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Abstract  
    We represented analyses of a wiggler with a linear 
piecewise longitudinal field dependence. This type of 
field distribution eliminates spherical aberrations in the 
wiggler. This wiggler can be recommended for usage in 
cooler rings including ILC one.  
 

INTRODUCTION 
   In our previous publications we introduced the concept 
of Ideal Wiggler [1]-[3], [7]. Here we analyze this device 
for the absence of aberrations.  Representation of the 
wiggler as a series of quadrupoles, installed 90o towards 
the beam trajectory, Fig.1, allows immediate 
recommendations on how to improve the quality of the 
field. Basic idea behind this was very simple: if the 
magnets are the quadrupoles- let make the field 
distribution as close to the quadrupole type (linear) as 
possible. In some sense this representation answers the 
question about the best longitudinal field distribution. In 
many publications the question about this distribution 
type risen, but we think the right answer revealed either 
this must be a rectangular, trapezoidal or sin-like 
distribution in a favor of piece-wise linear one.       

 
Figure 1: Representation of wiggler as series of 
quadrupoles with transverse orientation.   
 
Other question which arises in association with the field 
shape linked to the spectral properties of radiation from 
such wiggler–does not considered in this publication.    
 

FIELDS IN A WIGGLER  
   Presentation of fields in a wiggler is a rather tricky 
process. Usually for description of particle motion in a 
circular machine one uses natural coordinates, in which 
the fields are represented as expansions from the reference 
(central) trajectory calculated for the particle nominated 
as a reference one, running with zero transverse 
coordinates and reference energy, so this trajectory runs 
through the centers of quadrupoles. 

  

Trajectory could be treated as a geodesic one with respect 
to these coordinates. That is why it allows broadly used 
graphical presentation of longitudinal coordinate as a 
straight line while one describes the transverse motion.  
    Other presentation of fields, generated by some device 
(magnet), uses natural coordinates associated with this 
magnet. Usually for quadrupoles, sextupoles, etc (or 
speaking more generally, for any field configuration 
having zero dipole field at center) –these coordinates 
coincide. The difference emerges in bending magnets, 
which introduce curved coordinates. Curved means here 
with respect to outer Lab coordinates. Some appropriate 
Canonical transformation links these two presentations. 
All that matters now is the complexity of these 
transformations. Really, as the particle wiggles in these 
simplified coordinates with angle γα /K≅  with respect 

to the s axis ( )2/( 2
0 mceBK w πλ= , wλ stands for 

longitudinal period of wiggler), the complicated field 
structure introduces linear focusing field 0~ Bα  as a 
result of entrance the dipole field with angle and effective 
octupole ~ )(sB ′′α , where B(s) is longitudinal dependence 
of wiggler field. The last is a result of entrance the 
sextupole with angle. Sextupole is inevitable component 
of the field change in vertical direction as a result of its 
change in longitudinal direction. All this is a sequence of 
a theorem proven in [4] which states that “A passage with 
an angle through the edge field of a multipole, acting to 
the particle as the next order multipole with the power, 
proportional to the tangent of the entrance angle 
multiplied by original multipole value at the center and 
reduced by the order of original multipole”.   
   As the presentation of wiggler field in natural 
coordinates is rather complicated, the fields usually 
represented in Cartesian coordinates so the trajectory 
wiggles. Typically in mostly computer codes in vicinity of 
wiggler the coordinates jump from natural to Cartesian 
ones and back again after the wiggler passed. These 
jumps from natural coordinates of damping ring to 
Cartesian and back done in places where the bending field 
is absent.         

Presentation of fields as series  
    In numerous publications the field in a wiggler 
represented as series something like   

)()()()/( 0 ssyxyxx skCosykSinhxkSinkkBB ϕ+−= ∑  

)()()(0 ssyxy skCosykCoshxkCosBB ϕ+= ∑                (1) 

)()()()/( 0 ssyxyss skSinykSinhxkCoskkBB ϕ+−= ∑   

wsk λπ /2= , and with restrain 222
sxy kkk += . Summing is 
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 going over all possible wave numbers ks, kx and ky.  
   This presentation is contradictory from the formal point 
of view, however. Really, equation 0=Bdiv

r
 requires that 

restrain for kx,y,s  applied to all sum of terms, not to each 
term separately, so the relation between ks, kx and ky is less 
restrictive. Other circumstances associated with the choice 
of ks, kx and ky itself. Of course it was natural to choose 
for longitudinal wavenumber wsk λπ /2= , as the wiggler 
period is well known and namely it determines particle 
dynamics. But from the point of formal mathematics, 
however, one needs to choose the coordinate box {xmax, 
ymax, smax} and represent the field as Fourier harmonics 
with the wave numbers },,{ syx kkk as sum of terms 

having {2pm/xmax,2pn/ymax, 2pl/smax} for every m,n,l = 
0,1,2,… Only with this presentation, (1) will be 
mathematically correct. Usually for adequate presentation 
of fields the number of terms required in (1) easily 
reaches few tens or even a hundred. Basically this is a 
sequence of necessity for proper presentation of field 
dependence in transverse direction. As each term 
describes dependence along all three coordinates, so some 
redundancy is present here.   
   We developed another approach to the field 
presentation, which requires knowledge of few (typically 
two-three) functions, which could be obtained either from 
measurements or from calculations. With this presentation 
it is clear what terms are responsible for the aberrations, 
and some recommendations for its elimination could be 
given at once.  
 

Presentation of fields with Generating functions 
   First, it is useful to combine transverse coordinates x 
and y in one complex variable iyxz += . The 
longitudinal coordinate s runs straight.  Magnetic field in 
3D could be represented in these coordinates as [6]  
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where function of complex variable W satisfy equation 
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and iyxz −= , c–stands for the speed of light.  General 
solution of (3) could be represented as [8]  
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where z z z2 = ⋅ , t stands for time variable, and complex 

functions (generating functions) ),(),(),( 111 tsibtsatsG mmm −−− +=  

describe multipoles as functions of longitudinal 
coordinate and time. If all   bm-1=0, then the closest to the 
axis x in the first quadrant where the south pole is located. 

As function W contains terms kzz 2)( ⋅  , k=1,2,.. it does 
not satisfy Cauchy-Riemann differential equations in all 
space and it is analytical only at z=0. This is explained by 
escaping field lines from one complex plane z to another 
one in 3D. So first terms in brackets (3) mzG m

m /1− , 
describe field distribution in 2D case, far from edges of 
the magnet. One interesting sequence of presentation (3) 
is that if ),(1 tsGm−  satisfy wave equation, then all terms in 
brackets, except the first one, are vanished. So, in the 
situation, when  ),(1 tsGm−  demonstrates the wave-like 
dependence, the field is a two-dimensional one (plane 
wave). So the presentation of laser field as a kind of 
wiggler demonstrates appearance of aberrations only at 
the entrance and at the exit of the laser bunch. For the 
purposes of focusing system design, namely this opens a 
possibility to make a focusing system time dependent, so 
it does not manifest these terms, and hence is aberration 
free.  
   As far as the wiggler business, usually fields are steady, 
so time derivatives are zero. If zero x lies in medial plane 
sy, y=0 which is the plane of up-down anti-symmetry, see 
Fig.1, then analytical representation for the wiggler fields 
defined by (2) and (4) is the following [2], [5] 
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where it was introduced B(s)=G0, S(s)= G2, D(s)=G4 
which stand for generating functions for dipole, sextupole, 
decapole, … field accordingly. One can see from (5), that 
for transverse dependence, say proportional to x2, are 
responsible both terms- the pure sextupole one ~ 2)( xsS  
and the one arising from the second derivative of 
magnetic field dependence in longitudinal direction -+-
+i~ )/)(( 222

8
1 ssBx ∂∂ . So for wide poles of wiggler, these 

terms cancel each other and sextupole-type field 
dependence manifests itself only in the vertical direction. 
That is why the octupole type dependence appeared as a 
result of wiggling in the field of sextupole, mentioned 
above.      
   Now let us show how these functions could be found. 
Function B(s) can be recognized simply by measurements 
along s –axis, as in this case x=y=0 by definition. The 
same could be done by calculations with appropriate 3D 
code. After that, all necessary derivatives along s 
appeared in (5), can be obtained numerically with 
necessary accuracy. So now the difference between 
calculated (or measured) transverse field variations as 
functions of s and found from (1) can be treated as higher 
harmonics, with sextupole S(s) as a lowest one. Or in 
other words, if one has transverse field roll-off, say at 
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field maximum, calculated or measured, sextupole 
component S(s), having dependence~x2 can be identified 
after subtracting the terms, associated with derivatives. 
As the second derivative proportional to the curvature of 
the graph, one can conclude, that biggest input these terms 
introduce at points with extremum. Other harmonics, such 
as D(s) can be found in the same manner, taking in 
consideration dependence ~x4 and so on. When functions 
B, S, D restored in points along s it is possible to represent 
them as Fourier series with Fast Fourier Transformation, 
so the accuracy will be limited only by the number of 
points along s. This gives a simple and powerful recipe 
for representation of wiggler field for the purposes of 
calculation of nonlinearities and calculations of dynamic 
aperture associated with these nonlinearities.  
   Now one can conclude from (5), that if dependence 
along s is linear, all terms with derivatives are vanished 
and the only terms remain which responsible for the 
principal harmonics, as in pure 2D case [2], [3].  So the 
field dependence desirable looks like represented in Fig.2. 

 
Figure 2: Longitudinal profile of magnetic field with 

linear dependence between extremes. 
 
As the second derivative is proportional to the local 
curvature, terms with derivatives responsible for 
aberrations might be big at these points. Fortunately the 
vertical force is acting on the particle is proportional to 
the transverse angle, dsdx /≅α , the force becomes zero 
at points of extreme. The power of s which defines the   
angle dependence around zero is at least a next order one, 
in comparison with the linear power, so resulting action of 
force at these extreme points is zero. This is valid for 
realistic field dependence in these extreme points, as the 
derivative proportional 2

max /)( aBsB ≅′′ , where a stands 
for characteristic dimension, which might be an aperture 
as the angle is always proportional to the integral of 
magnetic field, so it power (as function of s) is always 
higher.  

FIELD GENERATION 
  The field shape as it is represented in Fig. 2, could be 
generated if poles of wiggler equipped with quadrupole-
type shape of poles, Fig.3, [2]. So basically any wiggler 
could be transformed into the one generating linear piece-
wise longitudinal distribution with adding curved prism-
like poles. Sides of the prisms must have a hyperbolic 
shape as it is required for quadrupole. Maximal value of 
field remains the same practically under this attachment. 
Of cause there is a limitation in realization of such 
dependence namely at the pole tips. One can make theses 
very tips with highly saturated magnetic material (such as 
Permendur, for example).  Of course some nonlinearities 
(and aberrations) will remain, but with a much reduced 
level. Calculated field distribution is shown in Fig. 4.  

 
Figure 3: 11-pole wiggler cold mass. Two side walls 
removed. Room temperature vacuum chamber and 70oK 
shield are seen also.  

 
Figure 4:  Calculated field distribution (in kGauss) in 11-
pole wiggler with quadrupole-type poles. Right point 
#200 on this graph located at s=150 cm.   
   
Tracking in a field from Fig.4 demonstrates extended 
linearity within vertical aperture ± 1.5cm, while the 
closest gap between poles in Fig.3 is ± 2.7 cm, period is 
25 cm. [1]. 

CONCLUSIONS 
With the approach described above one can make 

wiggler period rather short and by doing so, one can 
reduce equilibrium radial emittance achievable in wiggler 
dominated ring ~ 2

wλ  and increase dynamic aperture of the 
cooling ring, which might be important for ILC.  
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