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O CESR is a e*e storage ring operating in
two regimes: as a collider and as a

synchrotron light source

O Four superconducting single-cell RF

cavities

O Two cavities are driven by one klystron

in parallel

O High beam loading — low loaded Q factor

Beam energy 1.5t05.6 GeV
Beam current 0 to 500 mA
Frequency 500 MHz
Number of cavities 4
R/Q per single-cell cavity 89 Ohm
Qioaded 2x10° to 4x10°
Accelerating voltage per cavity 1.4t0 3MV
Klystron power per cavity up to 200 kW
Number of klystrons 2
Required ampl. stability <1%
Required phase stability <05°
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Cornell ERL prototype
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Gornell ERL RF systems

ERL Injector RF system
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O Three distinct RF systems

Buncher RF (single-cell
normal conducting cavity):
16 kW CW IOT xmtr,
prototype for the linac RF
(7-cell SC cavities

Injector cryomodule RF:
120 kW CW klystron, 2-cell
SC cavities

Buncher cavity

SC injector cavities

SC linac cavities

WRE5
|

Frequency [MHZ] 1300 1300 1300

Accelerating voltage [MV] 0.12 1to3 ~20

Qioaded 2x10% 4.6x10%*to 4.1x10° 2.6x10’ (for 25 Hz
peak microphonics)

Klystron power per cavity [kW] 79 132 ~14

Ampl. Stability (rms)

8x10°3 (bunch length)

9.5x10 (energy fluct.)

3x10 (timing jitter)

Phase stability (rms)

0.1° (energy fluct.)

0.06° (timing jitter)

0.1° (energy fluct.)
|
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O

Replace aging analog controls of the CESR RF
system with a more modern, easily upgradeable
system

Make the new system more flexible as CESR
switched from a fixed-energy operation to a
multiple-energy regime, which required frequent
adjustment of RF control system parameters

The new system is also a “"prototype” system for
ERL — design should be generic enough to be
easily adaptable to other applications

Improve diagnostics

Add new features (piezo-tuner controls, HV PS
ripple compensation,...)
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system description: Block diagram
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The system includes:

O
O

OO0

State machine

Vector sum control of
two heavily beam-loaded
cavities in CESR

Trip and quench
detection

Adjustable klystron HV
Tuner control (stepping
motor and piezo)

Feed-forward
compensation of the HV
PS ripple

Pulsed operation for
processing

Passive cavity operation
Diagnostics

Link ports (high speed
parallel ports) serve for

data exchange between
digital boards
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system description: Hardware

j T |
data data

Control Cards VME bad(plane Auxillary Cards

control outputs /
cortrol |npur5 control inputs|

control outputs
control signals

RF Down-

RF Circuitry RF Hardware Converters
The system hardware can be divided into 500 MHz
five parts: frequency

O Two controller cards (each includes a synthesi zer

processor board and an ADC/DAC
daughter board)

O  VME backplane and CPU vector modulator
O Auxillary VME cards (a Xycom XVME-542

ADC card and a serial XBUS interface
card)

O RF circuitry (vector modulator)

O RF Hardware (drive amplifier, klystron,
transmission lines, tuners, mixers,...)
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system description: Gontroller card

O Very low delay in the control loops

0 FPGA combines speed of an analog
system and the flexibility of a
digital system

O High computational power allows
advanced control algorithms TR

O Both boards have been designed in I

house DSP Virtex |l FPGA

O The controller is designed to
stabilize I and Q components of the
cavity field. The RF signals are
converted to IF of 11.9 MHz and
then sampled at a rate 0of 4x11.9
MHz.

O Generic design: digital boards can
be used for a variety of control and
data processing applications

LLRFO5 workshop S. Belomestnykh 9
CERN, 10/10/2005 Cornell digital LLRF system



system description: Gontroller card hoards

Processor board:

O 4 MB of fast static RAM and 1.5 MB of flash memory.

O The DSP is an Analog Devices SHARC ADSP-21160N.
The chip serves as the CPU and I/O processor for the
board: it performs all tasks that can be run at 100
kHz or slower.

O The FPGA chip is a XILINX VIRTEX-IIXC2V 1000-4.
The fast control loops and data acquisition control run
in this chip.

O Each ADC (AD6644) channel is provided with 2 MB of
buffer memory. Incoming data from the ADC are
stored in this ring buffer (1 Megasample each).

O A separate memory buffer is provided for the dual
functions of storing data directed to the DACs
(LT1668) and for a Look-Up Table for feed-forward
constants.

ADC/DAC daughter board:

O Four 14-bit 65 MHz ADCs and two 50 MHz DACs
O High (74 dB) signal-to-noise ratio

VMEBUS VMEBUS
iamana2) | INTERFACE
ALTERA
EPF 108304
STATIC RAM
4 MBYTES
(1M x 32)
FLASH RAM
1.5 MEYTES
{1.5M x 8)
SHARS LIMK DSP
PORTS (4)
SHARC
ADSP-21160M
EXTERNAL IO CONTROL
i0_DEVICES REGISTERS
STEFPER MOTOR, ALTERA,
JNTERLOCK, EPF10K30A
TRIGGER, ETC.
KILINX
CLOCK CHIP
MULT VIRTEX-II
RE CLK XC2A/1000-4
ADC | MEM | MEM
ADC MEM
ADC MEM
ADC MEM .
..-..-..-..-..-..-..-..-..-.i-i_.l:é-u-..-u-u-t.r-n-:

LOCAL BUS (24 BIT ADDRESS, 32 BIT DATA)

HDAC

-HDAC
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system description: FPGA Software
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FPGA#1:

DAQ of klystron power, cavity
field signals and HV signal (DC
coupled)

True vector sum control of the
fields of two cavities:
proportional-integral (PI) gain
cavity loop with reduced
bandwidth to avoid feedback at
the synchrotron frequency

PI control loop for the klystron
output (~50 kHz bandwidth)
Fast klystron high voltage ripple
feed-forward

FPGA#2:

Only DAQ (filter and
rotate/scale) of forward and
reflected power signals for both
cavities
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DSP#1 runs the state machine, part of the
fast loop and part of the slow loop.

DSP#2 performs data acquisition functions
and runs part of the fast and slow loops.

The state machine is responsible for auto-
startup, auto-calibration and trip recovery'™

Run Mode

CW_CAV_LOOP

CW_KLY_LOOP

Pulsed
Processing

Beam-driven
Cavity Mode

PASSIVE_CAVITY_LOOP

Data acquisition: DSP#2 filters and
decimates 100 kHz data down to 1 Hz,
performs 1 Hz peak detection on 10 kHz
decimated channels.

The fast loop (100 kHz): Trip and quench
detection, interlock (DSP#1); Pulse
generation for cavity/input coupler
processing (DSP#1); synthesizer (during
pulsed processing, DSP#1) and piezo DAC
handling (DSP#2).

The slow loop (10 kHz): Tuning angle
calculation, stepping motor tuner handling,
advanced piezo controls (DSP#2); Vacuum
feedback for pulsed processing to adjust
pulse height and length (DSP#1); Klystron
handling (calculation of the power demand
for HV change and rotation matrix to

compensate the klystron phase shift,
DSP#1)

Power ON

QUIESCING

MEASURING_LOOP_PHASE

QUIESCED
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O

Digital LLRF system has

operation at CESR since summer

2004. It is very reliable.

Achieved field stability surpasses

requirements.

System allows easy switch from
operation with a loaded Q of
2x105 at high beam energy to a

higher loaded Q
(4x105)operation at low
energy.

Klystron high-voltage ripple is

the dominating field
perturbation. Feedforwa
compensation proved ve
effective.

Phase fluctuation is dom
by the CESR reference si
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EXperiments at JLab

JLAB
LLRF

47.6MHz LVDS
(7 psec RMS time jitter)

47.6 MHz CMOS
{ ~3 ps RMS time jitter)
5

ADF4001EB2 (PLL
sard )

board

JLAB-CORNELL LLRF TEST

Porward 11.9MHe/xxdB

CORNELL
LLRF

Preflected 11.9MHe/'sxdB

Prransmitted 11 9MHz/'xxdB

11.9 MHz
MAX9112 MANSLIZ
2xLVDS DRIVER

11.9 MHz CMOS LPF
bR

ADF4001EB2 (PLL
board)

4

70 MHz 1497 MHz

FEL RF distribution

1

| ...@

| QUADRATURE

AMODULATOR DRIVE 1497MUz/xxdB
RF transmitter-
receiver Plorward 1497TMHz xxdB3

Preflected 1497 MHzxxdB

Ptransmitted 1497 MHz xxdB

| 1485.1 MHz ( xxdB %)

1485.1 MHz BPF filter
Q800

KLYSTRON ]

FEL

We want to operate
ERL at the highest
possible loaded Q for
the most efficient
operation of the RF
system. We have
brought our system to
Jefferson Laboratory to
perform a proof-of-
principle experiments
in collaboration with
our colleagues. The
JLab engineers built all
the necessary RF
hardware to connect
the Cornell digital LLRF
system to one of the 7-
cell SC cavities in the
FEL/ERL accelerator
and to one of the 5-cell
SC cavities in CEBAF.
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FEL/ERL test results: High Q (1.2x108) operation

Operated the cavity at Q,=
2x107 (75 Hz bandwidth) and
1.2%x108 (12 Hz bandwidth) with
5 mA energy recovered beam.

Had the following control loops
active: PI loop for the cavity
field (I and Q components);
stepping motor feedback for
frequency control; piezo tuner
feedback for fast frequency
control.

Achieved cavity field amplitude
stability of 8x10° (at Q,=
2x107) and 1x10* (at Q,=
1.2x108) at 12.3 MV/m.

Achieved cavity phase stability
of 0.02°.

With active piezo tuner were
able to ramp the cavity field to
12 MV/m in less than 0.1 second
at Q,= 2x107 and in less than 1
second at Q,= 1.2x 108,

Only with piezo feedback on
could stabilize the cavity field at
>10 MV/m.

1 T T T
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Open loop
O Increased the cavity loaded s 10 - -
Q t04.2x107 (36 Hz =
bandwidth) from nominal ££5
value of about 2x106 and ran 2= | | |
the machine with beam g % 02 oa 06 08 1
current up to 4x100 pA = 5 | | | | _
400 pA. s W “ﬁ
O The chosen cavity is one of ‘cﬁ -
the most microphonically 5 e T
active cavities in CEBAF with time [sec]

the peak detuning more than
1.5 times the cavity
bandwidth. 2

[0 We were able to close the
feedback loop and achieved
cavity field amplitude
stability of 1xX10% and phase
stability of 0.01° at 10 MV/m.

Closed loop

L
@
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— 7 \
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1.2 ]

klystron power [kW]
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LLRFO5 workshop S. Belomestnykh 16
CERN, 10/10/2005 Cornell digital LLRF system



LLRF for Gornell ERL: System configuration

|
Buncher Cavity]l Cavity2 Cavityd Cavityd Cavity? sampling sampling sampling sampling

— Fihernet
" Serial
VIVIE
" digital /O

dad
Todd

I::: - ::lw,:l\ﬁ:nm .

2-cell s.c. cavities:

DC gun HOM ferrite ring 1 to 3 MeV energy gain
barcher absorber
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LLRF for Cornell ERL: Block diagram
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Summanry

O

O

T 1O 0 A A D

We have desighed and built a digital LLRF control
system

The system is based on an in-house developed
digital and RF hardware

It features very fast feedback and feed-forward
controls, a state machine and extensive
diagnostics

The first system has been in Operation at CESR
since summer 2004, surpassing requirements

It was tested at JLab with a high loaded Q cavity
and in an energy-recovery regime

The system is generic enough to be suitable for a
wide variety of accelerator applications

The second generation is under development for
use in the Cornell ERL
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The Cornell LLRF development team:
J. Dobbins, R. Kaplan, M. Liepe,
C. Strohman, B. Stuhl

Experiments at JLab:
C. Hovater, T. Plawski
and JLab FEL and CEBAF operations staff
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