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COHERENT RADIATION IN INSERTION DEVICES  
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Abstract. We calculate the coherent radiation in an undulator/wiggler with a vacuum chamber of 
arbitrary cross section.  The backward radiation is a coherent and it has wavelengths about twice the 
period of the undulator/wiggler. Mostly of coherent radiation is going with the wavelengths 
approximately the bunch length at small angles however.  
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INTRODUCTION  

      The period of undulators in newly designed 
installations (storage rings or FELs) becomes smaller and 
smaller, while the inner vacuum chamber in wigglers 
sometimes happens to be large or absent at all. Therefore 
the coherent radiation (CR) might manifest itself here. In 
some publications, see for example [1]-[3], these 
conditions investigated to some extent.  Calculation of CR 
in a free space could be based of formulas for radiation of 
a single particle [4]. In a vacuum chamber of arbitrary 
cross sections such calculations becomes very laborious, 
see [2], [5]-[8]. 
 

CR IN A FREE SPACE 
     The particle oscillating in an undulator with a spatial 
period uu Dπλ 2=  radiates on harmonics [6], [7] 
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where k=1,2,…, 
uc D/β=Ω  ββ ≅= cv / , v  is a 

particle’s average longitudinal  velocity in the undulator.  
Formula (1) corresponds to the Doppler-shifted frequency 
Ω.  Accordingly, the wavelength of radiation is 
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The energy distribution of undulator radiation (UR) 
emitted by a single particle in an undulator of length 

uu ML λ= (M –is the number of periods), during the time 

duretion Ωπ=∆ /2 Mt  is defined by the expression [6], 

[7] 


















−
−+









−
′

Ω
= ⊥⊥

⊥ θβ
θβ

θ
βθ

θβ
θββω

ο
ε

Cos

Sink
J

Sin

Cosk

Cos

Sink
J

ck

e

d

d
kk

kk

1

)(

1
2

2

22
22

2

32
(3)  

where γβ // Kcv == ⊥⊥ , ⊥v is the transverse velocity. In 

the dipole approximation, K<1, ββββ ≅−=
⊥

22  and in 

the ultra-relativistic case 1>>γ , only the first harmonic 

radiated, k=1.  
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where the function )(θF introduced accordingly. The energy, 

radiated by a bunch with population Nb within  angles 
},{ mθπ  can estimated by integrating (4) over the solid angle 
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In case 0=mθ , formula (5) gives the total radiated energy at 

the first harmonic in dipole approximation  
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 For the energy radiated coherently, one should suggest 

cohm θθ = , where the angle of coherence cohθ  is defined from 

(2), [8]. By suggesting that the wavelength of radiation 
coincides with the bunch sigma bσ , 

βθβσ /)1( cohucohb Cos−⋅=≅ DD                 (6) 

one can find that the energy radiated coherently, becomes   
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Within the approximation accepted above  
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Generally the energy-loss ratio is   

∫∫≅
∆
∆ ππ

θ
θθ

ε
ε

0
1

1 )()( doFdoFN
cohe

tot

coh ,             (9) 

and could be evaluated with MATHEMATICA. Some 
results are represented in Fig.1. We would like to underline 
here that for a single electron the ratio of the total energy 
radiated in a forward and in a backward direction is 4γ  in 

full agreement with formula  (73,11) from [4].  
Estimations  
   For the energy of 5GeV ( 410≅γ ), and for the bunch sigma 

cmcohz
210−=≅ λσ , cmu 2=λ , according to (8), the ratio 

ecoh N/10/ 12
1 ≅∆∆ εε                       (10) 



So the losses of the coherent radiation become equal to 
the incoherent forward radiation for the bunch population 

1210≈eN , i.e. for the bunch charge nCQb 160≅ . In 

that case, the loss per particle becomes twice of what it 
would be for a single particle.  

     
Figure 1.  Ratio of the coherent/incoherent energy loss as 
a function of the bunch length, ps; K=2, Q=100pQ, left. 
At the right: the ratio of the coherent/incoherent energy 
loss as a function of K, =cb /σ 2 ps.  

     A more accurate evaluation of the coherently radiated 
energy with formulas (2)-(6) as a portion of the energy 
radiated within angles }{ cohθπ ÷ multiplied by Ne versus 

total incoherent radiation (within angles }0{ ÷π ) as a 

function of the bunch length or K factor is shown in Fig.1 
    It is interesting, that for the beam duration of 
approximately 0.1ps, Q=100pC, the ratio of coherent to 
incoherent energy losses comes to ~0.6 for an undulator 
with K=1.5, cmu 2=λ at 5 GeV; for K=3 the coherent 

loss is 6.5 times bigger, than the incoherent one. For 1 nQ 
this ratio comes to be 65 for the last set of parameters. For 
attosecond bunches radiation is purely coherent and it has 
the wavelengths on the order of the bunch length, which 
makes usage of such bunches problematic for radiation 
with desired properties. All these were preliminary 
estimations. For a more correct evaluation of the effect in 
a chamber of arbitrary cross section we used the FlexPDE 
solver.   

CR IN A VACUUM CHAMBER  
   In the presence of vacuum chamber with the cross 
section axa, the wavelength of radiation wgλ becomes 

longer, than the wavelength0λ , measured in free space, 

2
00 )/(1/ crwg λλλλ −= , where acr 2≅λ . Radiation 

can propagate within tan angle that is not smaller than the 
one, defined by the critical wavelength in a waveguide  

)/( 0 wgcr arcCos λλθ ≥  [9], [10]. On the other hand, 

according to (2), the angle corresponding to the coherence 
length bcoh σλ ≅  is )/1( ubcoh arcCos Dσβθ −≥ . 

This should be larger, than crθ . 
    In a chamber with arbitrary cross section, the allowed 
wavelengths have rather complicated structure, so 
analytical solution can only be obtained for the simplest 
cases, such as vacuum chambers of either round or 

rectangular cross section. We therefore developed a code 
able to evaluate radiation in a conducting chamber of 
arbitrary cross section. 
   The current density was represented as the following 

),,( zyx vvvvj ⋅ρ≅⋅ρ= rr
,                   (11) 

where the charge density  
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and )/(/ ux ctCoscKv Dβγ ⋅= , )/(/ uy zSincKv D⋅γ= or  

0=yv  for the planar undulator; )/1( 22
2
1 γKcvz −⋅≅ , yx σσ ,  

are the transverse sigmas in x and y direction. The current 
distribution (11), (12) allows modeling the coherent part of 
radiation only. We solved equations for the vector and scalar 
potentials linked by the Lorentz gauge condition 
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with the boundary conditions 0=ΣU  for the scalar 

potential; for the magnetic vector potential, tangential 
component was chosen to be zero on the boundary , similarly 
for its normal derivative. This coincides with the 
requirements derived in [11].  The mesh propagates in 
accordance with the bunch position. The term with 

decrement, A
&r⋅δ , τδ 2/1 c= , with ns1~τ , is introduced to 

describe the losses in the walls. Although the losses occur on 
the surface, the volume losses introduced by such a way are 
self consistent. In our model of vacuum chamber, the end 
section, at ~5% along the z-distance, has increased losses, 
~100δ to avoid reflections from the entrance boundary (this 
section marked by the blue color in Fig. 2). 
    Chambers with different shapes and dimensions were 
investigated, including the simplest one with rectangular 
cross section.  The wavelength of the undulator field uλ was 

varied from 1 to 3 cm. The bunch length was varied also.  
   Design of vacuum chamber for wigglers is sometimes 
problematic, as it contains so-called cleaning electrodes, 
what makes this chamber multiply connected [10]. As the 
backward radiation is 100% coherent and goes at central 
wavelength equal to the doubled period of wiggler, one may 
expect strong excitation of undesirable fields there.   

    
Figure 2. 3D mesh for the vacuum chamber used in 
modeling. At the right: The modulus of electric field for the 
chamber at one particular moment (frame from a movie).  



 
In Figure 3 the bunch length is 2.5mm, the period of the 
undulator is 15 mm. Here it is clearly seen that radiation 
propagates in side slits (see Fig.2). 

 
Figure 3. Contour plot for the vector-potential. The bunch 
is moving in a chamber from Fig.2, with sub-critical 
transverse dimensions of the central part (2x2mm2); 
(single frame from a movie).  

 
Figure 4.  Electrical (at the left) and magnetic (at the 
right) fields modulus in a rectangular chamber of 6x6 
mm2 cross-section of a helical undulator with left helicity.  

 
Figure 5. Components of the vector potential along z. The 
bunch is moving from the left to the right (frame from a 
movie) 
 
Energy lost by the bunch evaluated by taking the integral  
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where only the transverse components of vector-potential 
(and E

r
) are taken into account; this corresponds to pure 

radiation field.  

CONCLUSION 
    Coherent radiation in the latest wigglers/undulators 
might represent a problem if designed without its 
consideration. For planned bunches with femtosecond 

durations, practically all radiation will be concentrated in 
sub-millimeter wavelengths. For x-ray ERLs, the coherent 
radiation is in transition regime and requires attention for 
some modes of operation. It was found that wide slits 
between the magnets (see [12]) support waves with 
wavelengths larger, than the critical ones for the central core, 
as it was expected. In addition the CSR is sensitive to the 
exact dimensions of these slits, as they demonstrate resonant 
properties. For a bunch with charge 100pC, time duration 
of100fs, the ratio of the energy lost by coherent radiation to 
the energy lost incoherently may reach approximately 2.2 for 
the undulator with cmu 4.2=λ , K=2.  For the central core 

dimensions less, than the critical ones, the radiation 
propagates exclusively in the slits. In this case the transverse 
size of the beam becomes dominating parameter. This is in 
agreement with the physical expectations, as in this case the 
radiation is emitted to the sides ( 2/πθ ≈ ), so that transverse 
dimensions define the coherent threshold.  
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