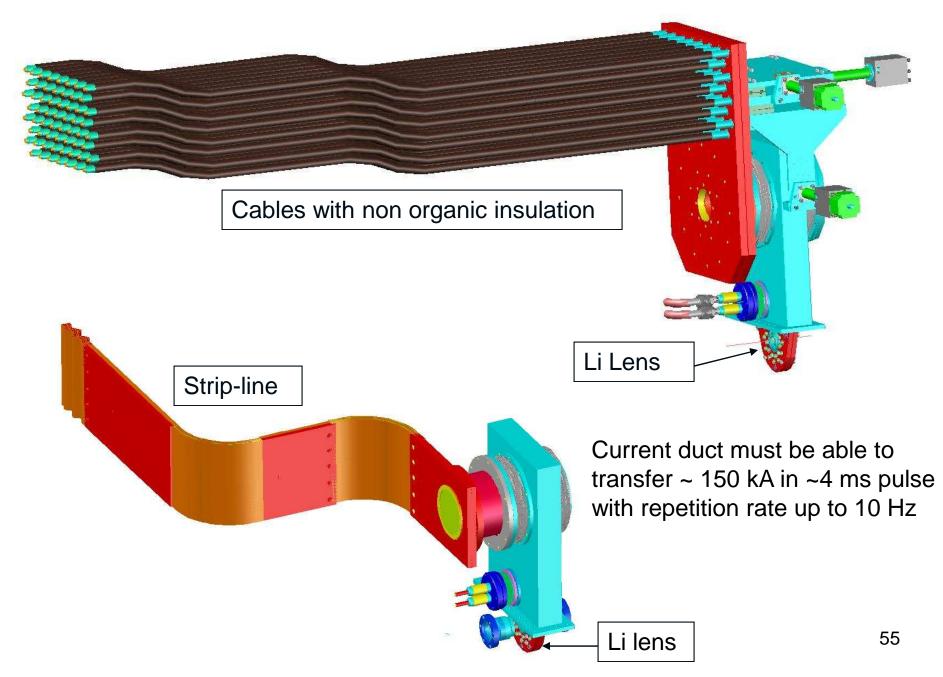


Gear pump with Zirconium ceramic gears and case is desirable for elimination of back current flow along the cooling loop 52

Temperature in lens

K=0.92; λ=1.15; Eff=1.6; Effp=32%; Undulator length=35m; Distance to target=300m

	DJ	STRIBUTION	I OF TEMPER	RATURE IN	LENS T(R,	Z) DEG F	'ER 10^13	INITIAL	ELECTRONS	
	Ĕ	ELTA R =	.070 cm,	DELTA Z	= .050 c	m, PHOTO	INS GENERA	TED =	76991	
Be entr.	39.39 €	23.757	16.011	11.015	6.154	3.953	2.325	1.351	.861	.275
	38.128	22.818	15.563	10.848	6.569	4.287	2.792	1.669	1.254	.433
		, a avaa	or 219721		21 (512)(21	11 INS	ar arcsa:	86701		1010121
	15.000	9.208	6.263	4.499	2.633	1.745	1.173	.689	.425	.162
	14.017	8.512	6.076	4.383	2.648	1.802	1.217	.795	.492	.197
	13.356	7.904	5.805	4.219	2.664	1.849	1.276	.875	.568	.198
	12.685	7.414	5.488	4.143	2.651	1.842	1.333	.948	.609	.205
Li	12.128	6.922	5.273	4.042	2.591	1.882	1.314	.968	.652	.221
	11.566	6.518	5.049	3.814	2.604	1.856	1.315	.959	.663	.221
	11.103	6.203	4.873	3.616	2.603	1.802	1.297	.904	.709	.213
	10.400	6.081	4.592	3.504	2.588	1.751	1.305	.913	.663	.226
	9.889	5.853	4.370	3.399	2.467	1.774	1.240	.915	.659	.224
	9.733	5.852	4.353	3.523	2.629	1.944	1.376	1.030	.738	.238
Be exit	19.89	12.03	9.07	6.89	4.98	3.58	2.46	1.72	1.25	-40
De exil	20.17	12.17	9.15	6.93	5.04	3.76	2.65	1.84	1.42	. 48



FEED THROUGH IN DETAIL

System with two bellows excludes net force from atmospheric pressure;

Positioning system serves for adjustment the distance between target and lens –what is required by optimization of yield/heating for the entrance window

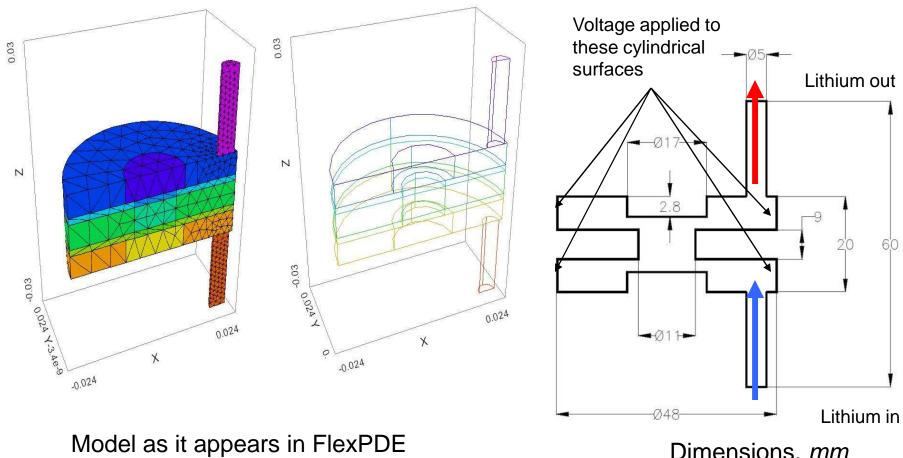
Variants of current duct

EQUATIONS FOR MODELING WITH FlexPDE

Electromagnetics

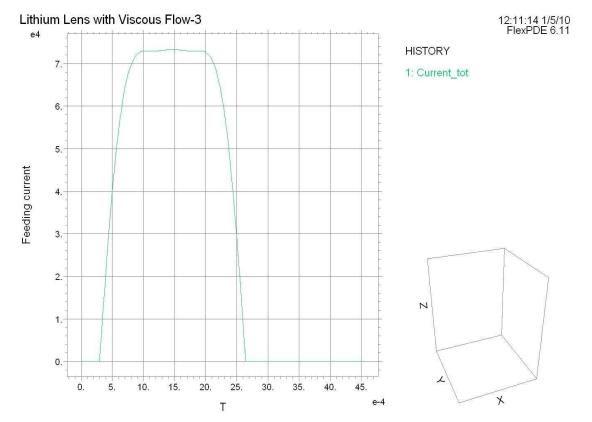
_ →

$$\vec{E} = -\frac{\partial A}{\partial t} - grad(U) \qquad \vec{B} = rot(\vec{A}) \qquad \vec{j} = \mathbf{\sigma} \cdot (\vec{E} + \vec{v} \times \vec{B}) \qquad div(\vec{j}) = 0$$
$$div(grad(A_x)) + \boldsymbol{\mu} \cdot \boldsymbol{j}_x = 0 \qquad div(grad(A_y)) + \boldsymbol{\mu} \cdot \boldsymbol{j}_y = 0 \qquad div(grad(A_z)) + \boldsymbol{\mu} \cdot \boldsymbol{j}_z = 0 \qquad \Delta Q_{tot} = \int_0^{\Delta T} dt \int_V (\vec{j} \cdot \vec{E}) dV = \int_0^{\Delta T} dt \int_V \frac{j^2}{\boldsymbol{\sigma}} dV$$


Hydrodynamics

$$\frac{\partial}{\partial t}\rho v_{i} = -\frac{\partial \Pi_{ik}}{\partial x_{k}} \qquad \text{Deviatoric stress tensor}$$

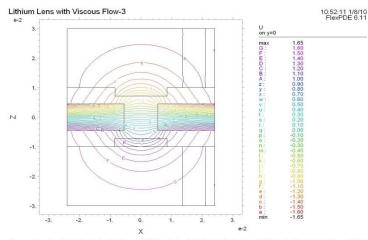
$$\frac{\partial}{\partial t}\rho v_{i} = -\frac{\partial \Pi_{ik}}{\partial x_{k}} \qquad \Pi_{ik} = P \cdot \delta_{ik} + \rho \cdot v_{i}v_{j} - \sigma'_{ik} - \mu_{0}(H_{i}H_{k} - \frac{1}{2}H^{2}\delta_{ik}) \qquad \sigma'_{ij} = \eta \left(\frac{\partial v_{i}}{\partial x_{j}} + \frac{\partial v_{j}}{\partial x_{i}} - \frac{2}{3}\delta_{ij}\frac{\partial v_{k}}{\partial x_{k}}\right) + \zeta \cdot \delta_{ij}\frac{\partial v_{k}}{\partial x_{k}}$$
In vector form
$$\rho \cdot \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v} + grad(P) - \eta \cdot \nabla^{2}\vec{v} = (\vec{j} \times \vec{B})\right)$$
For pressure
$$div(grad(P)) \left\{ -\frac{1}{c_{B}^{2}}\frac{\partial^{2}P}{\partial t^{2}} \right\} = div(\vec{j} \times \vec{B}) - \rho \cdot div \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla})\vec{v}\right) + C\eta \cdot div(\vec{v}) \left\{ -\Gamma \cdot \ddot{Q}(\vec{r}, t) \right\}$$


Temperature

$$\rho \cdot C_p \left(\frac{\partial T}{\partial t} + \vec{v} \cdot grad(T) \right) - div(k \cdot grad(T)) + P \cdot div(\vec{v}) = (\vec{j} \cdot \vec{E}) + \sigma'_{ik} \frac{\partial v_i}{\partial x_k} + \dot{Q}(\vec{r}, t)$$

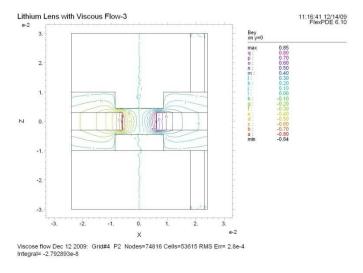
Dimensions, mm

Feeding voltage composed with three odd harmonics 1,3,5

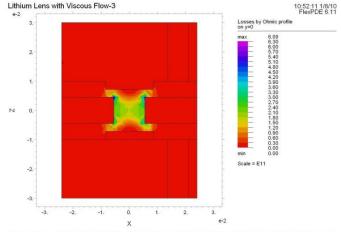


Viscose flow Jan 4 2010: Cvcle=160 Time= 4.5531e-3 dt= 2.6118e-5 P2 Nodes=17741 Cells=12198 RMS Err= 0.0615

Voltage applied

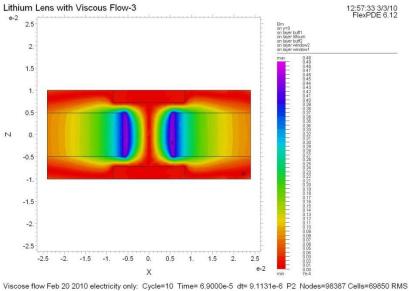

$$U(t) = U_0 \cdot \left[-4.5 \cdot Sin(\frac{\boldsymbol{\pi} \cdot (t - \boldsymbol{\tau}/10)}{\boldsymbol{\tau}}) - 0.9 \cdot Sin(\frac{3\boldsymbol{\pi} \cdot (t - \boldsymbol{\tau}/10)}{\boldsymbol{\tau}}) - 0.17 \cdot Sin(\frac{5\boldsymbol{\pi} \cdot (t - \boldsymbol{\tau}/10)}{\boldsymbol{\tau}})\right]$$

Calculation done with FlexPDE[©] code (frames from the cinema)



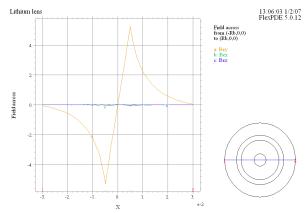
Viscose flow Jan 4 2010: Cycle=20 Time= 4.3125e-4 dt= 2.5563e-5 P2 Nodes=17664 Cells=12143 RMS Err= 0.0618 Dissipation= 71317.97 Integral= 2.354730e-6

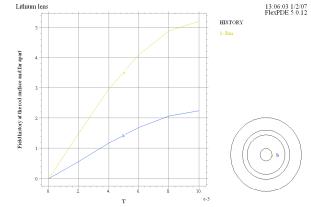
Potential



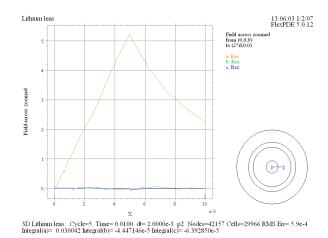
Magnetic field; *I*=0.5cm

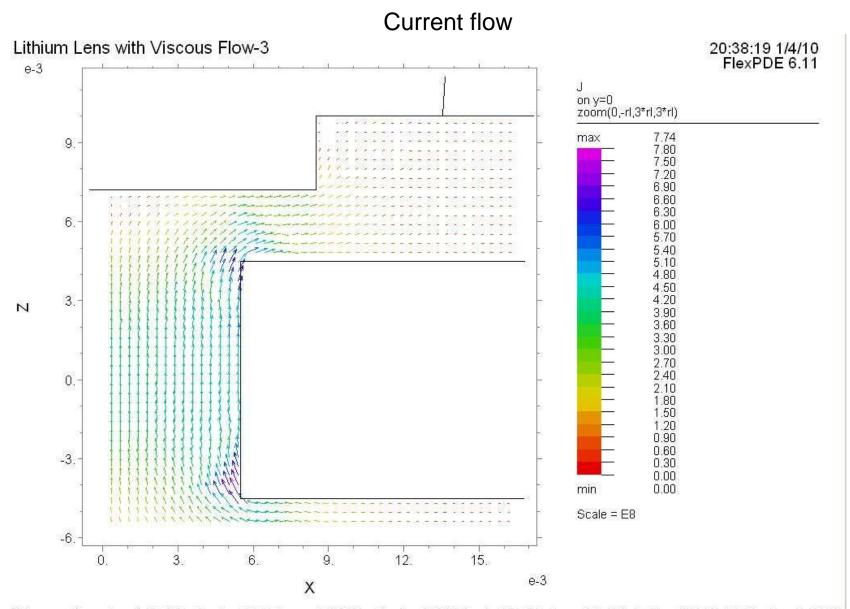
Viscose flow Jan 4 2010: Cycle=47 Time= 1.2075e-3 dt= 2.5563e-5 P2 Nodes=17741 Cells=12198 RMS Err= 0.0637 Dissipation= 424145.5 Integral= 3.035366e+7


Ohmic losses

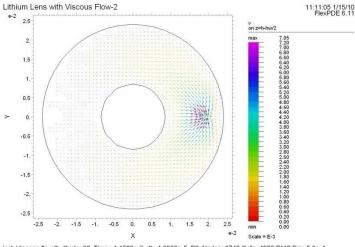

Integral= 1.163397e-4 Magnetic field I=1cm

Spatial field distribution over time



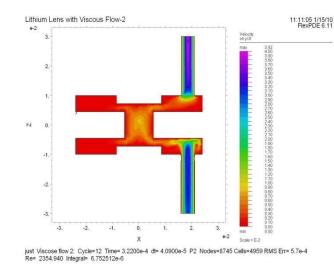


³D Lithium lens: Cycle=5 Time= 0.0100 dt= 2.0000e-3 p2 Nodes=42157 Cells=29966 RMS Err= 5.9e-4 Integral(a)= 6.542232e-5 Integral(b)= -1.009597e-4 Integral(c)= -1.210559e-4

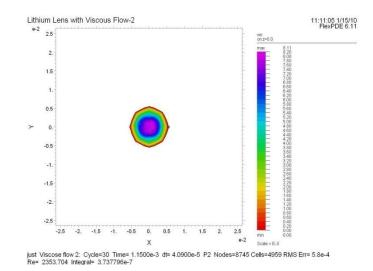


Viscose flow Jan 4 2010: Cycle=88 Time= 2.4381e-3 dt= 2.6118e-5 P2 Nodes=17741 Cells=12198 RMS Err= 0.0609 Power of dissipation, Watts= 126634.3

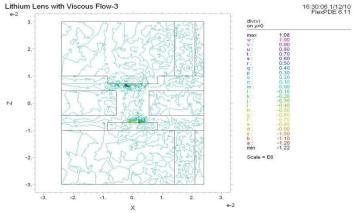
Identified vortex lithium flow



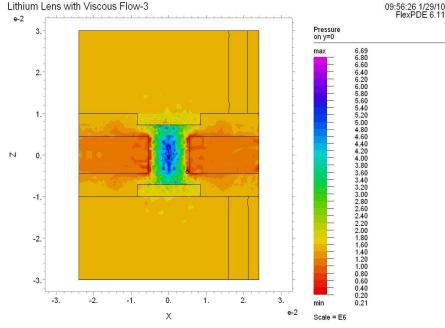
Viscose flow Dec 21 2009: Grid#1 P2 Nodes=51508 Cells=36675 RMS Err= 0.0248 Stage 2 Reynolds number max= 0.034599



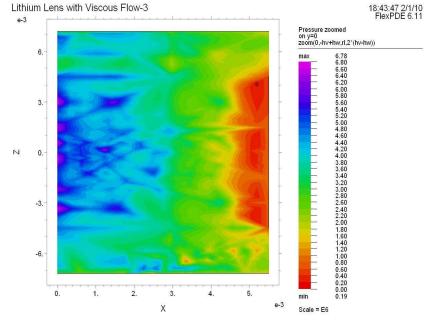
just Viscose flow 2: Cycle=30 Time= 1.1500e-3 dt= 4.0900e-5 P2 Nodes=8745 Cells=4959 RMS Err= 5.8e-4 Re= 2353.704


Velocity profile just below outlet tube.

Laminar flow of Lithium

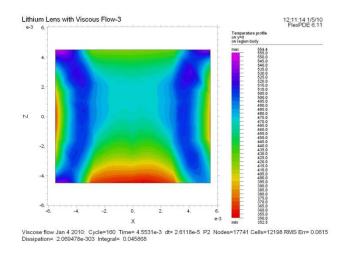

Velocity profile in the middle of model (across the plane with central point {x=0, y=0, z=0}.

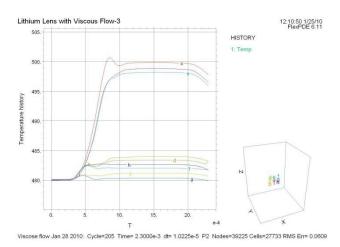
Viscose flow Jan 12 2010: Cycle=25 Time= 5.7500e-4 dt= 2.2024e-5 P2 Nodes=25907 Cells=18151 RMS Err= 5.7222 Reynolds number max= 1.369384e+7 Integral= -1.496218


Contour plot of div(v); it is zero practically everywhere with numeric accuracy.

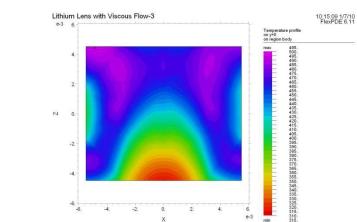
PRESSURE DYNAMICS

Viscose flow Jan 28 2010: Cycle=135 Time= 1.4950e-3 dt= 1.0225e-5 P2 Nodes=55609 Cells=39554 RMS Err= 0.0559 Integral= 4451.796


Pressure in a volume while current is running

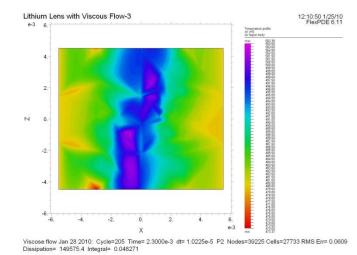

Viscose flow Feb 2 2010: Cycle=165 Time= 1.8400e-3 dt= 1.0780e-5 P2 Nodes=73398 Cells=52442 RMS Err= 0.0304 Reynolds number max= 1635.005 Integral= 278.4650

Pressure from previous Figure zoomed at central region, term $J_X B$ in on.


Time is~1.84 *msec* from beginning of process

Temperature profile painted, 4.5 msec passed since start

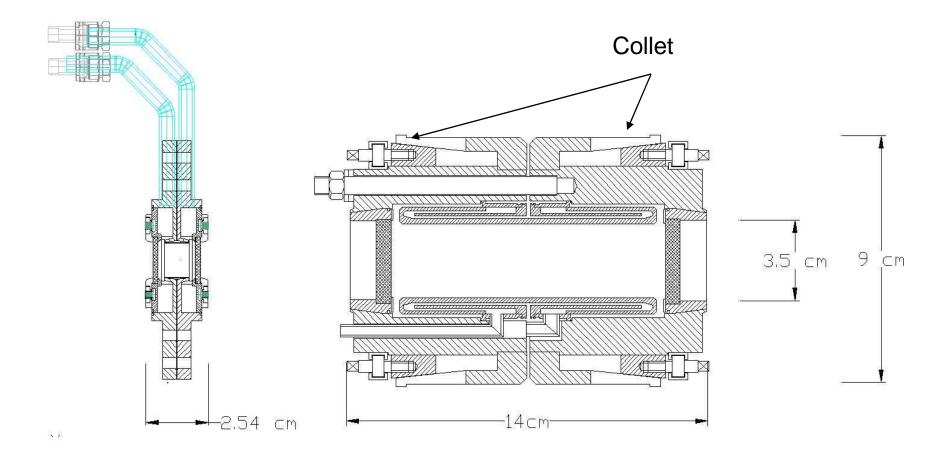
Temperature history at the same points, when the walls temperature kept constant at 480°K



Temperature profile painted, 11.5 msec passed since start; just in/out temperature fixed

Viscose flow Jan 4 2010: Cycle=405 Time= 0.0115 dt= 2.5563e-5 P2 Nodes=17741 Cells=12198 RMS Err= 0.0615

Dissipation= 1.009784e-19 Integral= 0.043638


e-3

Temperature profile painted, 2.3 msec passed since start; just in/out temperature fixed

Temperature dynamics

Li lens for ILC and Li lens for collection of antiprotons

Lithium lenses represented with the same scale factor.

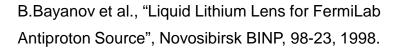
	Positrons	Antiprotons	Neutrino factory
Diameter, <i>cm</i>	1.4	2-3.6	1.8- 6
Length, cm	1	10	15
Current, <i>kA</i>	<75	~850	500
Pulse duty, <i>msec</i>	~4	0.1	~1
Repetition rate, <i>Hz</i>	5	0.7	0.7
Resistance $\mu\Omega$	32	50	27
Gradient, kG/cm	<65	55	45
Surface field, <i>kG</i>	43	100	80-40
Pulsed Power, kW	~360	36000	6750
Average Power, <i>kW</i>	~7.5	3.6	4.7
Temperature gain/pulse, °K	85	80	80
Pressure at axis, <i>atm</i>	~19	400	256-64

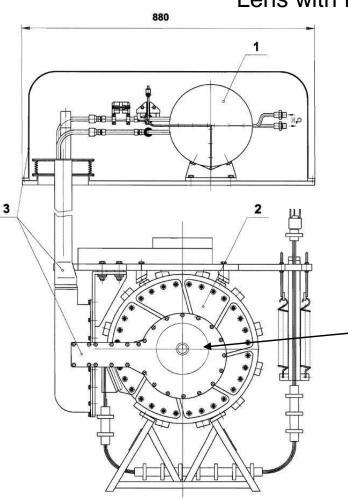
Doublet of Solid Lithium lenses in Novosibirsk BINP

Photo- courtesy of Yu Shatunov



First lens is used for focusing of primary 250 MeV electron beam onto the W target, Second lens installed after the target and collects positrons at ~150MeV


Number of primary electrons per pulse ~2.10⁺¹¹; ~0.7Hz operation (defined by the beam cooling rate in a Damping Ring)


Lenses shown served ~30 Years without serious problem (!)

Lenses designed at BINP Novosibirsk for FERMILAB

Lens with solid LI

Lens with liquid Lithium

1-liquid lithium pump; 2-toroidal transformer; 3-lithium cirquit protection.

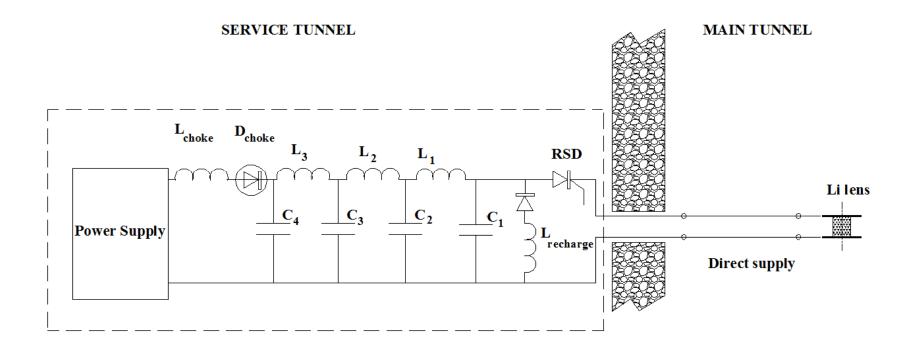
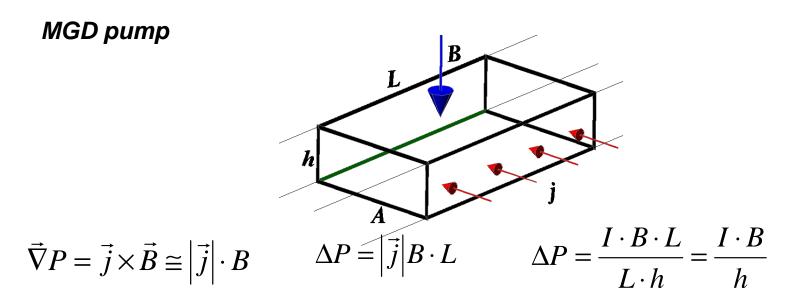
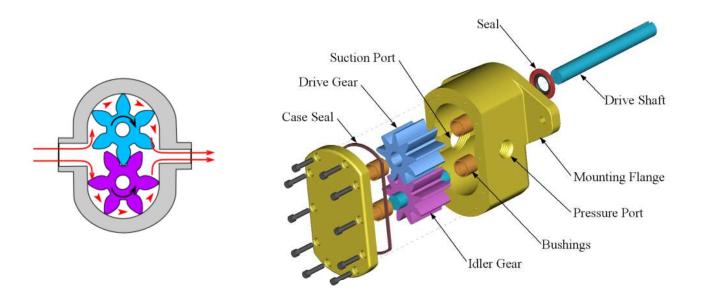

NEW TYPE OF COMMUTATORS FOR HIGH CURRENT

Fig.2. Reverse – switched dinistors for peak current from 200 kA to 500 kA and blocking voltage of 2400 V, encapsullated in hermetic metal – ceramic housing and without housing (RSD sizes of 64, 76, and 100 mm)


S.A. Belyaev, V.G.Bezuglov, V.V.Chibirikin, G.D.CHumakov, I.V.Galakhov, S.G.Garanin, S.V.Grigorovich, M.I.Kinzibaev, A.A.Khapugin, E.A.Kopelovich, F.A.Flar, O.V.Frolov, S.L.Logutenko, V.A.Martynenko, V.M.Murugov, V.A.Osin, I.N.Pegoev, V.I.Zolotovski, "*New Generation of High-Power Semiconductor Closing Switches for Puled Power Applications*", 28 ICPIG, July 15-20, 2007, Prague, Czech Republic, Topic#17, pp.1525-1528.

POWER SUPPLY SCHEMATICS

WITH RDS, THE POWER SUPPLY IS PRETTY GUARANTEED


PUMPS

For example, if I=400 A, h=4mm, B=1T, then $\Delta P=10^5$ Pa ~1atm

The flow meter works with the same components as the pump. $\vec{E} = \vec{v} \times \vec{B}$ So the E.M.F. will be $v \times B \times A$. For example, if v=1m/s, B=1 T, A=10cm=0.1m, then E.M.F.=0.1V, i.e. the macroscopic value, which could be measured pretty accurately.

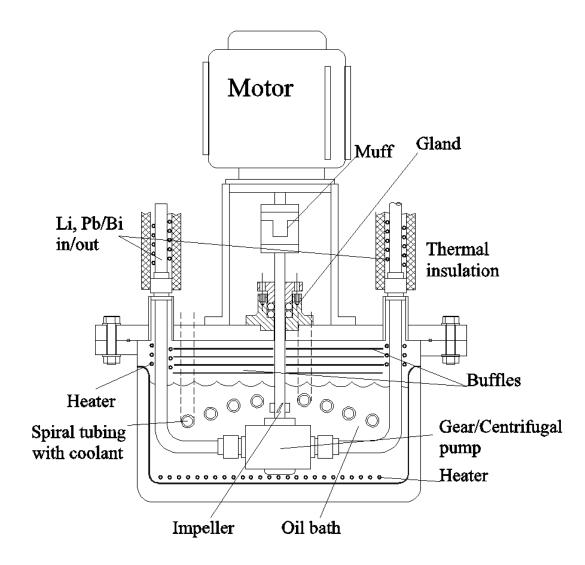
Gear pump (From Wikipedia)

Made from 316 StSteel, Ti, Ceramics, etc.

HT gaskets. Auburn Co. (at the left) and McNeil Co. (at the right).

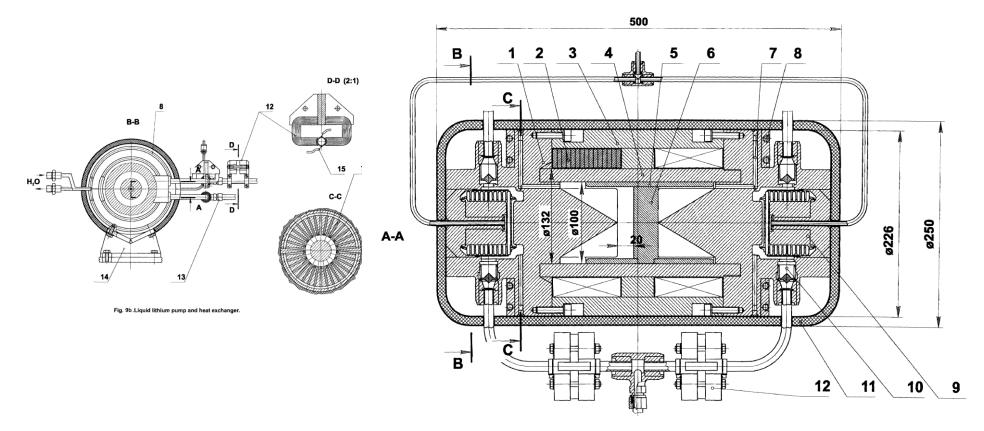
Materials: Aluflex (-54°C-+500°C), Blue-Gard (+370°C) Fiberfrax(+700°C-+1260°C) Viton (+220°C)

One example



Scherzinger

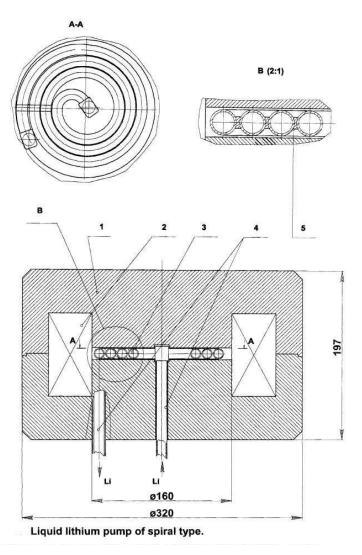
Transfer pumps for high temperature applications Extreme temperatures and low viscosities, particularly with thermal oils, are no problem for these transfer pumps. Fluid transfer remains reliable even at temperatures up to 300°C and low viscosities.


- Flow rates: 1 m³/h or 2.5 m³/h
- Differential pressure: Max. 10 bars

Pump setup. This pump is working for Bi/Pb, Li, Ga, Hg

Piston-type pump

B.Bayanov et al., "Liquid Lithium Lens for FermiLab Antiproton Source", Novosibirsk BINP, 98-23, 1998.

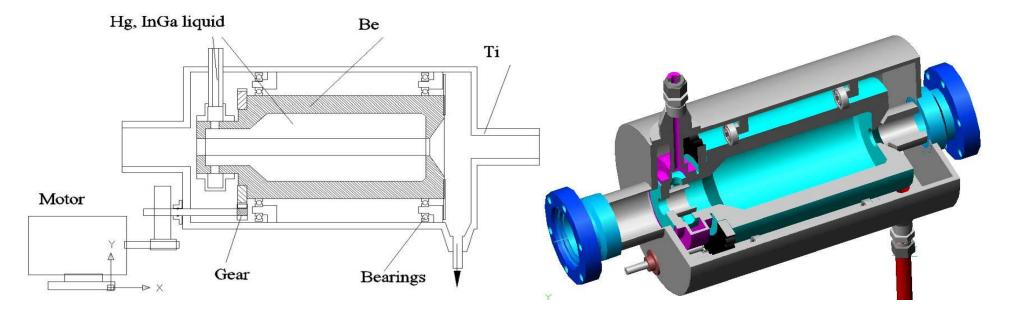

1-face disks; 2-exciting coil; 3-return yoke; 4-inside ferromagnetic wall of cylinder; 5-plunger; 6-ferromagnetic insert of plunger; 7-cooling channels of heat exchanger; 8-cooling water; 9-system to apply and control of liquid lithium static pressure; 10- switching valves;

11 - thermo-insulation; 12 -system to measure liquid flow rate; 13-jont of liquid lithium pipes; 14 -pump support; 15 -contacts for potential measurements.

Spiral type

B.Bayanov et al., "Liquid Lithium Lens for FermiLab Antiproton Source", Novosibirsk BINP, 98-23, 1998.

1-DC magnet yoke;
2-exciting coils;
3-spiral tybe;
4-liquid Lithium inputs;
5-soldered shortened inserts.

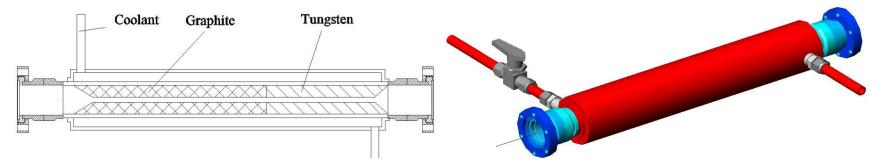

5. COLLIMATORS AND THE PHOTON DUMP

A.Mikhailichenko," Physical Foundations for Design of High Energy Beam Absorbers", CBN09-9, Oct. 23, 2008, Cornell, LEPP, http://www.lns.cornell.edu/public/CBN/2008/CBN08-8/CBN08-8.pdf

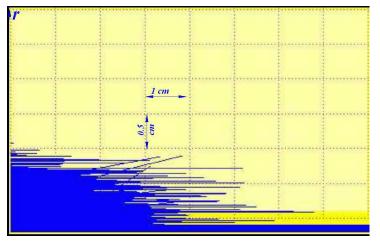
High Power Collimator for the Main Beam

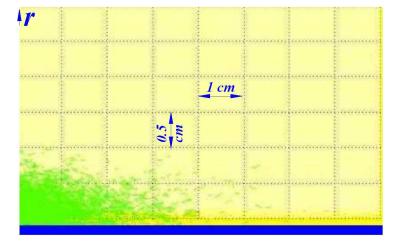
Installed in front of the undulator

Spinning Liquid metal formed a cylinder as result of centrifugal force

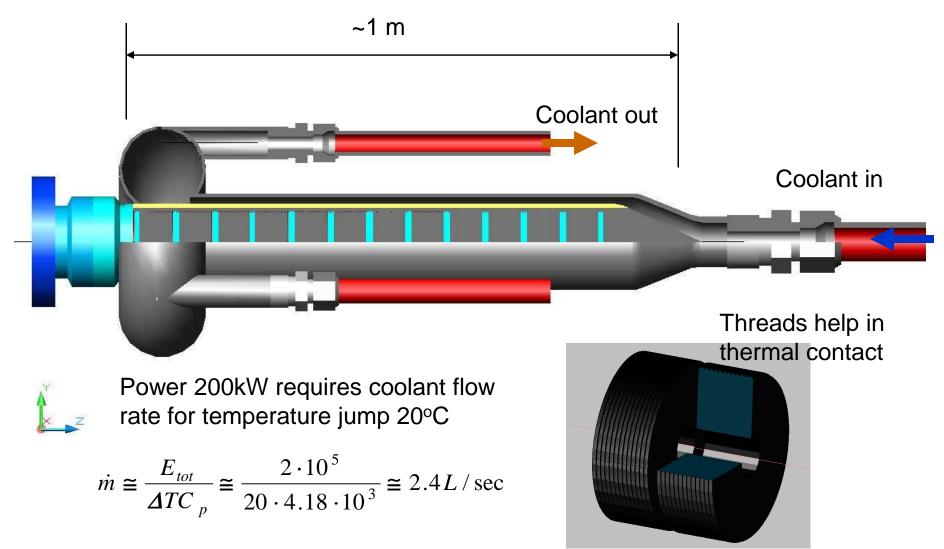


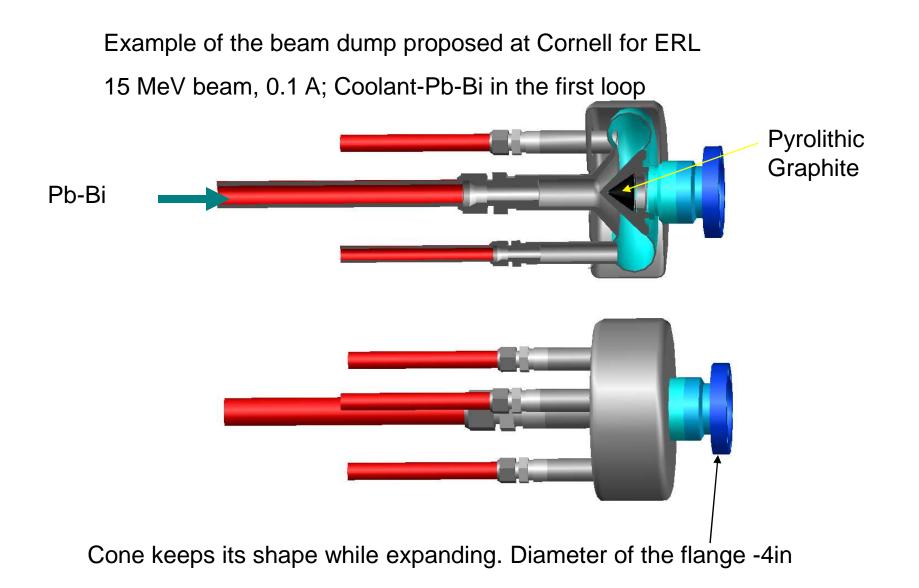
High average power collimator. Beam is coming from the right.


T.A.Vsevolojskaja, A.A.Mikhailichenko, G.I.Silvestrov, A.D.Cherniakin, "To the Conversion System for Generation of Polarized Beams in VLEPP", BINP Internal Report, 1986


Collimator for gammas

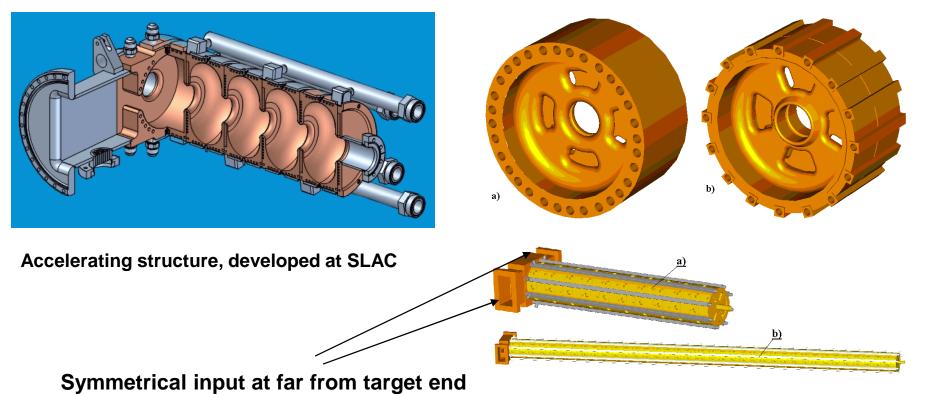
Pyrolytic Graphite (PG) is used here. The purpose of it is to increase the beam diameter, before entering to the W part. Vacuum outgassing is negligible for this material. Heat conductivity ~300 W/m-°K is comparable with meals. *Beryllium* is also possible here, depending on task.


Transverse dimensions defined by Moliere radius



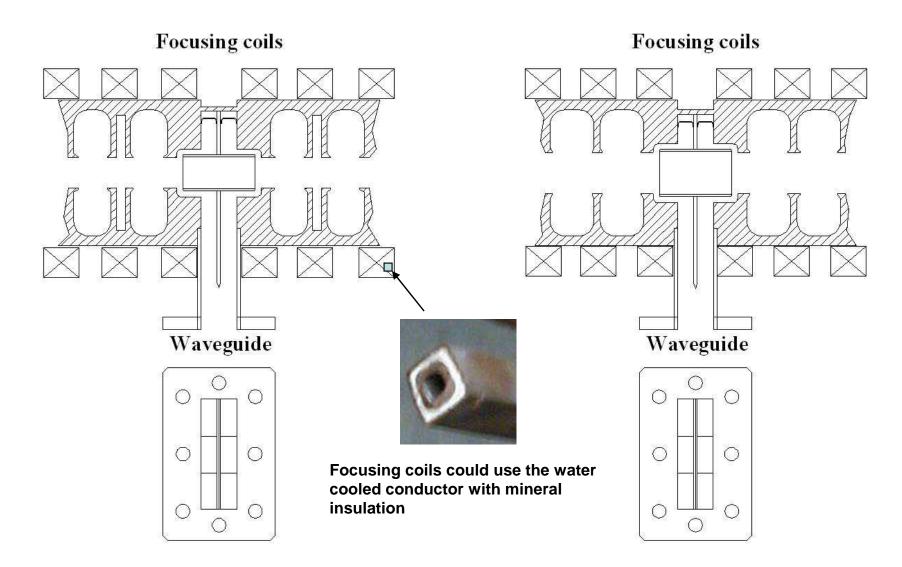
Gamma-beam. σ_{γ} = 0.5cm, diameter of the hole (blue strip at the bottom) *d*=2 mm. Energy of gamma-beam coming from the left is 20 *MeV*. Positron component of cascade

Gamma dump with PG and Ti baffles

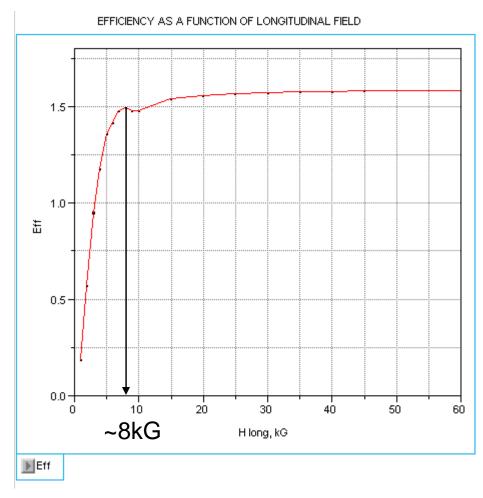


A.Mikhailichenko, 'Physical Foundations for Design of High energy Beam Absorbers", CBN 08-8, Ithaca, CLASSE, Oct 23, 2008.

6. PRIMARY ACCELERATING STRUCTURE


RF STRUCTURES – SLAC and JNR (Dubna)

Structures located right after the target are working in strong solenoidal field (up to 3T)


Accelerating structure developed at Dubna (under test in DESY), JINR a) –for high (19 MeV/m) gradient, b) –for moderate (8.5 MeV/m) gradient .

L.V. Kravchuk, V.A. Moiseev, A.N. Naboka, V.V. Paramonov, A.K. Skasyrskaja 84

Possible solutions for pulsed solenoids-longitudinal slit of structure or usage of Cu-StSteel bimetallic structure.

If all other parameters are kept fixed, then efficiency of conversion as a function of longitudinal magnetic field looks like:

Pretty moderate field indeed

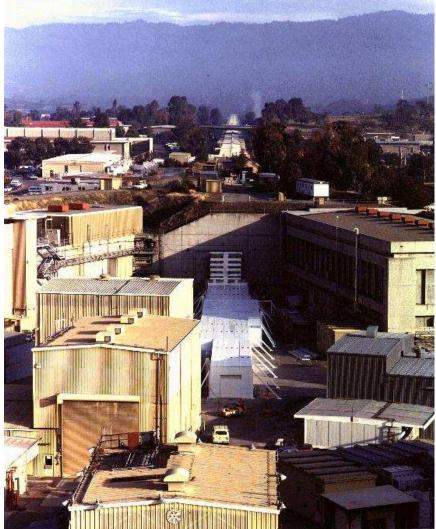
7. EXPERIMENT E-166 AT SLAC

E-166:

Experimental test of polarized positron production with gammas generated by high energy beam in helical undulator

17 Institutions, 33 members

Just remind

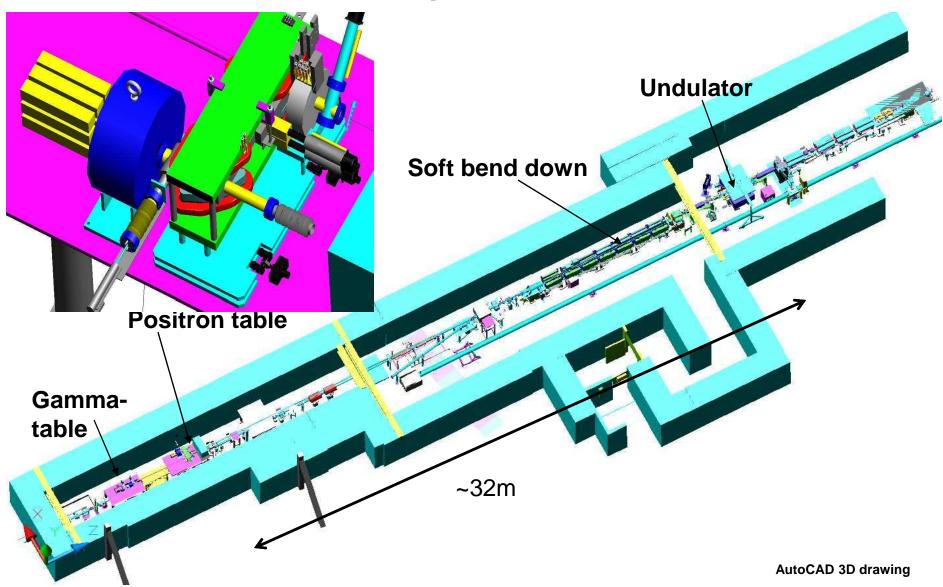

$$E_{\gamma n} \cong \frac{n \cdot 2.48 \cdot (\gamma/10^5)^2}{\lambda_u [cm](1 + K^2 + \gamma^2 \vartheta^2)} [MeV]$$

Goes to few mm period for 50 GeV beam

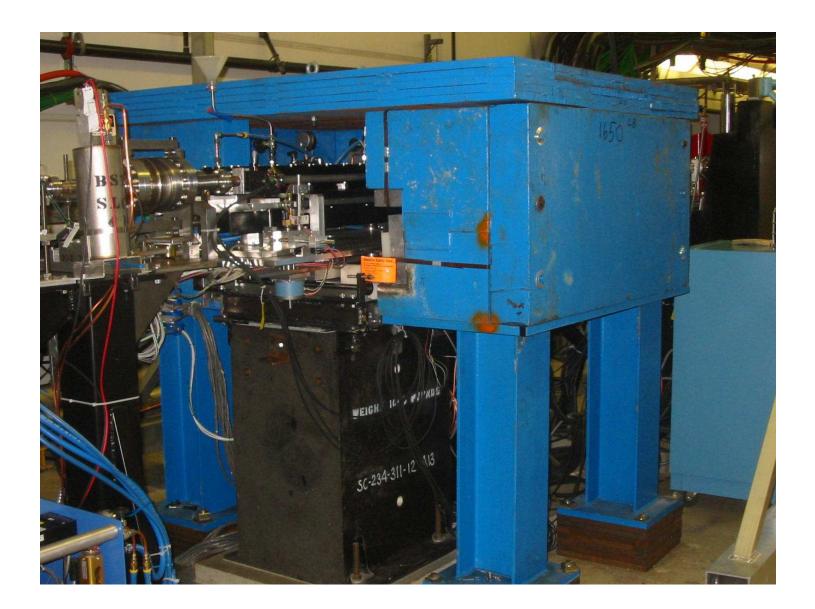
First suggested in 1992

Final Focus Test Beam (FFTB)→E166

First magnets delivered from Novosibirsk in 1991

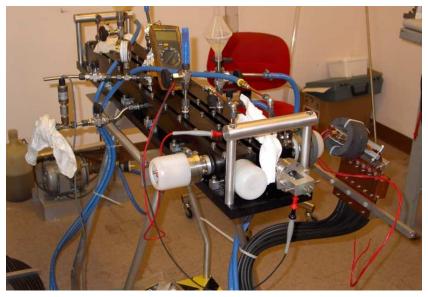

Demonstration of polarized e+ production

FFTB at SLAC with 50 GeV, 2x10¹⁰ e-/pulse, up to 30 Hz

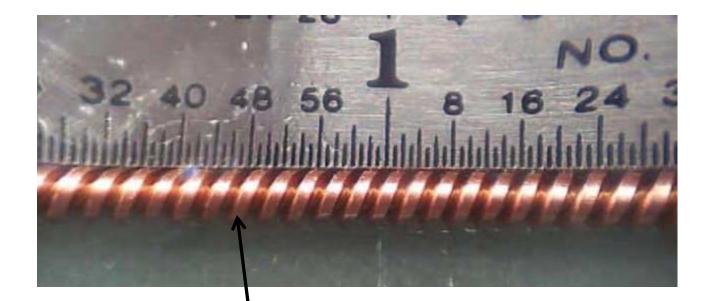

1 m long helical undulator

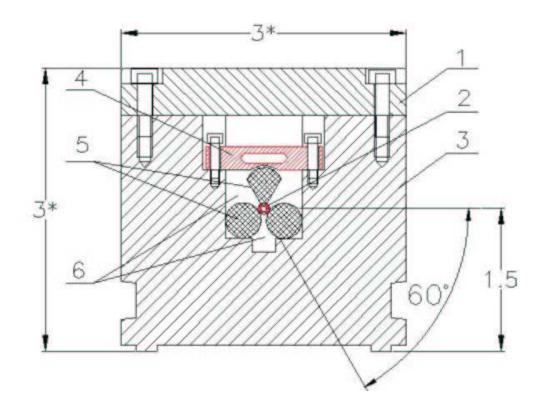
Measurement of positron polarization by Coverting Positrons into gamms again and use Compton helicity-dependet transmission attanuation

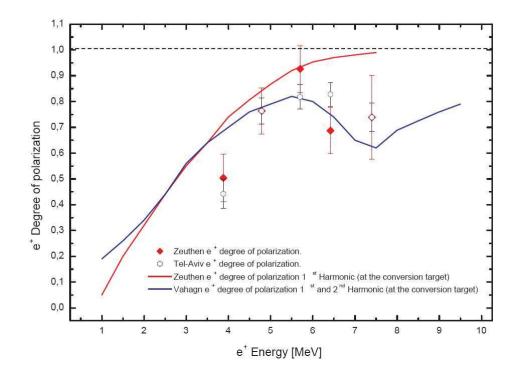
3D scope of E-166


Undulator covered by local shielding

Helical undulator (Cornell)


Coolant-Oil, Ferrofluid

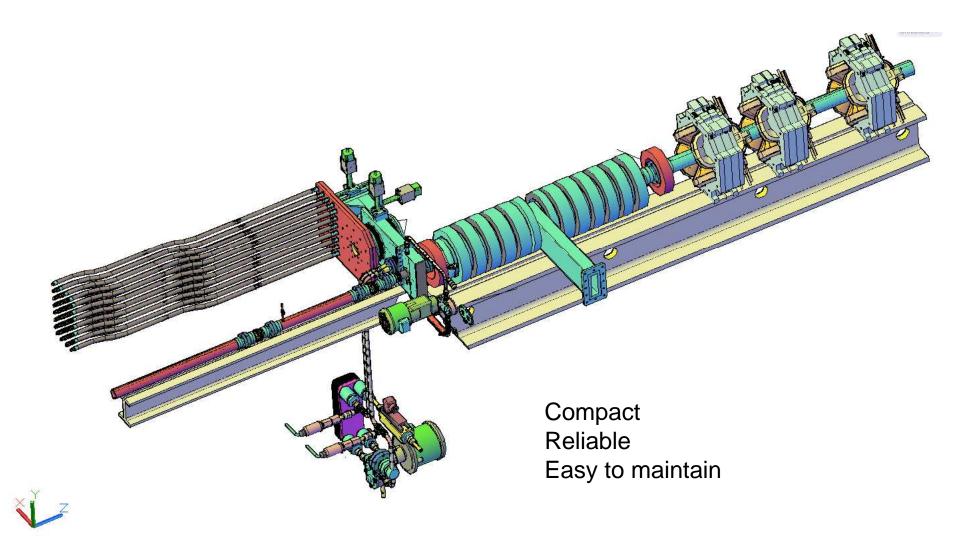




Scaled view on the undulator windings. Wire with rectangular crosssection has dimensions 0.6×0.6 mm², period -2.54 mm. **Pulsed urrent up to 2.3 kA in a wire**.

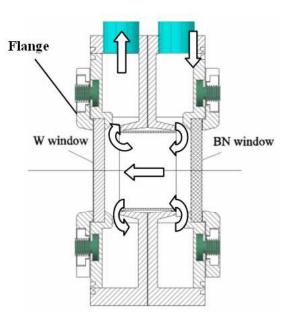
Smallest scale division is 1/64 of an inch.

Cross-section of undulator. Two G10 rods are placed in corners of long groove. Third rod with help of spring loading bars 4 compresses the windings to the other two. 1 -is a cover, 2 -is bi-helix. 3 -is a undulator mount, 5 -are G10 rods, 6 -is filled with coolant. Parts 1, 3 are made from Aluminum. Dimensions are given in inches. Undulator cover 1 is sealed with Indium gasket.



Degree of longitudinal polarization for positrons and electrons as measured by the E166 experiment.

Results published in PRL,NIM

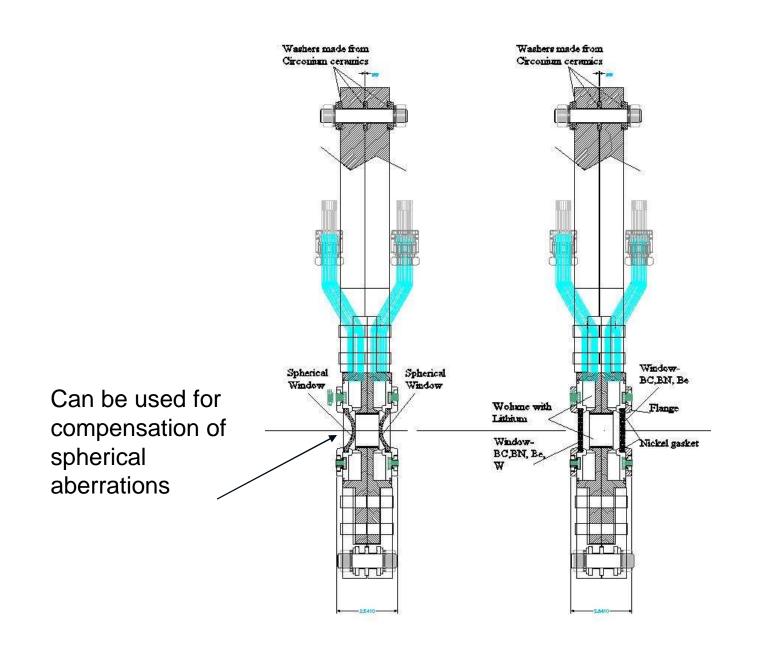

8.PERSPECTIVES

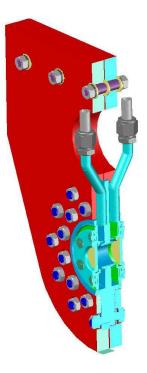
Conversion system with liquid Pb/Bi target and liquid Lithium lens

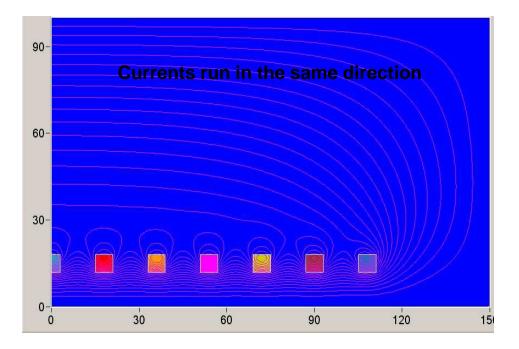
COMBINED TARGET-COLLECTION SYSTEM FOR THE POSITRON PRODUCTION IN ILC,

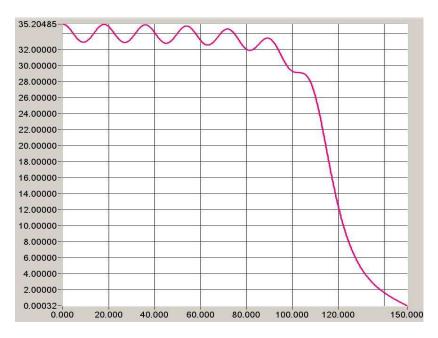
A.Mikhailichenko, PAC11, THP076, NY 2011

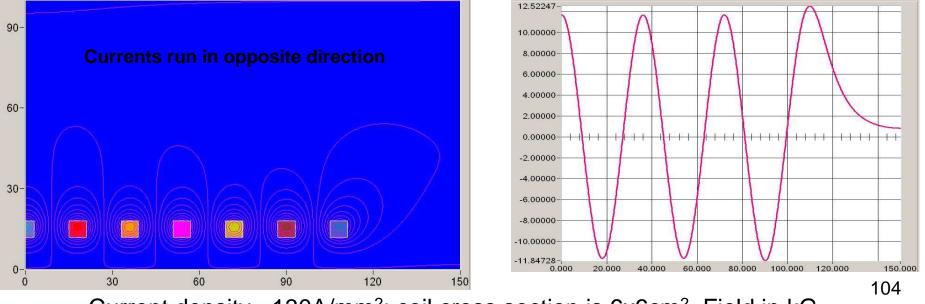
Beam energy, GeV	100	150	250
Length of undulator, m	220	170	170
K factor	0.66	0.36	0.28
Period of undulator, cm	1	1	1
Distance to the target, m	200	350	600
Thick. of target/X _o	0.55	0.57	0.6
Radius of lens, cm	0.6	0.6	0.6
Gradient, kG/cm	60	60	65
Length of the lens, cm	0.7	0.7	0.7
Current, kA	108	108	117
Radius of collimator, cm	0.2	0.5	0.15
Rad, of irises in RF, cm	3	3	3
Rad of coll. before RF, cm	2	2	2
Acceptance, MeVxcm	9	9	9
Energy filter E> , MeV	51	54	63
Energy filter E< , MeV	110	110	180
ΔT per train 10^13 e-, °C	172	139	270
ΔT in lens from beam, $^{\circ}C$	18	35	80
ΔT in lens from current, °C	90	90	100
Efficiency, e+/e-	1.52	1.57	1.52
Polarization, %	54	57	64


9. SUMMARY


• Liquid metals have wide area for application in ILC positron source


- Start to end Monte-Carlo simulation code for conversion -KONN confirmed that low *K* factor is possible with focusing by Li lens; *K*<0.4 –big relief for the conversion system
- Utilization of Lithium lens allows Tungsten survival under condition required by ILC with $N_e \sim 2 \times 10^{10}$ with moderate $K \sim 0.3 \cdot 0.4$. Thin W target allows better functioning of collection optics (less depth of focusing).
- Lithium lens is well developed technique and the lens with parameters required for ILC is guarantied.
- Field is strictly limited by the surface of the lens from the target side.
- Liquid metal target allows compact design and stability under dynamical load; could comete with spinning rim target.
- Combined Lithium lens with W flange can work for ILC; for CLIC all parameters are relaxed.
- E-166 confirmed the polarization ~80% achievable with undulator-based positron production scheme for ILC

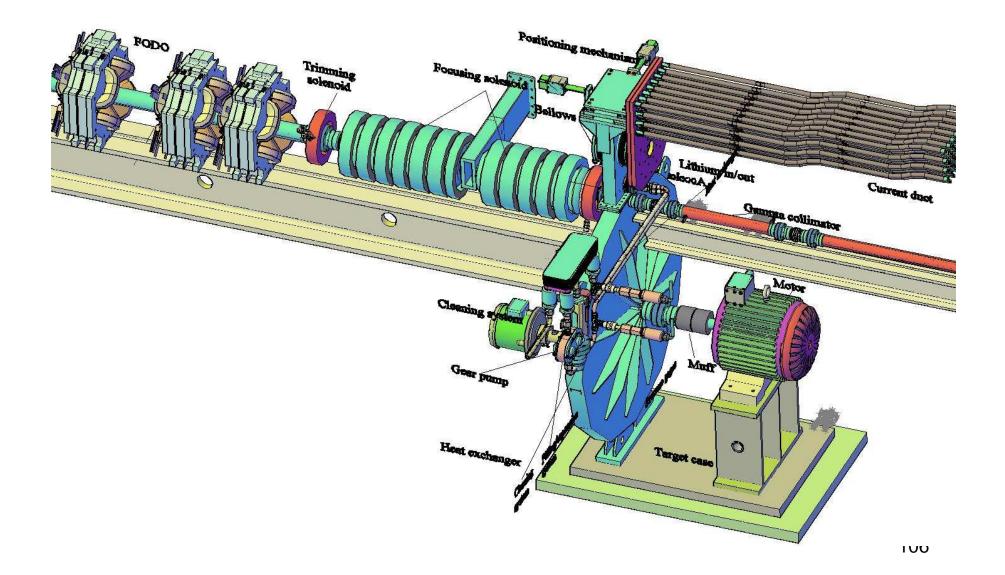

END


Backup slides

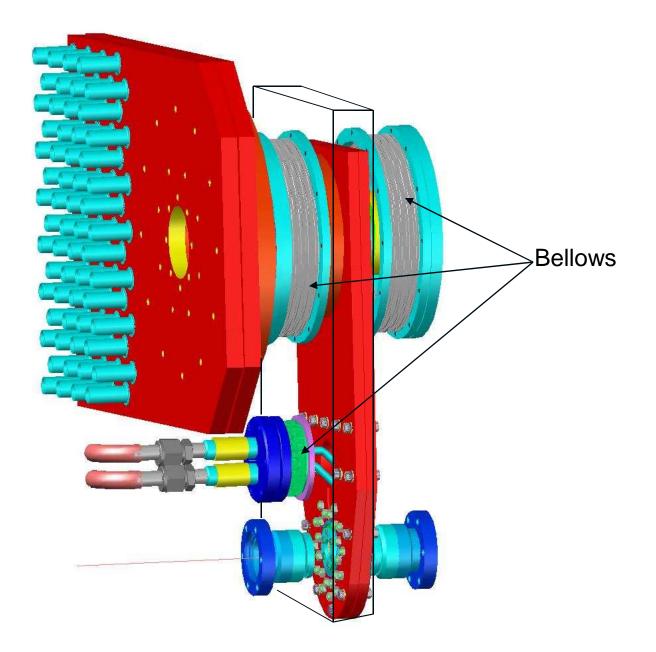
Current density ~130A/mm²; coil cross section is 6x6cm² Field in kG

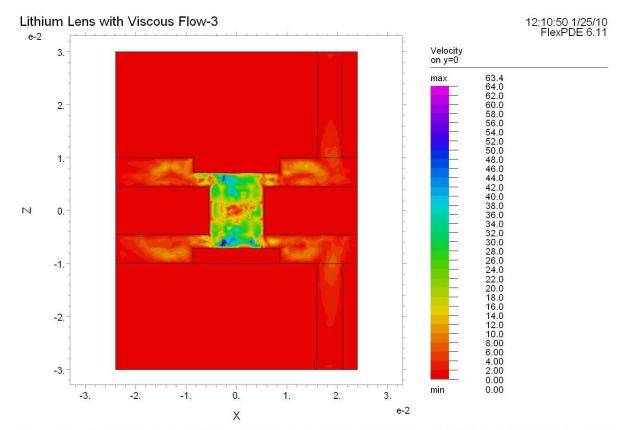
Laser bunch as an undulator

The number of the quantas radiated by an electron by scattering on photons - real from the laser or virtual from the undulator:


$$N_{\gamma} \cong 4\pi\alpha \frac{L}{\lambda_{u}} \frac{K^{2}}{1+K^{2}} = 4\pi \frac{e^{2}}{\hbar c} \frac{L}{\lambda_{u}} \left(\frac{eH\lambda_{u}}{2\pi mc^{2}}\right)^{2} \approx \left(\frac{e^{2}}{mc^{2}}\right)^{2} \frac{L\lambda_{u}}{2\pi\hbar c} H^{2} \cong r_{0}^{2} L \frac{H^{2}}{\hbar\Omega} \cong \sigma_{\gamma} n_{\gamma} L$$

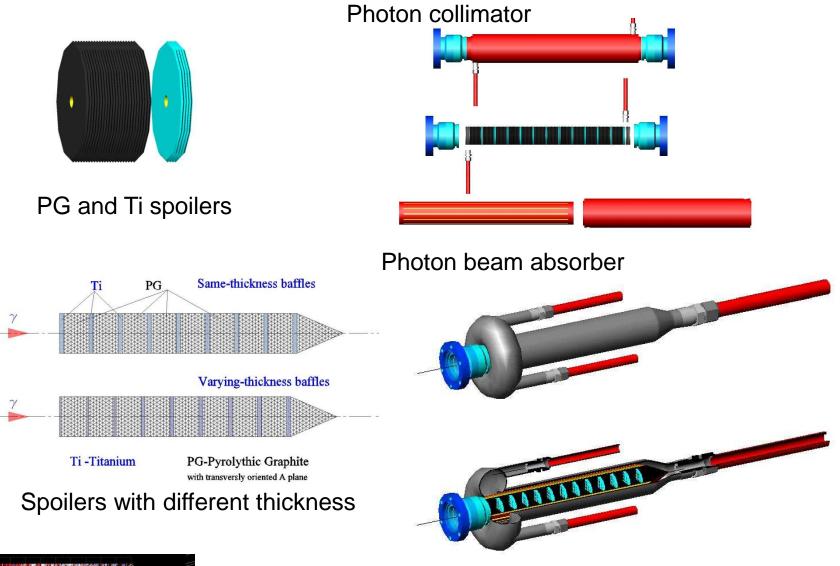
 $K = eH\lambda_{u} / 2\pi mc^{2} \cong 0.934 \cdot H[T] \cdot \lambda_{u}[cm] \quad K = \beta_{\perp}\gamma \quad \sigma_{\gamma} \cong \pi r_{0}^{2} \quad n_{\gamma} \cong \frac{H^{2}}{\hbar\Omega} \qquad \Omega = \frac{2\pi c}{\lambda_{u}}$ Formation length in undulator $l_{f} \cong \lambda_{u}$ *L*- length of undulator

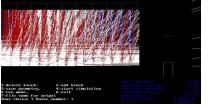

$$N_{\gamma} \cong L/\sigma_{\gamma}n_{\gamma} = L/l_{\gamma}$$
 $l_{\gamma} \cong 1/\sigma_{\gamma}n_{\gamma}$ - Length of interaction


Written in this form it is clear that the photon back scattering (especially with 90° crossing angle) is an equivalent of radiation in an undulator (as soon as the photon energy is much less, than the energy of particle).

The ILC conversion system with rotating target and the liquid Lithium lens.

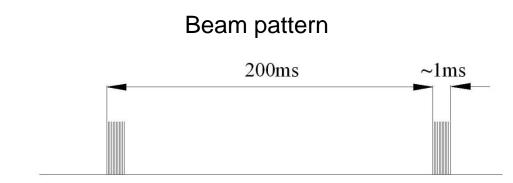
Scaled view on vacuumed feed through and lens; vacuum case not shown





Viscose flow Jan 28 2010: Cycle=205 Time= 2.3000e-3 dt= 1.0225e-5 P2 Nodes=39225 Cells=27733 RMS Err= 0.0609 Reynolds number max= 829.9611 Integral= 5.512972e-3

Velocity contour painted. One can see slight asymmetry induced by systematic flow. Turbulence pretty manifested.


Gamma collimator and gamma absorber (cont.)

Modeling

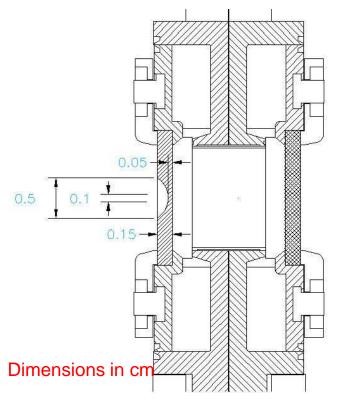
For ERL Ti spoilers not required

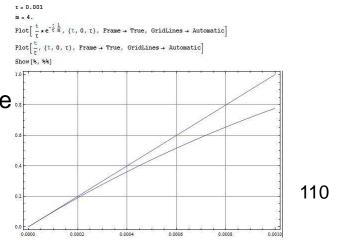
Equation for thermal diffusion in window

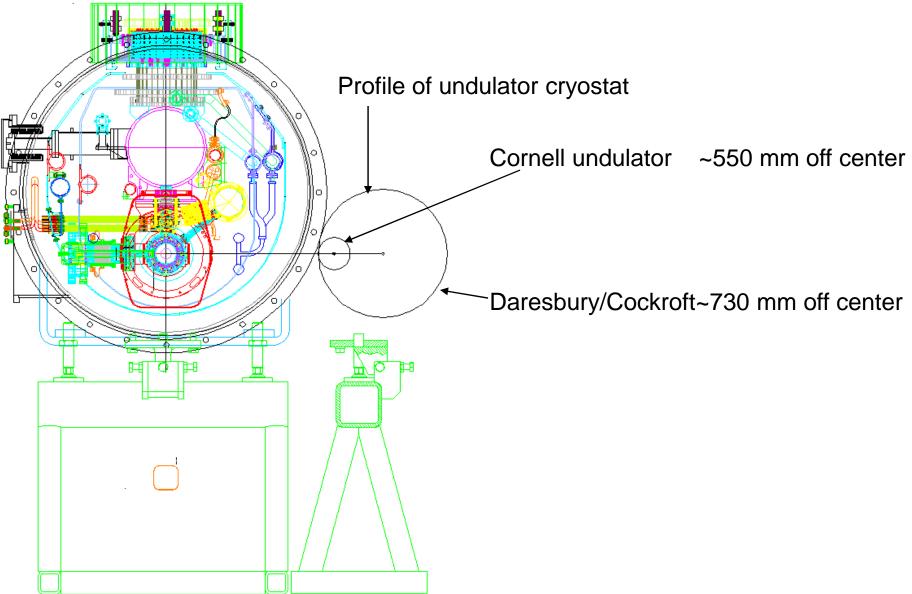
$$\nabla(k\nabla T) + \dot{Q} = \rho c_{\rm V} \dot{T}$$

defines time of relaxation from its characteristic

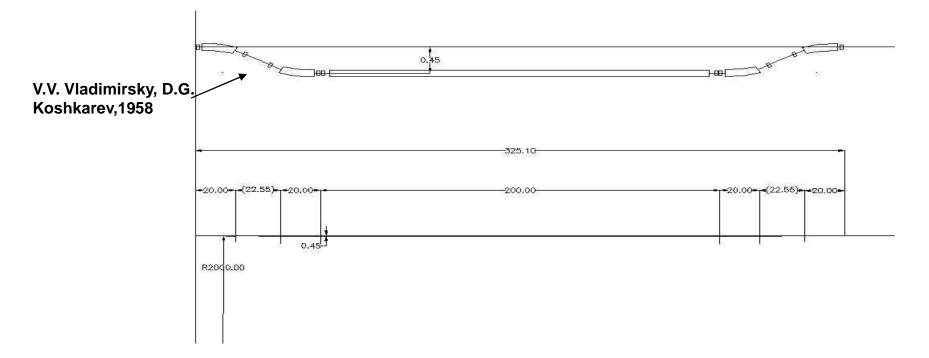
For Be:
$$k=2$$
 W/cm/°K, $\rho=1.84g/cm^3$, $c_V=1.82$ J/g/°K

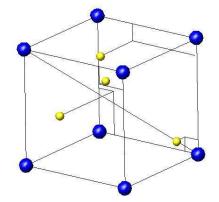

$$\frac{dx^2}{k} = \frac{dt}{\rho c_V} \rightarrow \delta^2 = \frac{k}{\rho c_V} \tau \rightarrow \tau = \frac{\rho c_V}{k} \delta^2$$
If $\delta=0.05cm^2$


$$\tau = \frac{1.84 \cdot 1.82}{2} 2.5 \cdot 10^{-3} \cong 4.2 ms$$

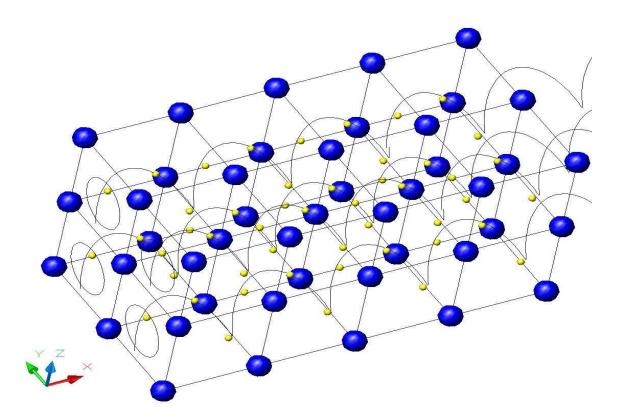

This gives ~20% temperature drop within train for Be ... For Li thermal skin-layer for 1 *msec* time goes to

$$\delta = \sqrt{\frac{k}{\rho c_V}\tau} = \sqrt{\frac{0.848}{0.533 \times 3.6} 0.001} = 0.021 cm$$


Flange with recession has faster relaxation time


WHAT IS THE MINIMAL SPACING?

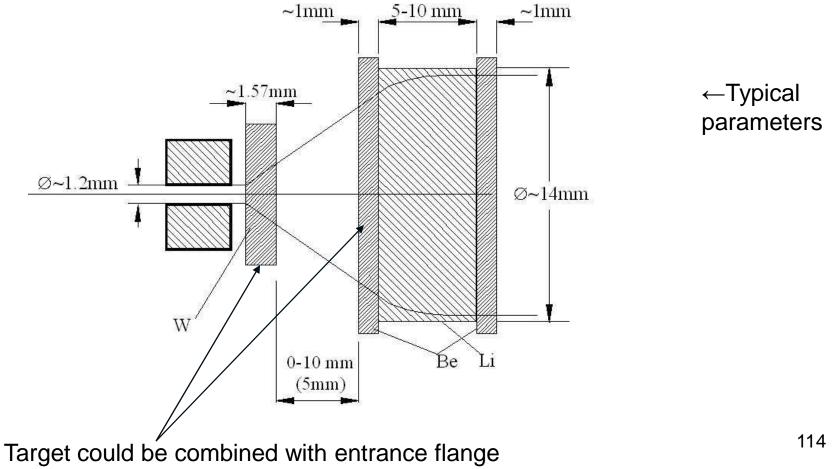
Very high density of SR in any bending magnet, as emittance is extremely small


T.A.Vsevolojskaya, A.A.Mikhailichenko, G.I Silvestrov, A.N. Cherniakin, "To the Project of Conversion System for Obtaining Polarized Beams at VLEPP Complex", internal report BINP, Novosibirsk, 1986.

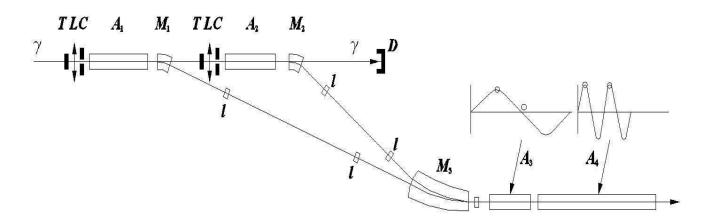
Helical (chiral) crystals

Crystal structure MnSi and FeGe

P.Bak, M.H.Jensen, J.Phys.C: Solid St.Physics, 13,(1980) L881-5



Helical structure demonstrates also CsCuCl₃, Ba₂CuGe₂O₇, MnS₂


KONN – Monte-Carlo code for positron production starting from undulator

KONN can calculate now the energy deposition and temperature rise in target and in Li lens at any point.

Distance between target and the lens serves for enlargement the spot size on the entrance

COMBINING SCHEME

Energy provided by acceleration structures A1 and A2 are slightly different, A1>A2.

After the first target only 13% of photons are lost. So it is possible to install second target and collect positrons from this second target.

Combining in longitudinal phase space could be arranged easily in the same RF separatrix in damping ring.

Additional feed back system required for fast dump of coherent motion.

Combining scheme allows ~double positron yield and cut in half the length of undulator →increase of polarization

115

TESTED UNDULATORS

For aperture available for the beam 8 mm in Ø clear OFC vacuum chamber, RF smoothness

SC wire	54 filaments	56 filaments	56 filaments	56 filaments
# layers	5	6	11	9 (12) +sectioning
λ=10 mm @ <i>300°K</i>	K=0.36 tested	K=0.42 tested	K=0.467 tested	K≈0.5 (calculated)
λ=12 mm@ <i>300°K</i>	K=0.72 tested	K=0.83 tested		K≈1 (calculated)

For aperture available for the beam 6.35 mm (1/4") in Ø clear OFC vacuum chamber, RF smoothness

# layers			12+sectioning
<mark>λ=13.5 mm@<i>300°K</i></mark>	K=1.48 tested		K≈1.6 calculated
λ=10.0 mm@ <i>300°K</i>	K≈0.7calculated		K≈0.72 calculated