
Mar 10, 2010                                                                                                                   CBN 10-3 
 
 

LITHIUM LENS (II)    
LITHIUM FLOW  MAGNETO-HYDRODYNAMICS 

  
A.Mikhailichenko, Cornell University, LEPP, Ithaca, NY 14853               

 
Abstract 

We continue our investigation of Lithium Lens (LL) for usage in ILC positron 
conversion system. Magneto-Hydrodynamic and Thermo-dynamic problems 
discussed in association with ~100 kA feeding pulsed current. Set of Partial 
Differential Equations used for description of magneto-hydrodynamics phenomena in 
liquid Lithium flow. Calculations confirm feasibility of liquid Lithium system. Some 
interesting phenomena (such as circulation in central region and some others) 
discovered in Lithium flow.  

  
 

OVERVIEW  

    In our previous publication [1] we introduced LL design, including the engineering aspects 
such as overall configuration, windows attachment and alignment concept.   

 
Figure 1: Lithium Lens for ILC positron source; extended flanges serve for electrical contact. 1–

volume with Lithium, 2–window (Be/BC/BN), 3–electrical contacts with caverns for Li, 
4–tubing for Lithium in/out [2].     

 
     One characteristic peculiarity of this design (besides usage of liquid Lithium) is the extended 
buffer toroid-like volume which serves for redistribution of flow in the central region evenly. 
Thickness of windows was chosen to be big enough to withstand pressure of ~20 atm. BN, BC and 
Beryllium-are candidates for material of this window [1].  
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PRELIMINARY REMARKS   

 
     Set of equations used for modeling could be grouped into three categories:  Electromagnetic, 
Hydrodynamic and Thermodynamic. All three have cross terms linking electric current, fluid flow 
and temperature relaxation due to thermo-conductivity, Ohmic heating, fluid motion and frictional 
heat generation due to viscose phenomena. When compessivity is included in the set of equations, 
the equation of state is required for balancing the self consistency.  
Electromagnetic: 
   As we are planning to have voltage applied to the lens as a given parameter, we have chosen 
solution through vector-scalar potentials:   
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for the local velocity, σ is electric conductivity. The last set of equations (3) means that we are 
using Coulomb calibration.  
Total energy deposition into the lens by feeding current during time ∆T can be calculated as 
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We will represent this number for single pulse which corresponds to the integration time > 2.3msec.   
Total losses associated with the single pulse are ~682 Joules arriving to 3.4 kW for 5 Hz operation 
rate for ~70 kA feeding current.  
Hydrodynamic :  
    General equations describing the transport of momentum can be written as the following [3]-[5]1  
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where momentum flux density tensor can be represented as [4] 
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First term is associated with volume distribution of pressure. Second term s associated with fluid 
motion and could be treated as dynamic pressure. Deviatoric stress tensor ),( trij

rσσσσ ′′′′  is a part of tensor 

of momentum flux density responsible for transferring of momentum by viscose forces [3].  This 
tensor can be expressed as the following 

                                                 
1 Einstein’s summation rule is in action. 
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reduced in uncompressible flow to  
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Components of this tensor define stress in liquid generated by viscose flow, i.e. it is responsible for 
transferring momenta in fixed direction at some depth, when the slice of fluid above this slice is in 

motion.  Losses in liquid per second by viscosity defined by this term as
j
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dissipation rate in whole lens on can obtain by integration of this term over whole volume occupied 
by Lithium  
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For uncompressible flow one can use (7) and substitute it in (8) arriving to  
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Motion of liquid defined by (4) after substitution there (5) 
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where ijδδδδ  is Kronecker delta, ηηηη stands for viscosity, ,3
2ηηηηλλλλζζζζ ++++==== λλλλ is a second coefficient of 

viscosity (we are not using this coefficient in our calculations). 
     For uncompressible flow 0/)( ====∂∂∂∂∂∂∂∂≡≡≡≡ kk vvvdiv
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 and equations of liquid motion reduced to the   
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In vector form these can be rewritten as  

)()()(( 2 BjvPgradvv
t

v rrrrrr
r

××××====∇∇∇∇⋅⋅⋅⋅−−−−++++∇∇∇∇⋅⋅⋅⋅++++
∂∂∂∂
∂∂∂∂⋅⋅⋅⋅ ηηηηρρρρ .                                 (12) 

If compression is not neglected but variation of viscosity along the flow is small, then equations (4) 
can be reduced to  
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, expression (13) in known as Navier-Stokes equation.  
For pressure we used an equation obtained from (13) while applied operand divergence to it  
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where ΓΓΓΓ   is  Grüneisen coefficient, C is arbitrary constant.  By brackets { } marked terms not 
involved in calculation is this current investigation, but will be used when beam –lens interaction 
will be under consideration. Term ),( trQ

r
defines profile of energy density deposition by the beam. 

Term with second derivative becomes important at times scLt B µ10/ ≅< , i.e. for excitation by 
single bunch in train.  
     Let us estimate action of magnetic field to the pressure using equation (12). For steady 
conditions in non-viscous flow at the top of feeding current equation (12) reduced to   
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One can expand these equations in cylindrical coordinates as  
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where it was substituted )2/()()( 2
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flow at central part. Maximal field value reached at the surface goes to be  
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 We can set the pressure at the surface equal to zero (free surface) which is valid for solid Lithium 
rod, so  
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Substitute for estimations ≅≅≅≅⋅⋅⋅⋅≅≅≅≅==== ∫∫∫∫∫∫∫∫ 2ajdSjI zz ππππ 70kA, a=0.5cm , one can evaluate  
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 As atmT 41 ↔≅↔≅↔≅↔≅ , the pressure at the center part of lens comes to be PaatmP 6
0 10331 ⋅≅≅ . This is 

a pressure prop between periphery and central region. In our model the pressure drop between 
inlet/outlet tube fringe was varied up to p_in=2E6 Pa (i.e. ~20atm), while at the middle of lens it 

comes to ~half of this value i.e. to  Pa6101⋅ , so the magneto-pressure influences substantially to the 
flow as it will be confirmed by numerical calculations.   
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    Situation when liquid Lithium is in use is quite different compared with solid Lithium usage. 
Namely when magnetic pressure applied to the solid Lithium there is a possibility for development 
a gap between Lithium surface and the inner surface of container. Indeed, in case of liquid the liquid 
has a tendency to fill this gap by supplied portions from inlet hose.  In modeling we set the 
boundary conditions as natural(p)=0 which means absence of flux through boundary (see below).  
Thermodynamic:  
Temperature dynamics defined by balance of energy in moving media. From thermodynamic 
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k is thermal conductivity,  pC  is heat capacity, ρρρρ  is volume density of Lithium.  
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where 2LS π≅  stands for cross section of flow. Velocity of flow in central part of lens could be 

found as big as v~100 m/sec (at max, when term )( Bj
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×  is acting) viscosity of Lithium at 573K is 
η~5.2E-4 Pa-s [6] , so the term associated with viscosity comes to be for characteristic dimension 
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So the Ohmic losses (and heating) one could expect to be much more severe, than the ones arising 
from viscosity. So although the terms with viscosity dissipation included in general model, we 
sometimes turned off these ones to speed up the calculations.   
Expression for viscosity loss term used in model (named as pfi in equation on page 9) is  
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Distribution of losses calculated with this formula represented in Fig. 43, see below. Physical 
meaning of this heat generation lies in fact that for liquid, viscosity phenomena equivalent motion 
with friction as the layers of liquid interacts through normal to direction of motion surface. So the 
friction forces responsible for heat deposited described by this term (22).   
One can see from equation (12) that for influence viscose term relatively to kinematics of liquid one 
should compare terms      

τ
ρρ v

t

v ≅
∂
∂⋅
r

  and  2
2

r

v
v

ηη ≅∇⋅ r
.                                           (23) 

Ratio of these terms is Reynolds number    

η
ρ

τη
ρ

η
τρ rvr

rv

v ⋅⋅≅⋅==
2

2/

/
Re ,                                            (24) 

where was substituted τvr ≅ , r stands for characteristic distance and τ stands for characteristic 
time scale of process. For our parameters r~1cm,  v~1m/s  viscosity  
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means that Lithium motion is turbulent brining problems with modeling, as there is no steady 
solution for the flow.  
Magnetic Reynolds parameter defined in magneto-hydrodynamics as a ratio of characteristic 
dimension to the depth of skin layer [4] (see equations (1)-(3) and (29) below) 
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in our case Rem~1.  In the same manner one can introduce Thermo Reynolds number as a ratio of 
characteristic dimension to the thermal skin layer thickness (see (19)); 
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First, let us estimate thermal skin layer depth pT Ck ρτδ /= . Substitute here k=43.15 W/m-K, 

Cp=4.38 kJ/kg/oK, one can obtain  
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while mmv 43 10[sec]10sec]/[1.0 −− ≅⋅≅τ , i.e. ReT~1. This means that for one millisecond thermal 
diffusion is of the order of flow distance.  
 
 



 7

NUMERICAL MODEL  

    All equations represented in previous section are used for modeling of Liquid Lithium flow. For 
modeling with these equations, Partial Differential Equation solver FlexPDE [8] is used. As it could 
be concluded from description of this software, it uses Galerkin method on the basis of trigonometric 
polynomials.  This solver uses then modified Newton Raphson iteration procedure. This code allows                                                                                                                             
easy access to the problem script and it is user friendly. Other possibilities might be associated with 
the COMSOL and ANSYS; these both have solvers for fluid motion. 
    3D model was erected, some imperfections (such as ~0.1mm shift of Lithium central part and 
feeding tubes) was modeled. Although inlet and outlet tubes attached in slightly different style as in 
our engineering model, this does not influence results and was just made for simplification. What is 
important here is that viscose phenomena mostly effectively manifested exactly at the inlet and 
outlet tubes, where reduction of velocity is substantional, despite the input pressure kept at the level 
of 1-10atm.  
FlexPDE divides the volume mesh in accordance of accuracy required; the accuracy is merely a 

matter of time. We did not uses extreme values, as the 10% accuracy is more than enough for most 
realistic conditions. As velocity is much different in different parts of lens, Reynolds number serves 
just for general characterization of Lithium flow (for example velocity comes to zero at the inner 
surface). In our model we used maximal value of velocity over all volume and the size of model as a 
characteristic dimension:  RE=density*globalmax(vm)*2*L/visc  , where vm stands for velocity 
modulus.  So this number is a major one for the problem at any time.    
 

      
Figure2: Model 1 and Model 2 use the same equations; model 2 has no mesh in upper and lower 

layers, sometimes we excluded even volume occupied by windows.  
 

    As one could see, the full problem is a set of differential equations, in which instant values of 
variables from one equation used in another as given and vice versa. So this becomes complicated 
nonlinear problem, sensitive to the sequence of equations to be solved. Time dependence adds to 
complexity, as the time step of one variable propagates through the model by appropriate algorithm, 
which is sensitive to the values of others variables, time step itself and spatial division of model 
(mesh size). For pure hydrodynamic part of equation set the model could be simplified by excluding 

2L 

Windows 
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the regions where the Lithium is not flowing. For calculation of magnetic field we using vector-
scalar potentials which have boundary conditions of rather different nature, so for simplicity we 
restore the grid in layers having feeding tubes and the ones reserved for windows. So we used two 
grid systems for our problem depending of problem to be solved.  
Volume represented at the right required for easier satisfaction of boundary conditions for vector 
potential. For heat and liquid transport this volumes at the top and bottom of model could be voided.  
In full model we set viscosity, heat conductivity electric conductivity in volume where there is no 
material as  

layer 'down'   sigma=1e-15   visc=1e10  k=1e-15  density=1e10 
layer 'up'        sigma=1e-15   visc=1e10  k=1e-15 density=1e10 

 

which stands for 111510 −−= mOhmσ  , sPa⋅= 1010η ,  mKWk //10 15−= , 310 /10 mkg=ρ   

           
Figure3: 3D sketch of model as it appears in FlexPDE. 

 

 
Figure 4: Dimensions of model, mm.  All dimensions are subject of optimization process.  

 

Tube 

Tube 
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Accuracy of calculations set within 10-3-10-4 for most variables which are velocity, vector-potential, 
scalar potential, pressure, temperature (plus time derivative of pressure, not used in this series of 
calculations, but will be used in modeling with beam).   
Dimensions for modeling cover L= ± 3cm in vertical direction; radius of model Ra=2.4 cm; other 
dimensions given in Fig.4 above. 
 
Variables and parameters 
Variables are: three components of velocity (vector v

r
),  three components of vector-potential  

(vector A
r

),  temperature  T and pressure P.  

v(1e-2)=vector(vx,vy,vz)  A(1.e-3)=vector(Ax,Ay,Az)  U(1e-3) P(1e-2)  Temp (1e-3) !dpt(1e-3) 

 
Other numerical parameters used for this modeling are [6] (temperature in Kelvin)  

467.0

3500
16.27404657.05.278 







 −⋅+⋅−= T
Tρ ,   kg/m3 

2510243.105.028.22 TTk ⋅⋅−⋅+= − ,   W/m/oK 

( )41237239 1023.91033.510035.1064.19.64/10 TTTT ⋅⋅−⋅⋅+⋅⋅−⋅+−= −⋅−σ ,  Ohm-1m-1 

241091.2925.04754 TTCp ⋅⋅+⋅−= − ,  J/kg/oK 

( ) sPaTT ⋅+⋅−−= /1.292ln6374.0164.4expη   
 

For temperature 473oK (200oC; melting temperature of Lithium is 454 oK or ~181oC)), this comes 

to sPa⋅⋅= −410686.5η . In [7] represented slightly different approximation of viscosity based on 
measurements by oscillating-cup vicousemeter in temperature range from 464 to 923 K as 

)/66.703exp(10522.1 4 T⋅⋅= −η  

For temperature 473oK this formula gives 41074.6 −⋅≅η  Pa-s. The difference lies below the 
accuracy of calculations.  
 

Initial values 
vx=0  vy=0  vz=0  P=1e6  Temp=Ta+(Tb-Ta)*(z+L)/2/L or Temp=Ta  

 

so the initial temperature is linearly varying from inlet to outlet  from value Ta to Tb.  In latest set 
of runs, temperature of all walls along the model was chosen  to be 480 oC.  
Tuning of model 
First, it was necessary to choose initial pressure and pressure drop actoss inlet/outle tube orifices. In 
time predecessing appearance electric current it is easy to arrange steady flow. Pressure chisen of 
the order of few atmosperes and pressure drop settled articficially in some margings to obtain a 
stedy flow (what defined basically just by pressure drop across model).  
For exclusion of Gibbs phenomena  some artificial diffusion was introduced. It based on including 
terms with ~div(v) in equations, for uncompressible flow this term is zero, but gives some 
decrement. Anouther way to controll calculations in FlexPDE is usage of opernd THEN . In 
sequence of equations it plays role of distributor of sequence within one step of calculations with 
few equations. Namely, the text in script with operand THEN  looks like 
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EQUATIONS 
U:    div(J)=0. 
A:    div(grad(A))=0  
THEN  
v:          density*(dt(v)+dot(v,grad(v)))+grad(p)-visc*div(grad(v))=cross(J,B) +visc/3*grad(div(v))         
p:          div(grad(p))=density*div(dt(v)+dot(v,grad(v)))+div(cross(J,B))+1e5*visc/r^2*div(v)    
                              +visc/3*div(grad(div(v)))  !+1/c02*dt(dpt)!-G/c02*Q     
Temp:  density*cp*(dt(Temp)+dot(v,grad(Temp)))-k*div(grad(Temp))+p*div(v)=dot(J,E) +pfi 
 
pfi  stands for set of terms described  by (22). Each set of equations solved one by one; while 
solving the set within THEN , the variables in other equations hold constant during one time step. 
Equations are the same in two models. Except the one with omitted mesh at lower and upper layers 
and in grooves for windows used for hydrodynamical calculations only.  
 
 

PRESSURE DYNAMICS 

    Pressure set at input and output orifices of Lithium duct at the model boundary as  value(p)=p_in,   
value(p)=p_out  respectively.  Boundary conditions for pressure in modeling with FlexPDE electric 
feeding pulse heating defined as  nPPnatural ∂∂∂∂∂∂∂∂==== /)( , where 

++++








∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂⋅⋅⋅⋅−−−−⋅⋅⋅⋅++++××××⋅⋅⋅⋅

++++








∂∂∂∂
∂∂∂∂

++++
∂∂∂∂
∂∂∂∂

++++
∂∂∂∂
∂∂∂∂

++++
∂∂∂∂

∂∂∂∂
⋅⋅⋅⋅−−−−⋅⋅⋅⋅++++××××⋅⋅⋅⋅

++++








∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂++++

∂∂∂∂
∂∂∂∂⋅⋅⋅⋅−−−−⋅⋅⋅⋅++++××××⋅⋅⋅⋅====

∂∂∂∂
∂∂∂∂

)()(()(

)()(()(

)()(()(

z

v
v

y

v
v

x

v
v

t

v
vgraddivBjn

z

v
v

y

v
v

x

v
v

t

v
vgraddivBjn

z

v
v

y

v
v

x

v
v

t

v
vgraddivBjn

n

P

z
z

z
y

z
x

z
zzz

y
z

y
y

y
x

y
yyy

x
z

x
y

x
x

x
xxx

ρρρρηηηη

ρρρρηηηη

ρρρρηηηη

rr

rr

rr

        (27) 

For inlet tube pressure is set to P_in=1E6 Pa, for outlet one it is set to zero. Boundary condition for 
velocity at the inner surface of the lens are set as ),,( 000vectorv ====

r
, so there is no sliding along the 

surface. This could be easily modified, however, if necessary.  
 

.     
 

Figure 5: Pressure without electric current. 
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During modeling relative orientation of inlet and outlet tubes was varied just for understanding the 
dependence. With skew symmetrical orientation the temperature and pressure variation was 
minimal, but mirror symmetry induced by design, yield slight bigger asymmetry, which was found 
acceptable.  Each time dependent picture could be represented as a movie. Size of file with results 
for ~12msec calculations occupies ~7.9 GB and takes ~7 hours of calculation on PC with quad 
processor with multi-thread (4 threads) processing.     
While full model is in use the pressure at the boundaries transferred through, so it appears in regions, 
where materials are absent. This happens as we did not surround Lithium by container which holds 
the pressure.   

 
Figure 6: Pressure in volume while current is running.  

 

 
Figure 7: Pressure from previous Figure zoomed at central region, term BJ

rr
××××  in on. Inlet pressure 

p_in=1.5e6 Pa, delp=1.5e4 Pa. Left side of this plot considers with axis of flow from 
window to window. Time ~1.84 msec from beginning of process.  
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Figure 8:  History of pressure at central point. One can see that pressure jumps ~1.5 times in this run.  

 

 

ELECTRIC CURRENT FLOW  

Substitute in equation (2) values of current from (1) one can obtain  

0))(())(()()( ====
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σσσσσσσσσσσσ                     (28) 

This equation used for definition of potential. Drop of potential inside Lithium defined by finite 
resistivity ][103.0 117 −−−−−−−−⋅⋅⋅⋅≅≅≅≅ mOhmσσσσ . 

Equations (1)-(3) correctly describe diffusion of filed inside Lithium. For example, substitute in (3) 
expression for current (1) one can obtain  

0)())(())(( =×⋅⋅+
∂
∂⋅⋅−

∂
∂⋅−=⋅+ x

x
xxx Bv

x

U

t

A
AgraddivjAgraddiv

rrσµσµσµµ ,     (29) 

and so on for other components. It is clearly seen from here that this is diffusion (parabolic) 
equation with skin layer depth defined as characteristics of this equation, i.e.   

ττττ
µσµσµσµσ

δδδδ
≅≅≅≅2

1

e

                                                               (30) 
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Figure 9:  Electric current, Ampers.  
 

Voltage applied to the lens taken as a sum of three odd harmonics  
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for  ττττ<<<<<<<<ττττ 10
11

10
1 t  where sec3.2 m====ττττ . Beginning of the voltage pulse shifted from the moment of 

modeling start t=0 by 10/ττττ . Graph of current ∫∫∫∫==== dSrjtJ z )()(
r

, where surface integral of 

longitudinal component of current density is taken across the flow in central part, is shown in Figure 
above.  Field histories are shown in Figure below for radial displacements r= 0.25; 0.4; 0.5; 0.6; 0.7; 
0.8; 0.9; 1.2 lr××××  where cmrl 55.0====  stands for the radius of Lithium rod in central cross section  

 
Figure 10:  Magnetic field history for different radial positions. Diffusion terms turned “off”. Field 

given in Tesla units. 
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Time scale in seconds, fields in Tesla. Maximal field value graph corresponds to displacement of 

0.9 cmrl 55.09.0 ××××==== . Terms in current ~ )/( tA ∂∂∂∂∂∂∂∂−−−−
v

σσσσ  not included into this calculation.  

 

The view of field with vector-potential terms, i.e. for )()/( UgradtAEj σσσσσσσσσσσσ −−−−∂∂∂∂∂∂∂∂−−−−========
rrr

 represented 
in Figure below.  
 

 
Figure 11:  Magnetic field history with diffusion terms “on”. 

 
One can see, that the difference manifests in time regions, where variation of voltage rate is high 
(skin-layer build up and dissolving).   

 

 
 

Figure 12:  Potential. By blue arrows it is shown the Lithium flow, by red-current.  

-U 

+U 

-U 

+U 
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Voltage applied to the side surface of cylindrical boundary. In some runs we switched relative 
directions of current and liquid flow.  
 

 
Figure 12:   Magnetic field strength painted.  

 
 

 
 

Figure 13:   Vertical (longitudinal) magnetic field contours.  
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Figure 14: Vectors of current density. Value of current density represented by the length of arrows 
and theirs color.  

 

 
Figure 15: Field elevation across midplane of model.  
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Figure 16: Magnetic vector field in midplane of model. 

 
 

 
Figure 17: Longitudinal field dependence at 0.8 radius of lithium rod; ),0,8.0()( zyrxBzB ===  

 
Family of graphs like in Fig. 17 for different offsets allow calculation of integral as function of 
transverse offset (displacement) , Figs. 18, 19.   Namely,   
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∫
−

==
L

L

dzzyxBxInt ),0,()(  

 represented in Figs.18, 19 below.  
 

 
 

Figure 18: Field integral over longitudinal direction as function of radial displacement 
before correction of geometry made 

 
Correction of geometry applied 
Correction of Lithium flow radius, window radius were done while modeling.   

 

  
 

Figure 19: Field integral for corrected geometry  
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Figure 20: Field across. Corrected geometry  

 
By comparing graphs in Fig. 20 - Fig.15 and Fig.18-Fig.19 one cans see, that the field dependence 
is much more linear after correction done.  

 
 

LITHIUM FLOW   

  Flow of Lithium is governed by vector equation (7). In FlexPDE Grammatik components look like 
the following  

 

vx: density*(dt(vx)+vx*dx(vx)+vy*dy(vx)+vz*dz(vx))+ dx(p)-visc*div(grad(vx))= xcomp(cross(J,B))  

vy: density*(dt(vy)+vx*dx(vy)+vy*dy(vy)+vz*dz(vy))+ dy(p)-visc*div(grad(vy))= ycomp(cross(J,B))  

vz: density*(dt(vz)+vx*dx(vz)+vy*dy(vz)+vz*dz(vz))+dz(p)-visc*div(grad(vz))  = zcomp(cross(J,B)) 

 

FlexPDE-version 6 allows writing this system as single vector equation  

         density*(dt(v)+dot(v,grad(v)))+grad(p)-visc*div(grad(v)) – 1/3*visc*grad(div(v))=cross(J,B) 

(compare with (13): 

( ) )())(()()( 3
12 BjvdivgradvPgradvv

t

v rrrrrrr
r

×=+−∇⋅−+






 ∇⋅+
∂
∂⋅ ηζηρ       )  
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Figure 21: Contour of Lithium velocity module.  

 
Figure 22: Vectors of velocity, no electrical current yet.  

High pressure; stationary solution for }{ zxv ×⊥r . Tubes have off set ~0.01mm.  Re~2865. 



 21

  
Figure 23: Developed turbulent flow at higher Reynolds number with different initial pressure and 

pressure drop along the Lithium flow during transition.   

Despite the turbulence is pretty developed, the flow in central region remains quiet as is could be 
seen in Figure below. 

 

 

Figure 24: Velocity vector plot; by the cut made in orthogonal plane.  
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Figure 25: The same cut as in previous figure, but now the 222
zyxm vvvv ++=  is painted by color.  

 

 

Figure 26: Re~15000; time dependent problem with linear pressure drop rise. One can see, that 
central axis of flow is shifted. Arrows normalized to the same length; velocity represented by color. 

    As we could expect from equation (12) the pressure gradient developed by term )( Bj
rr

×  is big in 
comparison with pressure drop along lithium flow (between inlet and outlet orifices).  
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Figure 27: Inlet tubes slightly squeezed. 

 
Figure 28: Contour plot of )(vdiv

r
; it is zero practically everywhere with numeric accuracy.  
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Figure 29: Vectors of velocity zoomed. Left axis coincides with lens axis. 
 
 

 
 

Figure 30: Velocity profile from previous Figure zoomed; no electric current.  
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Figure 31: Vectors of Lithium flow in transition volume.  

 

 
 

Figure 32: Velocity profile across inlet tube. Some deflection of profile from parabolic defined by 
accuracy of calculation.  
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Figure 33: Velocity profile across outlet tube.  
 

One can see that the velocity profiles are the same at input and output tubes.  
 

 
 

Figure 34: Velocity profile just below outlet tube.  
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Figure 35: Velocity profile in the middle of model (across the plane with central point {x=0, y=0, 
z=0}. 

 

Now the current is running;  Figures below reflect circulation forced by BJ
rr

×××× term.  
 

 
Figure 36: Velocity vector-field. Term with BJ

rr
××××  is now included; maximal field.  

  

 
Figure 37: Cut in rectangular plane.  
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Figure 38: Velocity contours joint points with the same velocity module.  
 
 

 
 

Figure 39: Velocity contour painted. One can see asymmetry induced by systematic flow. 
Turbulence pretty manifested.   



 29

 
 

 
Figure 40: Plot of velocity (Fig.37) zoomed. Left side coincides with axis of lens. Circulation is 

clearly seen here.  Moments of time correspond to the field at maximum.  
 
 

Typical dependences of Re number during rise of pressure drop to its maximal value delp=1N/m2 
according to the low  
 p_in=1e6 
 p_out= IF t<tau/10 THEN p_in-delp*10*(t/tau) else p_in-delp 
is shown in Fig below. 

 
Figure 41: Time variations of Reynolds number while the change of pressure drop.  
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Would like to attract attention, that viscosity is so small (in numerical expression), so the pressure 
drop along the model is very small.  
  

TEMPERATURE  

     One can see that equation (19) is a parabolic (diffusion) type. Really, the temperature relaxation 
in absence of dissipation (after feeding pulse is gone), time dependence of temperature defined by 
(19)  with all terms at right side set to be zero, divergence also, so 

),()()())(()( trQ
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v
EjvdivPTgradkdivTgradv

t

T
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k

i
ikp

r&
rrrr +

∂
∂′+⋅=⋅+⋅−
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∂
∂⋅ σρ
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0))(()( =⋅−
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∂
∂⋅⋅ TgradkdivTgradv

t

T
Cp

rρ   .                                           (32) 

As we already mentioned, (26),  thermal skin layer Tδδδδ  defined by characteristic of this equation as  

ττττ
ρρρρ

δδδδ
p

T

Ck ====2  ,                                                                   (33) 

and it makes diffusion processes mentionable here.   
     Initial profile of temperature was set as   Temp = Ta+(Tb-Ta)*(z+L)/2/L as a start one; it is 
quickly reversed to proper one. In case, when temperature of lens boundaries kept constant, 
temperature was set as Temp=Ta at all boundaries 

The source of heating in equation (19), )( Ej
rr

⋅⋅⋅⋅  represented in Fig. 42 below.  

 
Figure 42: Ohmic losses. 
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Viscous losses calculated with formula (6) represented in Fig. 43 below.  
 

 
Figure 43: Viscose losses, formula (22).  

 
One can see, that these losses manifest in transition region. We would like to attract attention that 
scales in Figs differ 1000 times.  
Temperature history calculated for few scenarios. In a first one the fixed temperature kept at the 
entrance and exit only allowing establishing temperature at the walls in between by the heat 
generation. 

 
Figure 44: Temperature history for six different positions. 

 
Locations of points where temperature represented shown in Fig.45 below 
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\  
Figure 45: Temperature profile painted. Letters correspond to the graphs in previous Figure 44. 

Points f and h located at the side with outlet and inlet tubes respectively.  
 
Next Figures show the temperature and its profile at ~12msec.  
 

 
Figure 46: Temperature graph extended to ~12 msec. Points are the same as in previous Figure. 

 
 

e f d 

a 
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Temperature rise at point e (and g) is a result of drift more warmer pats of liquid towards the outlet 
tube.  

 
 

Figure 47: Temperature profile painted, 11.5 msec passed since start.  
   

Drift is clearly seen here. So the temperature at point i is the lowest one and drops its temperature 
fasted, than any other one.  We would like to remind, that time between beam trains in ILC is ~200 
ms for 5 Hz operation. 
   We recommend arranging this side towards the target, so the heating condition will be relaxed 
substantially.  Further time development up to 80 ms  is shown in Fig.48  below  
 

 
Figure 48: Temperature in Celsius in this plot. 76.4 msec passed.  
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One can see that temperature in point h is relaxing to the inlet temperature (250 Deg) in quickest 
manner.  This is due to the liquid flow. Appropriate temperature profile in all cross section is shown 
in Fig below. A “tongue” with lowest temperature can be explained by flow from inlet tube, which 
located close to this side.  

 
 

Figure 49: Temperature is given in Celsius; temperature kept fixed at the entrance and exit only. 
76.4 msec passed. 

 
In other scenario the temperature of all walls kept fixed at 480 oK. As the speed of liquid 
reaches 100 m/s by magneto effect, that means that the distance between the wall and center of lens, 

~0.5 cm liquid passes in sms µτ 5005.0100/105 3 ≡=⋅≅ − . As the pulse duty is 2.3 ms, this effect 
should be significant. Result is shown in Figure below. 
One can see that high temperature liquid moved to the central region. Temperature rise is 
substantially lower, than in first case and cooling is going much more effectively.       

 
Figure 50: Temperature history at the same points, when the walls temperature kept constant at 

480oK. 
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Figure 51: Temperature profile for the temperature kept 480 oK at the walls 

 

DISCUSSION 

     The magneto-hydrodynamic problem of Lithium flow is extremely complicated for numeric 
modeling due to nonlinear nature of equations involved. Low viscosity of liquid Lithium (as it is 
about the same as it is for hot water) magnifies difficulties of problem modeling. Lithium flow in 
the volume is pretty turbulent for pressure drop in the model within fraction of atmosphere. So some 
stabilizing mechanisms typical for numeric modeling should be used here. Reduction of pressure 
drop (inlet/outlet) to 0.01 atm allows steady laminar flow.  
     Meanwhile in the big picture, the following was identified during modeling: when the current 
starts running through Lithium, it generates a substantial pressure difference across the flow which 
reaches few tens of atmospheres. This pressure rise is defined by velocity-dependent part as 

BBvBj
rrrrv

××⋅≅× )()(~ σ .      

       Sequentially, the velocity of liquid reaches tens of meters per second (~100 m/sec max) inside 
small volume of lens. This rapid vortex motion raises dynamic pressure a few times compared to 
initial one, but liquid is rapidly mixing, caring cold fractions, which were in contact with walls, to 
the central region. We can treat this process as forced convectional cooling. Here is the key 
difference between solid and liquid Lithium: in case of solid, compression of Lithium rod in radial 
direction transferred to longitudinal direction (towards windows) according to atomic forces 
according to Poisson ratio. Tendency of radial divergence of material is suppressed by atomic forces 
inside solid, so we expect that in case of liquid the hit of window is smaller. In any case the pressure 
at the surface of the window is ~ 3 times lower, than the one in central region.   

    One can estimate, that velocity ~100 m/s will mix the Lithium volume within time frame 

~ smssmmvr µ5005.0]/[100/][105/ 3 ≡=⋅≈ − , which is forty times less than the feeding electric 
pulse duration. So roughly, the temperature gain after passage of single 1ms-long train could be 
considered as the one distributed over the whole Lithium volume. As the one is ~6 cubic 
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centimeters, and the total energy deposited in a volume by Ohmic losses calculated to be ~682 
Joules, the temperature gain could be majoretted as 

K
cV

Q
T

V

°≅
⋅⋅⋅⋅⋅

≅
⋅⋅

≅∆ − 50
104.4106105.0

682
363ρ

.  

Direct calculations show, that maximal temperature rise is somewhere around 20oK in scenario 
when the walls are kept at a fixed temperature.  

So the effect of magneto in liquid Lithium helps in cooling the volume. By keeping the temperature 
of the walls just above the melting point, situation with cooling could be relaxed further.  

One can consider even more radical scenario, when the Lithium is melted by the electric pulse itself, 
while between pulses it remains in dual hard and liquid phase.  

    

SUMMARY  

   Lithium lens consideration, which includes magneto-hydrodynamics in absence of beam, indicates 
interesting phenomena in liquid Lithium lens while magnetic pressure is acting to the flow. In 
particular, we discovered vortex circulation of liquid Lithium due to magnetic force.  This effect of 
magneto helps in drastic reduction of temperature in central region of windows, thanks to forced 
mixing.  Presence of buffer toroid-like volumes is desirable for this process.  
   Motion of Lithium in system is deeply turbulent, which makes modeling extremely difficult, with 
some stabilizing  mechanisms  and tuning model, the solution could be found even for Re~5000.    
   Calculated pressure and temperature profiles and some optimization confirm that parameters of 
lens are technically reasonable. Generally, the temperature rise is below 50 oC coming to a total of 
~100 oC with beam as the beam duty of train is ~1 msec –is less than the time when feeding current 
applied  (and when effective convectional mixing mechanism is in action) .  
    We recommend increase of length of space occupied by Lithium (in direction along the beam 
pass) to ~1 cm (from~0.6cm in [1]). This brings reduction of current to ~70 kA.   
     We also slightly modified the configuration of junction between Lithium cylindrical container 
and the buffer toroid-like volume. This improved linearity of integrated field as function of 
transverse coordinate.  
    In following publications we will represent the beam action to the processes; all computer code 
preparations are done for this. Saying ahead, the beam-train deposited rise of temperature stays 
below 100 degrees in mostly critical locations (entrance window). Very short beam pulse introduces 
new phenomena in the process, however.  
   Numerical code developed allows further investigation of Lithium lens dynamics and easy 
modification of geometry. Mostly time was spent developing proper boundary conditions.   
   Stress-strain in windows, Shock waves and Cavitations introduced by the beam will be described 
in separate publication. Saying ahead we express assurance that there are no apparent limitations for 
usage of lens with liquid Lithium for positron production busyness.   
   Usage of FlexPDE computer code looks more or less adequate here as there are no visible nuances; 
although at some stage the usage of more advanced codes (such as ANSYS) may be necessary. Best 
test for liquid Lithium lens remains the full fabrication of lens with power supply and a live test.  
 
Work supported by DOE grant DE-AC02-98CH10886 
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