
    July 21, 2005                                                                                                              CBN 05-14 
 

TO THE CALCULATION OF KICK BY INCOMING BUNCH IN 
VACUUM CHAMBER1 

A.Mikhailichenko 
Cornell University, LEPP, Ithaca, NY 14853 

 
Abstract 

We are attracting attention to the fact that the vacuum chamber can manifest a significant screening 
effect for calculation of cross-kick from an oppositely moving bunch. The field, reduced by the 
chamber, demonstrates about the same gradient as the field in free space, however. This  might induce 
a mistake in calculation of kick strength, if confirmation of kick formula is done by measurements of 
betatron tune shift  in real machine, which is sensitive to the gradient only.   

 
INTRODUCTION 

      For calculation of kick from counter-rotating bunch in damping ring, many authors use the 
field values, calculated for free space. If the size of the vacuum chamber is much bigger, than the 
distance between the beams–this approximation might be valid. Check of validity of this 
assumption needs to be done every time, however, taking into account specifics in shape of 
chamber and beams displacement.   
     Due to relativistic compression of magnetic field spread~ γ/1  in longitudinal direction, its 
value can be calculated just as the static 2D field generated by instant current value as   

rIHE πϕ 2/~ =⊥ ,                                                       (1) 
where I(s-ct) stands for the local current value, r is the radial distance. Really, the field of the   
charge moving with constant velocity could be expressed by the following [1]   
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where tR –is the distance between the observation point and the present instant position of the 
charge (moment t), ϑ  –is an azimuthal angle to the observation point, β –is a speed of charge 
normalized to the speed of light. From the above formula one can obtain that  
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where the first expression corresponds to 2/πϑ ≅  and the second one to 0≅ϑ , ee
rr

,⊥  –are unit 

vectors in rectangular to the trajectory and parallel directions respectively.   
      Let us calculate the flux of rectangular component ⊥E

r
of electrical field over a strip having 

the width γ/2 tR  (see Fig.1 below). As the area of the strip is )/2(2 γπ tt RR ⋅ , from (3) one can 
obtain [2]  
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This is exactly as it must be from the equation πρ4=Ediv
r

, where ρ –is a macroscopic charge 
density as eNlrEFlux b ππ 42 =⋅≅ ⊥ with formal substitution γ/2 tb Rl = .  So in the laboratory  
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frame at the distances Nlr b /γ≥  one can use macroscopic definition of electric 2D field. The 
 field at smaller transverse distances is much more complicated, however.  

 
FIGURE 1: The strip around the relativistic charge used for integration of flux. 

 

So that is why the 2D static formula (1) is valid here. 
 

MODELING 
 

     We begin with test run made for round geometry. Well known solution is that the field in not 
dependent on surrounding tube radius, if the current is running through the center.   
 

    
FIGURE 2 : Magnetic lines for two cases, left. Field values across the region, specified by x—

coordinate, –right. Center located at x=10 cm. Calculations done with MERMAID. 
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    In this cylindrical geometry the outer diameter is 20 cm and the smaller outer diameter is 10 
cm, Fig 2, left. The current is running through the axis of these cylinders, which is located at 
x=10 cm. So the field for x=7 cm corresponds to the horizontal shift equal to 3 cm. The vertical 
field around this point represented in Fig. 2, right, for two cases:20 and 10 cm diameter. As 
expected, the field is the same does not matter what is the diameter of external cylinder.                        

 
Now the real cross section inserted into program MERMAID as shown in Fig 3. This time the 
boundary is limited by cylinder having 30 cm in diameter. For modeling fields in vacuum, the 
CESR’s chamber contour is just transparent.  

 
FIGURE 3: Geometry. All dimensions are given in cm.  Current is running at x=17cm, y=15cm, 

i.e. +2cm from the center of chamber, which is located at x=15, y=15cm.  
 

We are interesting in fields around the opposing beam location, which center lies at x=13, y=15 
cm. So this corresponds basically to the pretzel amplitude ± 2 cm.  
     The current was taken as big as I=1 kA. This value is arbitrary. For estimations one can take 
CESR’s 10mA average current. As the perimeter of CESR~768m so for 1cm bunch length the 

pick current corresponding to this average value will be kAA
cm

cm
I 768.01010

1
76800ˆ 3 =⋅≅ −  . One 

can easily scale this value to any other value and other longitudinal distribution.   
   This model is valid for the chamber having infinitely high conductivity. For the finite 
conductivity situation becomes more complicated as magnetic field penetrates inside material of 
the walls what yields misbalance of electric and magnetic forces. In this case residual magnetic 
field demonstrates shape dependence and, hence gradient in residual field, see [3] and references 
there.  
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FIGURE 4: Magnetic lines in CESR’s chamber represented in upper picture. Boundary conditions 

correspond to infinite conductivity. Lower picture shows the lines in surrounding 
round chamber having diameter 30 cm. This approximates free space well enough.  
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FIGURE 5: Vertical magnetic field ( yHH ≡ϕ ), kG in comparison. Field in CESR’s chamber is  
lower. Center of opposing beam located at x=13cm (-2cm from the middle of 
chamber). Beam generating this fields located at x=17 cm, see Fig. 3. 

 
   So one can see, that despite the magnetic field becomes reduced to the~ 25% of its initial 
value, the gradient remains about the same. So one might be inspired by formal coincidence of 
calculated betatron tune shift  
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and the betatron tune measured in real machine and extend the kick formula to all cases. 
Numerical calculations require knowledge of real kick, however, so here the source of mistake 
might be hidden.  
    These numbers are valid for the chamber of CESR’s shape and pretzel conditions. For other 
rings this effect is different, naturally. Change in strength of this effect remains important for 
multi- turn tracking.  
   

CONCLUSION  
    Screening by a vacuum chamber is important and needs to be taken into account. But basically 
this is working in a favor of kick reduction. Effective kick is ~2-4 times lower with the chamber. 
So the calculations with formulas for free space majorate the effect. The screening definitely 
needs to be taken into account when numerical simulations carried for multi- turn tracking.  
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