ISSUES FOR THE ROTATING TARGET

Alexander Mikhailichenko
Cornell University, LEPP, Ithaca, NY 14853

Electronic version is available at http://www.Ins.cornell.edu/public/CBN/2007/CBN07-2/cbn07-02.pdf

Some illustrations form J. Clarke talk at VLCW/GDE, UBC Vancouver, Canada, 19-22 July 2006

One can expect that power is proportional to the width of rim

As an aid in the project we also made field calculations and explored the consequences for power loss and transverse deflection fields and pulsed torques in pulsed solenoid case

First, one can make simple quantitative estimation of losses as the following. In moving metal the electric field is $\vec{E} \cong \vec{v} \times \vec{B} \quad ; v$ stands for velocity so the Pointing vector flooding into metal comes to $\bar{S} \cong(\vec{v} \times \vec{B}) \times \vec{H}$, $j \sim \sigma$ E $\sim 5 \times 10^{9} \mathrm{~A} / \mathrm{m}^{2}$
Taking into account, that the area swept by coil per second comes to $\Sigma \cong \Omega R d$, amount of energy flooded into metal per second comes to

$$
P \cong S \Sigma \cong \Omega^{2} R^{2} d \mu \mu_{0} H^{2}
$$

where R stands for the radial displacement of coil (\sim radius of rim), d-is coil diameter, Ω stands for angular speed, μ_{0}-magnetic permeability of vacuum One can see, that power proportional to magnetic pressure.
When angular speed increased, the Pointing vector deflects from inside direction. The estimations can be given by considerations of magnetic pressure. Really, the pressure of magnetic field is simply field density, so

$$
\text { Pressure } \cong B \cdot H
$$

coming to the force $F \cong B \cdot H \cdot \delta \cdot d$
where δ stands for the skin-depth $\delta \cong 1 / \sigma \mu \mu_{0} \Omega$ and power arrives to

$$
P \cong F \cdot v \cong B \cdot H \cdot \delta \cdot d \cdot \Omega \cdot R \cong B \cdot H \cdot d \cdot R \sqrt{\Omega / \sigma \mu \mu_{0}}
$$

At intermediate speeds between quadratic and square root, \sim linear

MODEL

Maxwell's equations

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} ; \quad \vec{\nabla} \times \vec{H}=\vec{j}+\frac{\partial \vec{D}}{\partial t} ; \quad \vec{\nabla} \cdot \vec{B}=0 ; \quad \vec{\nabla} \cdot \vec{D}=\rho ; \quad \vec{B}=\mu \mu_{0} \vec{H} ; \quad \vec{D}=\varepsilon \varepsilon_{0} \vec{E}
$$

4-potential as usual $\quad \vec{B}=\vec{\nabla} \times \vec{A} ; \quad \vec{E}=-\frac{\partial \vec{A}}{\partial t}-\vec{\nabla} \varphi \quad \vec{\nabla} \cdot \vec{A}=0 ; \quad \varphi=0$
Equation modeled $\Delta\left(\frac{1}{\mu \mu_{0}} \vec{A}\right)=-\vec{j}_{0}-\sigma \frac{\partial \vec{A}}{\partial t}+\varepsilon \varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A} \quad$ Last term omitted

$$
-\sigma \frac{\partial \vec{A}}{\partial t} \rightarrow-\sigma(\vec{v} \cdot \vec{\nabla}) \vec{A} \quad \vec{v}=(-\Omega y, \Omega x, 0)
$$

Forces

$$
\vec{F}=\int_{V}(\vec{j} \times \vec{B}) d V \quad P=\int_{V}((\vec{j} \times \vec{B}) \cdot \vec{v}) d V \quad P \cong \vec{F} \cdot \vec{v}
$$

$$
\sigma=2.38 \cdot 10^{6} \quad 1 / \mathrm{ohm} / \mathrm{m}
$$

Mesh box.

A bit more detailed picture. Mesh is denser in vicinity of coil

Top view. Rim with intermediate width. Dimensions are in meters.
Rim is spinning in $X Y$ plane around $X=0 ; Y=0$; counterclockwise

Geometry of rim

Thickness of rim ~ 0.4 rad length
Full width varied from 0.25 cm to full disc

Contour plot of forces induced by eddy currents in rim. Drag is seeing clearly

Two examples with wide and narrow rim in comparison

Current distribution inside wide rim
Current distribution inside narrow rim Center of coil located at $x=0.5 ; y=0$. One can see, that the field is dragged by spinning metal. As there is an attenuation, this transverse field varying into depth.

Zone with intense currents ~area under the coil, so it does not matter what is beyond this region.

Curly current flow dragged by moving metal.

Top view to the vector field

Fields in cross section through the center of coil

Contour plot of field amplitude.
Drag is seen here

Forces in cross section YZ plane through the center of coil

Palette output for wide rim

We investigated pulsed feeding also.

Range zero-top rise time within $50 \mathrm{nsec}-20 \mathrm{msec}$.

Field history below and above rim for 10 msec pulse duty (from zero to the top)

3D coil AMD time dependent: $\mathrm{Cycle}=25$ Time $=5.0000 \mathrm{e}-8 \mathrm{dt}=2.0000 \mathrm{e}-9$ p2 Nodes $=52672$ Cells $=38301 \mathrm{RMS}$ Er omega0 $=200.0000$ Fx_int $=34.26766 \mathrm{Fy}$ _int $=-38.70370 \mathrm{Fz}$ int $=-616.9277$ loss $=4.839152 \mathrm{e}+7$ power $=-3899.1$

Field elevation along axis at 50 nsec pulse duty. AMD philosophy is not working for short feeding pulse

Losses as function of rotation speed Ω

Losses as function of width of rim. After reaching the width of coil, power does not change, naturally. For narrow rim the power is dropping proportionally to the width.

3D coil AMD: Grid 1 p2 Nodes=98047 Cells=71887 RMS En= $=5.5 \mathrm{e}-5$ omega0 $=200.0000 \mathrm{Fx}$ int $=14.40523 \mathrm{Fy}$ int $=-3462.213 \mathrm{Fz}$ int $=-1049.276$ loss $=203683.3$ power= -34621

Metal is moving to the right

3D coil AMD: Grid\#1 p2 Nodes=98047 Cells=71887 RMS Er= $=5.5$ e- 5 3D coil AMD: Grid\#t p2 Nodes=98047 Cells=71887 RMS En= $=5.5 \mathrm{e}-5$
omega0 $=200.0000 \mathrm{Fx}$ int $=14.40523 \mathrm{Fy}$ int $=-3462.213 \mathrm{Fz}$ _int $=-1049.276$ loss $=203683.3$ power $=-34621$

Inside metal, strong currents are running

Rim/Disc Target with AMD

Field along axis to the dise front plane from ($\mathrm{x} 0,0,-\mathrm{L} / \mathbf{1 0}$.) to ($\mathrm{x} 0,0, \mathrm{zd} 2$)
a: Bex
b: Bey
c: Bez

3D coil AMD: Grid\#1 p2 Nodes=49252 Cells=35658 RMS Err= 5.e-5 omega $0=200.0000$ Integral $(\mathrm{a})=1.652194 \mathrm{e}-3$ Integral(b) $=0.013170$ Integral $(\mathrm{c})=0.050985$

Field elevation from bottom of box to the plane of rim at the coil side. Gamma-beam supposed to move from the right to the left

Situation is somewhat better for equal fields from two opposing sides (tested), but there is no focusing fields here

Shift of center of gamma beam to the direction of rotation is also some helping procedure

CONCLUSIONS

Fields induced in rim have significant values. Typical integral ~ 1 Txcm of transverse field This value does not depend on width of rim practically, just changes the power deposition.
$(H R)=p \mathrm{c} / 300$ for 10 MeV particle $\sim 3 \mathrm{Txcm} \rightarrow$ Angular spread $\sim 0.3-1$ rad for the beam Power remains significant $\sim 100-200 \mathrm{~kW}(\sim 270$ HP motor required to spin the rim)

Forces are F~0.3-0.4Tons opposing spin, F~0.2 Tons expelling from coil (for narrow rim)

Pulsed feeding indicate worsen situation for long time pulsing. Investigated $\sim 20 \mathrm{msec}$ and 30 nsec pulses, For very short pulses motion does not influence much.

Situation for ordinary positron source target (spinning cross) complicated by pulsed hit by magnetic force $\sim 0.2 \mathrm{~T}$ each time when metal passing the coil.
Not stationary field distribution kicking different bunches in a train to different angles
Pulsed torque required special attention (hydraulic muff)

AMD philosophy is not working here

We are planning to continue investigate this model, exact dimensions required for comparison however

