ADVANCED CONCEPT FOR HIGH ENERGY ACCELERATOR

Alexander Mikhailichenko
Cornell University, Wilson Lab, Ithaca, NY 14853

Presented at FERMILAB seminar on September 10, 2009

ABSTRACT

-We describe the method for long term acceleration of charged particles with the help of laser radiation.
-This method uses many multi-cell microstructures aligned along the straight beam path. Each cell of microstructure has an opening from one side. Focused laser radiation with appropriate wavelength excites the cells through these openings. This excitation is going locally, in accordance with instant position of accelerated micro-bunch of particles in the structure. For this purpose special devices controllably sweep focused laser spot along the openings. This arrangement, what was called Travelling Laser Focus (TLF), reduces the instant power required from the laser source and reduces illuminating time for the every point on the structure. So the laser density does not exceed 0.3 $\mathrm{J} / \mathrm{cm}^{2}$ for accelerating rate $\sim 10 \mathrm{Gev} / \mathrm{m}$. Illumination time for every point is $<0.3 p s$ while the time duration of laser pulse is $\sim 0.1 \mathrm{nsec}$. So $2 \times 1 \mathrm{TeV}$ collider will be $\sim 2 \times 100 \mathrm{~m}$ long and will require a laser flash $2 \times 0.3 \mathrm{~J}$ total.
-All components involved in the method described are using technology of present day. For energy $\sim 1 \mathrm{TeV}$ the luminosity could reach 10^{35} with wall-plug power of few tens of kW only. Cost of such installation could be as low as $100 \mathrm{M} \$$ (without cost of detector).

Why do we need high energy particles

Presence of particles with energy $>1000 \mathrm{TeV}$ in cosmic rays gives foundation for further quest for higher energy achieved in accelerators
This tells us that high energy particles were somehow involved in general processes of formation of our universe.

Some authors speculate that supernova shock freely expanding into stellar wind cavity may produce particles up to $10^{19} \mathrm{eV}$ of a supernova explosion in a compact star.
H.Volek, P.Biermann, " Maximum energy of Cosmic -ray particles Accelerated by Supernova remnant Shocks in Stellar Wind Cavities", Astrophysical Journal, Part 2-Letters (vol.333, Oct 15, 1988,p.L65-L68

Although in mostly publications radiation does not considered at all and claim that shock wave (even complicated genealogy) could accelerate up to these energies -
Experimental confirmation of high energy component in cosmic rays is a motivation.

How big is "High energy"

Spectrum flux of Cosmic radiation

Livingstone diagram

Fixed target $: \mathrm{E}_{\mathrm{cm}} \approx \mathrm{c}(\mathrm{Em})^{1 / 2}$
Collider $: \mathrm{E}_{\mathrm{cm}} \approx 2 \mathrm{E}$
1 TeV cm e ${ }^{+} \mathrm{e}^{-}$collider will be equivalent $1 \mathrm{TeVx2} \cdot 10^{6} \approx 2 \cdot 10^{18}$

Point must be here

OBSTACLES ON THE WAY TO HIGH ENERGY

First disastrous wave arrived with laser people.
Since it was understood, that electric field strength in a focused laser spot has tremendous values, numerous proposals were generated in attempt to utilize this high field strength.

It was spend a lot of time (and publications) for explanations from accelerator physicists, that there is no long-term acceleration in free space and that the field what accelerates the particles, reaches it's maximum on the surface.

There is no either any stable acceleration if the distance between trajectory and closest point on the surface is more than an accelerating wavelength.

Stable means here -not sensitive to fluctuations in a laser beam intensity and its transverse distribution and, of cause, a long terms acceleration.

This first wave undermined the subject significantly in the minds

Second disastrous wave arrived with plasma people.
People worked there for decades could not reach the goal of theirs activity-controlled thermonuclear reaction. Some of them began to look for escape subjects. These people have rather high formal qualification.

However, only recently they realized that the small parameter in accelerator physics is $\Delta p / p$, not $\Delta v / v$.
Even now not all of them realized that in accelerator physics small value is something about 10^{-8} (say in terms of emittance) but not with respect to unity.

Seems, that nobody of these people till now have clear understanding that any scheme for a long-term acceleration must be stable under fluctuations of parameters.
It is easy to met publications made with use of tens of hours of supercomputer processor time for modeling the plasma waves for acceleration and numerous sophisticated theoretical investigations on this subject. But only one look onto results of these publications- and it is clear that they do not contain any indications that fluctuations included.

Same surprisingly look some experimental results from the plasma people. They are showing the transverse cross-section of the laser driving beam or electron driving beam even without mentioning that these cross-sections must be round with the accuracy satisfying the emittance preservation -10^{-8}. Even then they must prove that statistical fluctuation in diluted plasma can not destroy the emittance.

But result will be likely negative, as these people lost the spirit of finished work, as they did this in a thermonuclear activity. A lot of other factors not taken into account and important for linear collider operation will destroy any scheme proposed by plasma people.

TECHNOLOGY AVAILABLE IS ALWAYS AHEAD OF SIENTIFIC UNDERSTANDING

- Technology might be at hand in general, so with necessary funds one can buy it on the market.
- Phonograph could be manufactured in Ancient Egypt. Writing sounds (words) on a wooden plates covered by beeswax or clay tables was a common procedure. Disk phonograph is even closer to the practices of those ancient days. So if somebody could show this device at those times, it would be not a problem to fabricate (make) a working copy with technology available there. Jewelry can serve as a reference for fine work possibilities.
- Delta-wing and even some simple electrical elements also can fulfill the list. One can easily add to this. So as one can see, the driving force here is an idea on how combine things in desire to reach one specific goal with equipment available.
- Steam engine could be manufactured the times of Rome Empire. Usage of this kind phenomenon for transportation could be demonstrated also: just if one could make a belt from rotating sphere to the wheel in a famous toy developed by Hero.

Our goal was to find such a scheme for acceleration of charged particles, which can be realized at present days with technologies available on the market.

This activity requires shill understanding on what is possible to do and on how to do it with the existing technology.

Field strength in a laser wave

Laser is a natural source of power for application in accelerator physics. Really, the flux of power P running through the area A

$$
\vec{P}\left[\frac{\text { Power }}{\text { Area }}\right]=\vec{E} \times \vec{H}=\vec{n} \frac{E^{2}}{377} \quad\left[\mathrm{~W} / \mathrm{m}^{2}\right]
$$

defines the electric field strength as

$$
E \cong \sqrt{377 \frac{P}{A}} \quad[\mathrm{~V} / \mathrm{m}] \quad \text { Photons are coherent }
$$

If 1 W falls on $1 \mathrm{~cm}^{2}$, then $E \approx 2 \mathrm{kV} / \mathrm{m}$
If 1 W falls on $4 \mu \mathrm{~m}^{2}$, then $E \approx 10 \mathrm{MeV} / \mathrm{m}$
One can easily scale the last numbers to GW and even TW levels of laser power
Natural limit for the field strength emerges from requirement that the work done by electric field to the particle on the distance of Compton wavelength is equal to the rest energy of electron-positron pair

$$
E^{\infty} \cong \frac{2 m c^{2} / e}{\lambda_{C}} \cong 1 M e V / 3.86 \cdot 10^{-13} \mathrm{~m} \cong 2.6 \cdot 10^{18} \mathrm{~V} / \mathrm{m}
$$

Interaction between EM wave and particle is a two photon process

Particle acquires many RF photons during the acceleration process. In principle one can imagine the energy exchange between single high energy photon (having TeV scale), but in this case the source of these photons in quantities required will be a much more difficult problem, however.

Coherent photons stored

This second photon is crucial agent in all business. Presence of this (radiated) photon allows, for example, particle acceleration by the plane wave; the process is going while particle re-radiates. In terms of photon absorption, the cross section of this process decreases with energy preventing usage of this method at high energy.

The possibility to accelerate charged particles of any sign of charge is a vital component for High energy physics.

It is not shown where this second photon hidden in plasma methods, however (Cherenkov). Accurate to 10^{-9} confinement of accelerating field is not possible due to low density of carriers. Looks like plasma-methods are underestimate importance of positron acceleration.

Main mode E_{010} contains many coherent photons
Energy balance after the bunch passage

$$
\left(E_{\mathrm{sp}}+E_{0}\right)^{2}=\overline{\sum\left(E_{\mathrm{sp}, \mathrm{i}}+E_{0}\right)^{2}} \rightarrow E_{\mathrm{sp}, \mathrm{i}}^{2}+2 E_{\mathrm{sp}, i} E_{0}+E_{0}^{2}
$$

Change of angular momentum defined by different formula

$$
\Delta L=\frac{1}{c^{2}} \int \vec{r} \times\left(\left(\vec{E}_{0}+\vec{E}_{s p}\right) \times\left(\vec{H}_{0}+\vec{H}_{s p}\right)\right) d V-\frac{1}{c^{2}} \int \vec{r} \times\left(\vec{E}_{0} \times \vec{H}_{0}\right) d V=m c \gamma \vartheta
$$

One example

Magnetic field lines
Beam is going exactly through the center of cavity,

No energy change

No spontaneous radiation in E_{110} mode, but bunch could be deflected (Girocon)
That is why RF cavity can focus beam (and we will use this)

TRAWELING LASER FOCUS (1989)

This method eliminates restrictions associated with Raleigh length

$$
Z_{R}=\pi w^{2}(0) / \lambda
$$

Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses

FIG. 1. Observed values of damage threshold at 1053 nm for fused silica (\bullet) and $\mathrm{CaF}_{2}(\bullet)$. Solid lines are $\tau^{1 / 2}$ fits to long pulse results. Estimated uncertainty in the absolute fluence is $\pm 15 \%$.
(a)

FIG. 2. Scanning electron micrograph of front-surface damage of fused silica produced by 1053 nm pulses of duration (a) 900 ps , showing melting, and (b) 500 fs , showing ablation and fracture.

1053 nm Ti:sapphire laser system; less than 1 nm rms surface roughness Damage is characterized by ablation with no collateral damage.

Saying ahead, in our method the laser density is $<0.3 \mathrm{~J} / \mathrm{cm}^{2}$ for $30 \mathrm{GeV} / \mathrm{m}$
continue

FIG. 4. Experimental and theoretical damage thresholds for fused silica at 1053 nm() and $526 \mathrm{~nm}(*)$. The theoretical damage thresholds (solid curves) correspond to the formation of a critical density plasma ($\approx 10^{21} \mathrm{~cm}^{-3}$), as discussed in the text. Relative errors in the experimental data are shown, estimated absolute error is $\pm 15 \%$.

In our method time duration is $\sim 0.3 \mathrm{ps}$; again laser density is $\sim 0.3 \mathrm{~J} / \mathrm{cm}^{2}$
Other experiments reported that density measured $6 \mathrm{~J} / \mathrm{cm}^{2}$ for 1 ps pulse duration and $10 \mathrm{~J} / \mathrm{cm}^{2}$ for 0.3 ps pulse.

For the reference; for 3 cm long structure the pass-time to be 100 ps .

REALIZATION OF TRAVELING LASER FOCUS WITH SWEEPING DEVICE

We proposed in 1989 a method on how to arrange this local excitation with the help of sweep of focused laser radiation along the accelerating structure and called this procedure Travelling Laser Focus (TLF).

Laser radiation applied to every point of structure during $\tau=I_{t}, \lambda_{a c}$,

The number of accelerating cells excited simultaneously is $\sim I_{f} / c$

The focal point is following the beam in average.

Phase of the laser radiation is synchronized once with the particle's bunch motion.

Accelerating cells in a structure separated in longitudinal direction with distance $\lambda_{a c}$, so an electromagnetic field is in phase inside each cell.

SWEEPING DEVICE WITH ELECRO-OPTICAL PRISM

For a prism-based device, change in refraction index yields the change in deflection angle. To arrange such a change, the basements of the prism must be covered by metallic foils and a high voltage applied to them.

The deflecting angle is defined by the phase delay across the laser beam front arising from differences in the path lengths in material of the prism having a refractive index n,

$$
\Delta \vartheta \cong n \frac{\left(L_{a}-L_{b}\right)}{w}
$$

At the right- prisms with oppositely directed optical axes installed in series between two parallel strip-line electrodes, Electromagnetic pulse propagates with laser bunch to the right as traveling wave.
In this case the full length of this device is working for deflection.

Sweeping device could be characterized by deflection angle ϑ and by the angle of natural diffraction -
 having a refractive index n,

$$
v_{d}=\lambda / a,
$$

where a-is the aperture of the sweeping device which is o the order of the transverse laser beam size.

The ratio of deflection angle to diffraction angle is fundamental measure of the quality for any deflecting device. This ratio defines the number of resolved spots (pixels) placed along the structure. The last number is an invariant under optical transformations.

$$
\boldsymbol{N}_{R}=v / v_{d}
$$

The deflection angle and the number of resolved spots for such device become

$$
\Delta \vartheta \cong \Delta n(t) \frac{L_{d}}{w} \quad N_{R} \cong \frac{|\Delta \vartheta|_{\max }}{\lambda / w}
$$

Different voltage should be applied to head and tail of laser bunch

1-crystalls with oppositely oriented optical axes, 2 -strip-line electrodes

Tensor $r_{i j}$ links refraction index change and applied electrical field

$$
\begin{aligned}
& 1 / n_{i}^{2}=1 / n_{0 i}^{2}+\sum_{j} r_{i j} \cdot E^{j} \\
& \Delta n_{i} \cong\left(\partial n_{i} / \partial E_{j}\right) E^{j}(t) \\
& \partial n_{i} / \partial E_{i}=-n_{0}^{3} r_{i j} / 2
\end{aligned}
$$

GaAs
$(r)_{i j}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1.5 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & 0 & 1.5\end{array}\right) \times 10^{-12}[\mathrm{~m} / \mathrm{V}]$

Materials for 1 um: KDP,DKDP,ADP,KDA, LINbO_{3}

Materials for $5 u m: \mathrm{LiNbO}_{3}, \mathrm{LiTaO}_{3}, \mathrm{CuCl}$
Materials for 10 um: GaAs, $\mathrm{ZnTe}, \mathrm{ZnS}, \mathrm{CdS}, \mathrm{CuCl}$
$(r)_{i j}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 8.8 & 0 & 0 \\ 0 & 8.8 & 0 \\ 0 & 0 & 10.5\end{array}\right) \times 10^{-12}[\mathrm{~m} / V]$
$\Delta \vartheta \cong \Delta n(t) \frac{L_{d}}{w} \cong \frac{L_{d}}{a^{2}} n_{0}^{3} \cdot r_{i j} \cdot V(t)$

$$
N_{R} \cong \frac{\mid \Delta \vartheta \vartheta_{\max }}{\lambda / w}=|\Delta n|_{\max } \frac{2 L_{d}}{\lambda}=\frac{L_{d}}{\lambda} n_{0}^{3} r_{i j}|\Delta V|_{\max }
$$

For $L_{d}=25 \mathrm{~cm}, \mathrm{a}=0.5 \mathrm{~cm}$, deflection angle is $\Delta \vartheta \cong 10^{-2}$ $N_{R}=200$ for $\lambda \cong 1 \mu m$

Electro-optical materials for deflector

Wavelength	Materials	9, rad	N_{R}
$\lambda \cong 10 \mu m$	GaAs, ZnTe, $\mathrm{ZnS}, \mathrm{CdS}$ CdTe, CuCl	0.01-0.02	20
$\lambda \cong 5 \mu \mathrm{~m}$	$\mathrm{LiNbO}_{3} \mathrm{LiTaO}_{3} \mathrm{CHCl}$	0.01-0.02	40
$\lambda \cong 1 \mu m$	$K D P, D K D P, A D P, K D A, ~ L i N b O_{3}$	0.01-0.02	200

Despite the materials transparent for longer wavelengths have lower value of r_{y} components, they have higher values of refracting index, so the variation of refractive index becomes about the same.

PULSE GENERATOR

The pulser we developed and suggesting for usage at ERL and ILC

Scheme recommended able to generate $\sim 30 \mathrm{kV}$, 120A in $\sim 1 \mathrm{~ns}$ pulse.
This device with minimal modifications could made for 5 nsec pulse duty with front/back< 0.5 nsec .

This is HV scheme with few vacuum tubes in parallel

(a)

(b)

For commutation with vacuum tube HV RF capacitor is possible

TRIGGERING HV PULSE GENERATOR WITH DIODE

Now it is a turn for DSRD (Drift Step Recovery Diodes)
V.M.Efanov, A.F.Kardo-Sysoev, M.A.Larionov, I.G.Tchashnikov, P.M.Yarin, A.V.Kriklenko, "Powerful Semiconductor 80 kV Nanosecond Pulser", IEEE 0-78-4214-3 (1997), pp.985-987.

Principle of operation of triggering system with DSRD diodes
First, key K1 is closed and the capacitor C1 discharged through inductance and DSRD. After half period of discharge the key K2 closed and discharge current trough C2 and L2 add to the current of first loop. So the current, which is reversed to normal direction of DSRD is ~doubled, which makes ~twice faster charge dissolution from the body of diode and the current interrupts faster, see Fig at right. The time of pulse existence is defined by ratio L/R.

One practical scheme

Ls1=Ls2=Ls3=0.5mkH Ls4=2.5mkH Cs1=Cs2=0.1mkF Cs3=0.015mkF
Lc=5mkH Rc=100Ohm Dc1,Dc2,Dc3-KD213 D1,D2,D3-KC620 Tc1,Tc2,Tc3-KT915
V.M.Turkevich, I.V.Grekhov, "New Principles of High Power Commutation with Semiconductors", Leningrad, Science Pub., ISBN 5-02-024559-3, 1988 (in Russian).

This is enough for triggering pulser with vacuum tubes Schemes with DSRD exist which are able to generate up to 50 kV

OPTICAL TRIGGERING

1 - for main accelerating pulse and by 2 - for the triggering pulse. Lenses 3 focus main laser pulse on accelerating structure plane (marked 11) and short focusing lenses 6 focus laser pulse onto triggering element 7. 4 and 5 -splitters. 8 -energy storage lines; 9 - inductors. The strip-line, marked red feeds by this piece of line. By 10, 11 and 12 the laser bunch configuration, accelerating structure module and accelerating bunch trajectory marked respectively.

Sweeping EM wave is broadly in use in radars

$$
\begin{array}{cc}
\vec{H}(\vec{r}, t)=-\frac{i k e^{i \omega t+\psi}}{4 \pi}\left[\vec{n}_{R} \times \vec{F}-\vec{n}_{R} \times\left(\vec{n}_{R} \times \vec{F}^{\prime}\right)\right] & \vec{E}(\vec{r}, t)=\frac{i k e^{i \omega t+\psi}}{4 \pi}\left[\vec{n}_{R} \times\left(\vec{n}_{R} \times \vec{F}^{\prime}\right)+\vec{n}_{R} \times \vec{F}^{\prime}\right] \\
\vec{F}(\vec{r}, t)=\int_{S} \frac{\left.\left(\vec{H}(x, y, t) \times \vec{n}_{R}\right)\right) e^{i \vec{k} \vec{r}}}{r} d \sigma & \vec{F}^{\prime}(\vec{r}, t)=-\int_{S} \frac{\left.\left(\vec{E}^{\prime}(x, y, t) \times \vec{n}_{R}\right)\right) e^{i \vec{k} \vec{r}}}{r} d \sigma
\end{array}
$$

Jakson, Classical Electrodynamics, third edition, 1998.

$H_{y}(t)=-\frac{i k}{2 \pi} \frac{\exp (i k R)^{+b / 2}}{R} \int_{-b / 2}^{a / 2} \int_{-a / 2}^{2} H_{y}(x, y) e^{i i \operatorname{Sin} \vartheta \theta(x \operatorname{Cos} \varphi+\nu \operatorname{Sin} \varphi)} e^{-i \chi(x, y)} d x d y \quad \chi(x, y)=\delta(t) \cdot x$

$$
H(t)=-\frac{i k H_{0}}{2 \pi} \frac{\exp (i k R) a b}{2 R} e^{i \omega t+\psi} \int_{-1}^{+1} e^{i\left(\alpha_{1}-\delta\right) \xi} d \xi=-\frac{i k H_{0}}{2 \pi} \frac{\exp (i k R) a b}{R} e^{i \omega t+\psi} \frac{\operatorname{Sin}\left(\alpha_{1}-\delta\right)}{\alpha_{1}-\delta}
$$

Frensel integrals

$$
\chi(x, y)=\delta \cdot x+\kappa x^{2}
$$

$$
\begin{gathered}
H(t)=-\frac{i k H_{0}}{2 \pi} \frac{\exp (i k R) a b}{2 R} \frac{e^{i \omega t+\psi-i A^{2} / 2 B}}{\sqrt{B}} \int_{-u}^{v} e^{-i \varsigma^{2}} d \varsigma \int_{-u}^{v} e^{-i \varsigma^{2}} d \varsigma=-\int_{0}^{u} e^{-i \varsigma^{2}} d \varsigma+\int_{0}^{v} e^{-i \varsigma^{2}} d \varsigma=\sqrt{\frac{\pi}{2}}[C(u)+C(v)-i S(u)-i S(v)] \\
u=\frac{\frac{1}{2} \cdot k a \operatorname{Sin} \vartheta-\delta(t)+\kappa a^{2} / 4}{a \sqrt{\kappa}}
\end{gathered}
$$

ACCELERATING COMPLEX SCHEME

1-4-are the instant laser bunch positions; 1-is a primary laser bunch which is moving from the left side on the picture to the right. 5- is the beam of accelerated particles. 6-is the accelerating structure. 7-are the optical splitters. 8-are the particles' beam focusing elements (in additional to RF focusing). 9-are the sweeping devices. The distances between the structures are increased for better view.

Sweeping device serves for few accelerating structures.

Laser bunch train, 1 coming from the left and passing sequentially power splitters 3 . By 2 marked locations and configuration of the swept laser bunches. Lenses 4 installed a prior to the sweeping devices 5 having focal plane at location of lens 6 . By 7 marked power splitters and mirrors allowing feed few structures from single sweeping device. Even number of reflections (basically two), bring the slope to the proper tilt shown by 8 . This system also equipped by cylindrical lenses 9 which have transverse focus on the openings of accelerating structures. Structures marked by 10. Accelerated bunches are running to the right 11 inside structures.

We expect that this can be done for 5-10 structures.

PECULIARITY IN REFLECTION OF SLOPED LASER BUNCH FROM 45º MIRROR

GENERATION OF TILTED LASER BUNCH WITH GRATING

B.Ya.Zel'dovich, N.D. Kudnikova, F.V.Podgornov, L.F.Rogacheva, Quantum Electronics 26(12) 1097-1099 (1996).
I.V. Pogorelsky et al., Advanced Accelerator Concepts Workshop, 12-18 October 1996, Granlibakken, Lake Tahoe, CA, AIP 398 Proceedings, p. 930.

Possible set up with semi-transparent gratings

Comparison between sweeping and grating method

Diffraction angle in case of grating

$$
v_{d}^{\beta} \cong \sqrt{\lambda / \delta}
$$

For comparison with sweeping device

$$
\delta \approx l_{f} \cong l_{t} \quad \text {-spot size }
$$

For the sweeping device we have $l_{t} \cong L / N_{R} \cong a / N_{R}$
So for comparison of these two schemes, we represent the diffraction angle as

$$
\vartheta_{d}^{g} \cong \sqrt{\lambda N_{R} / a}
$$

The ratio of diffraction angles in these two methods goes to be

$$
\vartheta_{d}^{g} / \vartheta_{d}^{s} \cong \sqrt{\lambda_{a c} N_{R} / a} /\left(\lambda_{a c} / a\right) \cong \sqrt{N_{R} a / \lambda_{a c}}
$$

With some optimization of grating profile this could be improved, probably, to

$$
\vartheta_{d}^{g} / \vartheta_{d}^{s} \cong N_{R}
$$

at the best. So the advantage of using the sweeping device is obvious-it gives much smaller laser spot size in longitudinal direction.

The difference is ~ 100 times minimum in favor of the sweeping device.

DYNAMICS OF SWEEPING

Dynamics of laser bunch sweeping; a look from the side. 1-shows laser bunch configuration at the entrance, 1 a - is a bunch after second lens, 2-is a sweeping device, 3 and 3a- are the focusing lenses. 4 -is an image plane, where accelerating structure located. Beam is moving from the bottom of this Fig. to the top.

Additional lens 3 has a focal point located in effective sweeping center. After this lens laser bunches have no angular divergence. Lens 3a has focal point located at the accelerating structure, what is the plane marked 4 . So the sweeping device 2 located between lenses $3 a$ and 3.
Direction of sweep defines the laser bunch slope. For practical applications second lens 3 can be combined with cylindrical lens.

Optimization of sweeping device shows, that its length must be $2 / 3$ of distance from lens 3 a to the lens 3,

ARRANGEMENT OF LONG TERM ACCELERATION

Good place for laser amplifier

3D VIEW OF PROCESS

We keep quality factor ~10 artificially

So the field inside each cell could reach equilibrium

Laser bunch

Quadrupole cross-section. Longitudinal dimension (perpendicular to the plane of drawing) is about 0.5 cm . Accelerating bunch is moving perpendicular to the plane of the drawing. 1-is an iron blades-like looking poles, 2-is a yoke, 3-is a current strips, 4-is a current strip for vertical axes trim, 5-is a profile of the accelerating structure, 6-is a base, 7-is a cross-section of the accelerating bunch.

For pole tip field strength $H=10 k G$, aperture $a=0.01 \mathrm{~mm}$, gradient

$$
G=H / a \sim 1.0 \times 10^{4} \mathrm{kG} / \mathrm{cm} \equiv 10 \mathrm{MG} / \mathrm{cm}
$$

Waveguide sweeping device

Installation of optical amplifiers after sweeping device increases the volume of active media involved in process
This also reduces heating of sweeping device and reduces nonlinear effects

3D view of accelerating modules

Mechanical sweeping devices

V.J.Fowler, J.Schlafer, A Survey of Laser Beam Deflection Techniques, Applied Optics, Vol.5, N10, 1657(1966).

Deflection arrangements with quartz plate shear cut. This cut done with angle $\sim 55^{\circ}$ to the Y - axis of the quartz crystal. Metallization applied to the front and opposite sides of the crystal. Tilt angle shown is not in scale .

Ten stage mechanical deflecting array of three sweeping devices. M mirrors marked by 3 ($M=10$ here) installed on the quartz crystals 4. 1-is a primary laser beam, 7 -is a trajectory of a particle's beam. Crystal's oscillations phased for a maximal deflecting angle. Resulting deflecting angle is M times bigger than with a single mirror. The system shown could feed thre 41 accelerating structures.

ACCELERATING STRUCTURE

Accelerating structure is a vital component of any accelerator. It serves as a housing for accelerating field.

The mostly important role of the structure is, however, in proper positioning of accelerating field in space.

Many projects on laser acceleration suffer from sensitivity to fluctuations in laser homogeneity.
This is especially so in some schemes used split lasers beam and combined further to obtain symmetrically crossed wave fronts. In its turn precise location defined by accuracy of fabrication, accuracy of positioning, how far from equilibrium the fields are and by physical limitations.

The coupled electrons having frequencies much higher, than the laser one, define the effective boundaries of the structure for nonconductive materials.

Positioning of EM wave center

Accuracy due to electron plasma in a metal is $\sim r_{D} / \lambda$, where Debye radius r_{D} defined as

$$
r_{D}=\frac{v_{p}}{\omega_{p}} \cong \frac{\sqrt{k_{B} T / m}}{\omega_{p}}=\sqrt{\frac{k_{B} T}{4 \pi n e^{2}}}
$$

$k_{B} \cong 1.38 \cdot 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K}$-is Boltzmann's constant, T-is electron temperature, n-is an electron density in a metal,
r_{0}-is a classical electron radius. Formally, as $\omega_{p} \cong 10^{16} 1 / s \quad v_{p} \cong 10^{8} \mathrm{~cm} / \mathrm{s} r_{D} \cong 10^{-8} \mathrm{~cm}$ and the ratio for 1 mkm wavelength comes to $r_{D} / \lambda \cong 10^{-4}$

In diluted plasma with density $\sim 10^{-6}$ of density in metal, the last ratio becomes $r_{D} / \lambda \cong 10^{-1}$ only. In general, the plasma methods must experience problems with fluctuations of the number of electrons in Deb,ye sphere.

This makes stable acceleration in plasma not possible.

Any type of structure could be used with TLF method

R.C.Fernow, J.Claus, The Foxhole Accelerating Structure, BNL 52336, UC-414 1992.
J. Kirchgessner et al., Superconducting RF Activities at Cornell University, SRF 950908-13, Cornell, 1995, see also SRF 950714-05.
H.Henke, mm Wave Linac and Wiggler structure, EPAC 94, London.

Beam is going inside the structure at half of the height.
Each cell has inductive coupling with outer space as its height $\sim \lambda_{w} / 2$

Modified Foxhole type structure
$E_{s} \cong E_{m} \operatorname{Cos} \frac{\pi x}{W} \operatorname{Cos} \frac{\pi y}{h} \operatorname{Cos} \omega t \quad H_{x} \cong \frac{E_{m} \lambda}{2 h c} \operatorname{Cos} \frac{\pi x}{W} \operatorname{Sin} \frac{\pi y}{h} \operatorname{Sin} \omega t \quad H_{y} \cong \frac{-E_{m} \lambda}{2 W c} \operatorname{Sin} \frac{\pi x}{W} \operatorname{Cos} \frac{\pi y}{h} \operatorname{Sin} \omega t$

$$
k_{x}=-\frac{1}{p c} \frac{\partial\left\langle F_{x}\right\rangle}{\partial x} \cong-\frac{e \lambda_{a c} E_{m}}{m c^{2} \gamma W^{2}} \operatorname{Sin} \varphi \quad \approx 4 \cdot 10^{5} \cdot \operatorname{Sin} \varphi\left[m^{-2}\right]
$$

WAKES

Wakes calculated with MAFIA and GdfidL, FlexPDE under preparation

High gradient requires for keeping reasonable ratio of (Energy carried out by wakes) / (Energy stored in cavity)

This is in line with desire to have accelerator as compact as possible.

BUNCHING

A cascade bunching scheme. K factor in second wiggler is other, than in the first one. This scheme is an analog of a Klystron with two cavities and two drifts

FABRICATION

We suggesting Silicon mono-crystal, doped

1 - is a base. 2-material of the structure is placed on the base. 3-a photoresist is placed at the top. 4-the photoresist is exposed. 5 -some of photoresist is removed. 6-material of the structure etched. 7 -a new cover of photoresist is placed. 8-extra resist is removed. 9-material of the structure is added. 10-structure etched again.

INJECTION SOURCE

Fundamental restriction to the minimal emittance $\quad\left(\gamma \varepsilon_{x}\right)\left(\gamma \varepsilon_{y}\right)\left(\gamma \varepsilon_{s}\right)=\left(\gamma \varepsilon_{x}\right)\left(\gamma \varepsilon_{y}\right)\left(\gamma l_{b}\left(\Delta p / p_{0}\right)\right) \geq \frac{1}{2}\left(2 \pi \lambda_{C}\right)^{3} N$
A.A. Mikhailichenko, On the physical limitations to the Lowest Emittance (Toward Colliding Electron-Positron Crystalline Beams), 7th-Advanced Accelerator Concepts Workshop, 12-18 October 1996, Lake Tahoe, CA, AIP 398 Proceedings, p.294. See also CLNS 96/1436, Cornell, 1996, and in To the Quantum Limitations in Beam Physics, CLNS 99/1608, PAC99, New York, March 29- April 2 1999, Proceedings, p. 2814.

For wiggler dominated cooler equilibrium emittance

$$
\left(\gamma \mathcal{E}_{x}\right) \cong \frac{1}{2} \cdot \lambda_{c} \bar{\beta}_{x}\left(1+K_{x}^{2} / 2\right) \gamma / \rho_{x} \cong \frac{1}{2} \cdot \lambda_{c} \bar{\beta}_{x}\left(1+K_{x}^{2} / 2\right) K_{x} / \lambda \quad\left(\gamma \varepsilon_{y}\right) \cong \frac{1}{2} \cdot \lambda_{C} \bar{\beta}_{y} \gamma / \rho_{x} \cong \frac{1}{2} \cdot \lambda_{C} \bar{\beta}_{y} K_{x} / \lambda
$$

Cooling time $\tau_{\text {cool }} \cong(3 / 2) \cdot\left(\lambda^{2} / r_{0} c K^{2} \gamma\right) \sim 8.6 \mathrm{~ms} . \quad K=e H_{\perp} \lambda / m c^{2} \quad$ Number of particles $\sim 10^{5}$ makes IBS acceptable
TEMPERATURE

$$
\frac{3}{2} N k_{B} T \cong N \cdot m c^{2} \gamma\left[\frac{\gamma \varepsilon_{x}}{\boldsymbol{\beta}_{x}}+\frac{\boldsymbol{\gamma}_{y}}{\boldsymbol{\beta}_{y}}+\gamma \frac{1}{\gamma^{2}}\left(\frac{\Delta p_{\|}}{p_{0}}\right)^{2}\right] \rightarrow N \cdot m c^{2} \gamma\left[\frac{\boldsymbol{\gamma}_{x}}{\boldsymbol{\beta}_{x}}+\frac{\boldsymbol{\varepsilon}_{y}}{\boldsymbol{\beta}_{y}}+\gamma\left(\frac{1}{\gamma^{2}}-\left\langle\frac{D}{\boldsymbol{\beta}_{x}}\right)\left(\frac{\Delta p_{\|}}{p_{0}}\right)^{2}\right]\right.
$$

Emittance possible

$$
\left(\gamma \varepsilon_{y}\right) \cong 9.5 \cdot 10^{-10} \mathrm{~cm} \cdot \mathrm{rad} \quad\left(\gamma \varepsilon_{x}\right) \cong 2.5 \cdot 10^{-8} \mathrm{~cm} \cdot \mathrm{rad}
$$

Relation between coordinates of the cooler and the structure

Polarization of the wiggler field is vertical; the bends of cooler are going in horizontal plane. If polarization of the wiggler field is horizontal, the x coordinates might be the same, and the cooler plane and the plane of the structure may coincide.

This orientation gives the direction of largest emittance along the narrow side of the slit.

BEAM PARAMETERS

If laser flash lasts $\tau \sec$ and caries energy \boldsymbol{Q} Joules then maximal field $\quad E_{m} \cong 2 \sqrt{\frac{Q}{\varepsilon_{0} c \tau \lambda l_{f}}}$

$$
\mathbf{Q}=10^{-4} \mathbf{J} \quad \tau \cong 0.1 \mathrm{~ns} \quad \lambda \cong 1 \mu m \quad Q_{R F}=9 \quad E_{m} \cong 10 \mathrm{GeV} / \mathrm{m}
$$

Bunch population $\quad N \cong \frac{\eta}{2 e I(g)} \sqrt{\frac{\varepsilon_{0} \lambda_{a c}^{3} Q}{c \tau l_{f}}} \cong 3 \cdot 10^{5} \quad$ For 5% load, $\eta=0.05$
Luminosity $L=\frac{N^{2} f H_{B}}{4 \pi \sigma_{x} \sigma_{y}} \quad \begin{aligned} & \gamma \varepsilon_{x} \cong 2.5 \cdot 10^{-8} \mathrm{~cm} \cdot \mathrm{rad} \\ & \gamma \varepsilon_{x} \cong 9.5 \cdot 10^{-10} \mathrm{~cm} \cdot \mathrm{rad}\end{aligned} \quad \beta_{x} \approx \beta_{y} \approx 0.3 \lambda_{a c} \quad f \cong 1 \mathrm{kHz}, H_{\mathrm{B}}=1$

$$
L \approx 1.7 \cdot 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

$$
\begin{array}{lll}
Y_{0} \equiv 2 \hbar \omega_{c} / 3 E=\gamma H / H_{c} \sim 10^{3} & \text { Critical energy } & \hbar \omega_{c} \cong m c^{2} \gamma / Y_{0} \\
H_{c}=m^{2} c^{3} / e \hbar \cong 4.4 \cdot 10^{13} & \text { Formation } & l_{F} \cong \lambda_{C} \gamma / Y_{0}^{2 / 3}
\end{array}
$$

Aspect ratio at IP $\sigma_{x} / \sigma_{y} \cong 5$

Transverse size of
coherence
$\sigma_{\perp}^{\text {coh }} \cong \sqrt{\lambda_{c r} l_{F} \sigma_{b}} \cong Y_{0}^{1 / 6} \lambda_{C}$. $\sim 3 \lambda_{C} \cong 1.15 \cdot 10^{-10} \mathrm{~cm}$
52

Focusing with RF lenses

Arrangement of phase shifts in the cells

$$
k_{x}=-\frac{1}{p c} \frac{\partial\left\langle F_{x}\right\rangle}{\partial x} \cong-\frac{e \lambda_{a c} E_{m}}{m c^{2} \gamma W^{2}} \operatorname{Sin} \varphi \quad k_{y}=-\frac{1}{p c} \frac{\partial\left\langle F_{y}\right\rangle}{\partial y} \cong-\frac{e \lambda_{a c} E_{m}}{m c^{2} \gamma^{2}} \operatorname{Sin} \varphi
$$

DETECTOR and IP

There is no magnetic yoke in this detector. Focusing arranged with the help of multiplet of RF quadrupoles on the basis of accelerating structures. The number of RF lenses in multiplet ~200.
RF gradient slowly varies from very strong at closest to IP side to a weak one; $k \sim 1001 / \mathbf{m}^{2}$
In modular detector the solid angle available for registration is large.
So the lens with 1000 cells reaches the focal distance $F=20 \mathrm{~cm}$. Let just remind that these cells will occupy 0.1 cm only.

Dual readout for muon identification
Modular detector; suggested as 4-th concept

Opposite bunch could focus strongly. Modeled behavior of envelop function

1 - corresponds to weak incoming bunch, 2 -corresponds to the same initial conditions as 1 but K_{F} is big, 3 -corresponds to the changed initial conditions, so the crossover shifted to the left. All envelope functions shown are for the bunch moving from the left to the right.

We suggested an arrangement of the final focusing for our purposes as a multiplet of FODO structures. The number of the lenses in such a multiplet is around a few hundreds. This is so called Adiabatic Final Focus. The gradient in these lenses must vary from the very strong at the side closest to IP, to a weak one at opposite side. Focusing properties of the RF lens, discussed above can be used here. A laser radiation of general and multiple frequency can be used for such focusing.

Plasma focuser described by
P.Chen, K.Oide, A.M.Sesler,S.S.Yu, "Plasma based adiabatic Focuser" , Phys.Rev.Lett.64:1231-1234,1990.

FEEDBACK AND ALIGNMENT

1-is a driving laser bunch, 2-is transverse position sensor for a laser bunch, 3-is a laser back reflector loop, 4 -is a power splitter, 5-is a driving bunch on the way to next module, 6-is a splitted part of driving laser bunch, 7-is a processor, 8-are the beam deflectors for two transverse directions, 9 -is an array of optical sensors, 10-is a reflected laser bunch, 11 -is a sweeped laser bunch. 12-is an electron/positron bunch on the way to the beginning of accelerator. 13-are the pick up electrodes, 14-is a functional amplifier, 15-is a transverse kickers, 16-is a beam back returning loop, 17,18-are the lines of the signal processed. Lines across the laser bunch indicate the wavefronts. The back loop 3 located at the beginning of accelerator (acceleration process).

Movement of structure
$(\Delta \vartheta)^{2} \equiv\left(\frac{\Delta p_{\perp}}{\Delta p_{\|}}\right)^{2} \ll \frac{\varepsilon}{\beta}\left(\frac{p_{\|}}{\Delta p_{\|}}\right)^{2}=(\Delta \vartheta)_{\text {beam }}^{2}\left(\frac{\gamma}{\Delta \gamma}\right)^{2}$

$$
\begin{aligned}
& \Delta \vartheta_{y} \cong 2 \cdot 10^{-5} \\
& \Delta \vartheta_{x} \cong 7 \cdot 10^{-4}
\end{aligned}
$$

ACCELERATOR TABLE

Primary laser beam 1 goes to the end of accelerator. Mirrors 2 redirect it back, pos.3, trough the sequence of splitters. In the similar way the particle's beam 5, goes trough bending system 6 and further trough structures to next modules, 4.7 and 8 -are the focusing elements for the laser and particle's beam respectively. Optical platform 9 is standing on legs 10 with active damping system to minimize vibrations. 13-cylindrical lenses, 14 -are the accelerating structures. All elements on the table are located in a vacuumed volume, not shown here.

If the tunneling probes have resolution 0.01 nm , the basis $\sim 10 \mathrm{~cm}$, then deviation of other end of optical table having length~2m will be 0.2 nm , i.e. $\sim 2 \cdot 10^{-4} \lambda_{a c}$.

Cross section of a tunnel with accelerating system for underground location.

Neighboring platforms aligned with help of sensors, installed at the end of each platform. So the sensor installed at one platform touches neighboring one. The sensors are similar to that used in tunneling microscope technique. This system could be made fast enough to exclude influence of ground motion, mostly intensive at lower edge of the spectrum.

1 - is a primary optical beam line. 2-is a primary particle's beam line. 3-is a vacuumed container with all equipment. 4-is an accelerating structure with sub systems. 5 -is an optical table. 6-is the deflecting device, 7 -is the line for driving optical beam, 8-is a box with equipment for deflecting device and control. 9-is a tube with optical elements for active alignment of all optical tables. 10-is an anti-vibration active system. 11-is a duct for air-conditioning.

EFFICIENCY OF DIOD PUMPING SYSTEM IS MORE THAN 50\% (approaching to 75\%)

Datasheet P	Product Drawing	Application Notes	
		P10	P16
Optical			
Wavelength	nm	80x/88x/9xx	
Wavelength tolerance	nm	± 3	
CW output power	W	50/60/70	100/110/120
Fiber core diameter	$\mu \mathrm{m}$	$\begin{gathered} 400,600 @ \\ 0.16 \mathrm{NA} \\ 800 @ 0.13 \mathrm{NA} \end{gathered}$	$\begin{gathered} 400,600 @ \\ 0.16 \mathrm{NA} \end{gathered}$
Fiber length	m	2.0, 3.0, 5.0	
Slope efficiency	W/A	10.5	17
Electrical			
Power conversion efficiency	\%	$50 / 54 / 58$	
Threshold current	A	1.0/1.0/0.6	
Operating current	A	5.8	7.0
Operating voltage	V	17	28
Series resistance	Ω	0.3	0.4

Laser Linear Collider (LLC) complex

1-is a laser master oscillator platform, 2 -is an optical splitter, 3,4-are the mirrors, 5 -is a semi-transparent mirror, 6-is an absorber of laser radiation. 7-are the Final Focus Systems. 8-are the damping systems for preparing particle's beams with small emittances, 9-are the bends for particle's beam. 10-are the accelerating X-band structures, 11 -is an electron gun, 12-is a positron converter. The scheme with the damping rings as sources are shown here.

PARAMETER LIST

Wavelength	$\lambda_{n c \mid} \cong 1 \mu \mathrm{~m}$
Energy of $e^{ \pm}$beam	$2 \times 10 \mathrm{TeV}$
Luminosity	$10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Total two-linac length	$2 \times 1 \mathrm{~km}$
Main linac gradient	$10 \mathrm{GeV} / \mathrm{m}$
Bunch population	310^{5}
Bunch length	$0.1 \mu \mathrm{~m}$
No. of bunches/train	30
$\gamma \varepsilon_{x} / \gamma \varepsilon_{y}$	$5 \cdot 10^{9} / 1 \cdot 10^{-9} \mathrm{~cm} \cdot \mathrm{rad}$
Laser flash energy	$2 \times 3 \mathrm{~J}$
Laser density	$0.3 \mathrm{~J} / \mathrm{cm}{ }^{2}$
Ilumination time	0.1 ps
Length of section	3 cm
Laser flash energy/section	$100 \mu \mathrm{~J}$
Repetition rate	1 kHz
Laser beam power	$2 \times 3 \mathrm{~kW}$
Damping ring energy	2 GeV
Damping time	10 ms
Wall plug power	$2 \times 30 \mathrm{~kW}$
**	
** Without supplementary electronics	

Cost of this installation 200M\$/2000m=100k\$/m looks reasonable

From Snowmass 2001; conservative ~1.5 GeV/m

FIGURE 37: Laser Linear Collider (LLC) complex. 1-is a laser master oscillator platform, 2 -is an optical splitter, 3,4 -are the mirrors, 5 -is a semi-transparent mirror, 6 -is an absorber of laser radiation. 7 -are the Final Focus Systems. 8-are the damping systems for preparing particle's beams with small emittances, 9 -are the bends for particle's beam. 10-are the accelerating X-band structures, 11 -is an electron gun, 12-is a positron converter. The scheme with the damping rings as sources are shown here.

Even for cost $1 \mathrm{M} \$ / \mathrm{m}$ this $2 \times 200 \mathrm{GeV}$ collider will cost $300 \mathrm{M} \$$ only (compare with 15B\$ for ILC)

Feasibility of pion-pion and muon-muon Collider

The accelerating gradients of the order $30 \mathrm{GeV} / \mathrm{m}$ allows to reach 150 GeV at a tenmeter distance, suggesting 50% filling with accelerating structures. This could delivery the gamma factors $\gamma_{\mu} \cong 150 / 0.105 \cong 1430$ and $\gamma_{\pi} \cong 150 / 0.139 \cong 1079$ for muons and $\pi-$ mesons respectively. So the decay distance for these particles at this energy will be $c \tau_{\mu} \gamma_{\mu} \cong 658 \cdot \gamma_{\mu}[m] \cong 9.4 \cdot 10^{5} \mathrm{~m}$ for muons
and
$c \tau_{\pi} \gamma_{\pi} \cong 7.8 \cdot \gamma_{\mu}[m] \cong 8.4 \cdot 10^{3} \mathrm{~m}$ for π-mesons respectively.
So these figures make and direct collisions feasible.
For luminosity $10^{30} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ the number of particles required is 10^{4} only (same area of colliding beams as suggested for electrons/positrons).

If we take primary proton beam with 10^{14}, which is under discussion for traditional scheme of muon-muon collider, then resulting efficiency required 10^{-9} only.

Pion-pion and muon-muon collider setup

Effective spectrum of the secondary pions accelerated to final energy $E_{f i n}$, could be represented as the following
T.A. Vsevolojskaya, G.I. Silvestrov, A.N.Skrinsky, Acceleration of Pions and Muons in the UNK-VLEPP complex, Preprint BINP 91-36, Novosibirsk, 1991.

$$
\frac{d N_{\pi}}{d y} \cong \frac{\left\langle n_{\pi}^{ \pm}\right\rangle}{\sqrt{2 \pi L}}\left(\frac{m_{\pi} c^{2}}{E_{f i n}} \gamma^{1+\mu / 2}\right)^{\mu} \exp \left[-\frac{\left(y-\left(y_{0}+\mu L\right)\right)^{2}}{2 L}\right] \quad \begin{gathered}
L_{n}=\ln \gamma \\
y=\operatorname{atan}(v / c) \text {-rapidity }
\end{gathered}
$$

$\left\langle n_{\pi}^{ \pm}\right\rangle$-average pions multiplicity, $\mu=\frac{m_{\pi} c^{2}}{c \tau_{\pi} d E / d s}, d E / d s$ - accelerating rate, τ_{π} pion lifetime at rest
For $d E / d s \sim 10 \mathrm{GeV} / \mathrm{m}, \mu \sim 0.002$, so the losses absent practically \rightarrow no shift of maximum
For the target made on Copper, and primary 3 TeV proton beam, the maximum is around $\sim 2.8 \mathrm{GeV} / \mathrm{c}$. Transverse momentum distribution

$$
\begin{array}{rlrl}
\rho\left(p_{\perp}\right) d^{2} p_{\perp} \cong m_{\perp} \sum_{k=1}^{\infty} K_{1}\left(\frac{k m_{\perp}}{T}\right) d^{2} p_{\perp} & m_{\perp} & =\sqrt{m_{\pi}^{2}+p_{\perp}^{2}} \\
T & \cong m_{\pi}
\end{array}
$$

This distribution gives $\left\langle p_{\perp}^{2}\right\rangle \cong 0.15(\mathrm{GeV} / \mathrm{c})^{2} \quad \varepsilon_{\perp} \cong 0.15 \mathrm{~cm} \cdot \mathrm{rad} \quad \frac{1}{N_{0}} \frac{d N_{\pi}}{d y} \cong 1 / \mathrm{proton}$
Invariant emittance $\quad \boldsymbol{\varepsilon}_{\perp} \cong \lambda \gamma\left\langle\vartheta^{2}\right\rangle \cong \frac{\gamma\left\langle p_{\perp}^{2}\right\rangle}{n \sigma_{p A} p^{2}} \propto \frac{1}{\gamma} \sim 3 \mathrm{~cm}-\mathrm{rad}$ and $N_{\pi} \sim 10^{14} \Delta y$

Let us suggest that we collect the pions with energy in 10^{-3} of absolute interval.
This yields for the number of pions $\quad N_{\pi} \sim 10^{11} /$ pulse
As we need 10^{4} only we allowed having efficiency of the order of $\quad N_{\pi} / N_{p} \approx 10^{-7}$.
To obtain the - $\quad \gamma \mathcal{\mathcal { E }} \subseteq 10^{-8} \mathrm{~cm} \cdot \mathrm{rad}$ required, we suggest first to shift the center of collected particles to the higher energy so, that corresponding emittance will drop respectively.
Suggesting new collecting energy as high as 28 GeV i.e. about 1% of initial (3 TeV), we are coming to $\gamma \mathcal{E} \approx 0.3 \mathrm{~cm} \cdot \mathrm{rad}$ and about $N_{\pi} \sim 10^{11} / \mathrm{pulse}$.
In this case we could collect only 10^{-7} of all pions.
Now the center of the problem shifted to the longitudinal phase space acceptance.
Suggesting the energy spread in the primary bunch as 10^{-4} we are coming to necessity to have the energy modulation required overcoming the energy spread about 300 MeV .

A few stages OK system could easily provide the energy modulation of few times of this value.
So we are optimistic on the possibility to prepare the number of particles required distributed along the distance of the laser-accelerating wavelength.

Secondary bunch will have the same length as a primary proton bunch, enlarged as a result of energy spread in secondary bunch.

Direct collision at high energy without any acceleration at all might be a possibility.

Of cause some of the figures could be treated as extremely optimistic, but there is no fundamental restrictions on them.

Separation of muons from pions is main challenge in this method

Other example

Table top device

All elements installed on a platform. Light means laser beam. Other comments are in the text. Vacuumed cover for the beam part is not shown. 1 -is a laser, 2-source of particles, including micro-tip and movers, 3-RF prebuncher, 4-space for buncher (if necessary), 5-main acceleration modules, 6-focusing elements, 7-a region for laser wiggler, 8-

Wavelength	$\lambda_{a c} \cong 1 \mu m$
Energy of the $e^{ \pm}$beam	100 MeV
Active linac length	10 cm
Main linac gradient	$1.0 \mathrm{GeV} / \mathrm{m}$
Bunch population	10^{6}
No. of bunches/pulse	$10(<100)$
Laser flash duty	100 ps
Laser flash energy	5 mJ
Repetition rate	160 Hz
Average laser power	$\sim 0.8 \mathrm{~W}$
Average beam power	26 mW
Bunch length	$0.1 \mu \mathrm{~m}$
$\gamma \varepsilon_{x} / \gamma \varepsilon_{y}$	3 cm
Length of section/Module	3.5 kW
Wall plug power	$10^{-8} \mathrm{~cm} \cdot \mathrm{rad}$

ELECTRON SOURCE

STAGING FOR PROF OF PRINCIPLE EXPERIMENT

1) Assemble a sweeping device
2) Assemble a pulser
3) Demonstrate sweeping (line on the screen)
4) Demonstrate higher level of damage while the laser beam is swept
5) Fabricate accelerating structure at Nano-Factory
6) Investigate reflection with tunable low power laser
7) Fabricate a nano-mover
8) Fabricate a source of electrons with small emittance based on micro-tip
9) Complete setup
10) Demonstrate acceleration
11) Cost estimation could be done at this stage

Parallel jobs are possible (marked by color)

CONCLUSIONS

- Nano-technology available creates solid base for accelerator with Travelling Laser Focus.
- Any point on accelerating structure remains illuminated by $\sim 0.3 \mathrm{ps}$ only. Laser density $<0.3 \mathrm{~J} / \mathrm{cm}^{2}$
- Lasers for the TLF method need to operate with pulse duration ~ 100 ps.
- TLF method promises up to $10 \mathrm{TeV} / \mathrm{km}$ with $3 \mathrm{~mJ} / \mathrm{m}$. With such high gradients, $\mu^{+} \mu^{-} \pi^{+} \pi^{-} \pi p, \mu p$ and ion-ion collisions become feasible.
- We conclude that acceleration in a laser-driven linac with TLF method is a present day technology and no physical and technical limitations found on this way.
- Testing this method might be highest priority task for accelerator physics.

Publications on the TLF method

- Laser Driven Linear Collider.
A.A. Mikhailichenko, (Cornell U., Phys. Dept.) . EPAC08-WEPP155, Jun 25, 2008. 3pp.

In the Proceedings of 11th European Particle Accelerator Conference (EPAC 08), Magazzini del Cotone, Genoa, Italy, 23-27 Jun 2008, pp WEPP155.
Laser driven linear collider
Prepared for European Particle Accelerator Conference (EPAC 06), Edinburgh, Scotland, 26-30 Jun 2006
Published in *Edinburgh 2006, EPAC* 2523-2525

- Fast sweeping device for laser bunch

In the Proceedings of Particle Accelerator Conference (PAC 05), Knoxville, Tennessee, 16-20 May 2005, pp 1219. Also in *Knoxville 2005, Particle Accelerator Conference* 1219

- Short X and Gamma Production with Swept Laser Bunch
A. Mikhailichenko, (Cornell U., LNS). PAC03-TPPG006, May 2003.
- Particle acceleration in microstructures
A.A. Mikhailichenko, (Cornell U., LNS) . SNOWMASS-2001-T401, Jun 2001. 32pp.

Prepared for APS / DPF / DPB Summer Study on the Future of Particle Physics (Snowmass 2001), Snowmass, Colorado, 30 Jun - 21 Jul 2001
In the Proceedings of APS / DPF / DPB Summer Study on the Future of Particle Physics (Snowmass 2001), Snowmass, Colorado, 30 Jun - 21 Jul 2001 , pp T401.

- Particle acceleration in microstructures excited by laser radiation: Basic principles.
A.A. Mikhailichenko, (Cornell U., LNS) . CLNS-00-1662, Feb 2000. 89pp.
A.A. Mikhailichenko, on a talk given at Accelerator Physics Seminar, Wilson Laboratory, May 28, 1999.
- Table top accelerator with extremely bright beam.
A. Mikhailichenko, (Cornell U., LNS) Jun 2000. 9pp.

Published in AIP Conf.Proc.569:881-889,2000. Also in *Santa Fe 2000, Advanced accelerator concepts* 881-889

- A beam focusing system for a linac driven by a traveling laser focus.
A.A. Mikhailichenko, (Novosibirsk, IYF). 1995.

In the Proceedings of 16th IEEE Particle Accelerator Conference (PAC 95) and International Conference on High-energy Accelerators (IUPAP), Dallas, Texas, 1-5 May 1995, pp 784-786

- Laser linear collider with a travelling laser focus supply.
A.A. Mikhailichenko, (Cornell U., LNS) . CBN-99-18, 1999. 3pp

Published in the proceedings of the Particle Accelerator Conference PAC99, 1999, pp.3633-3635
To be published in the proceedings of IEEE Particle Accelerator Conference (PAC 99), New York, New York, 29 Mar - 2 Apr 1999.
Published in *New York 1999, Particle Accelerator, vol. 5* 3633-3635

- Injector for a laser linear collider.
A.A. Mikhailichenko, (Cornell U., LNS) . CLNS-98-1568, Jul 1998. 11pp.

Presented at 8th Advanced Accelerator Concepts Workshop, Baltimore, Maryland, 6-11 Jul 1998.
Published in AIP Conf.Proc.472:891-900,1999.

- A Laser linear collider design.
A.A. Mikhailichenko, (Cornell U., LNS) . CLNS-98-1562, Jun 1998. 16pp

Prepared for Advanced Accelerator Concepts Workshop, Baltimore, MD, 6-11 Jul 1998.
Published in AIP Conf.Proc.472:615-625,1999

- Laser acceleration: A Practical approach.
A.A. Mikhailichenko, (Cornell U., LNS) . CLNS-97-1529, Nov 1997. 28pp

Talk given at 20th International Conference on Lasers and Applications (Lasers '97), New Orleans, LA, 15-19 Dec 1997

- On the physical limitations to the lowest emittance. (Toward colliding electron positron crystalline beams).
A.A. Mikhallichenko, (cornell U., LNS) . CLNS-96-1436, Oct 1996. 7pp.

Pepared or 1996.
Published in AIP Conf.Proc.398:294-300,1997
The Concept of a linac driven by a traveling laser focus.
A.A. Mikhailichenko, (Cornell U., LNS) . CLNS-96-1437, Oct 1996. 16pp

Given at 1996.
Published in AIP Conf.Proc.398:547-563,1997

- Excitation of the grating by moving focus of the laser beam.
A.A. Mikhailichenko, (Novosibirsk, IYF) . 1994. 3pp.

Published in EPAC 94: Proceedings. Edited by V. Suller and Ch. Petit-Jean-Genaz. River Edge, N.J., World Scientific, 1994. p. 802.
In the Proceedings of 4th European Particle Accelerator Conference (EPAC 94), London, England, 27 Jun - 1 Jul 1994, pp 802-804. Also in *London 1994, EPAC 94, vol. 1* 802-804

Backup slides

An example.

${ }^{19}$ Active isolation from the ground: commercial system

