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POLARIZED POSITRON PRODUCTION SCHEME. 

    BASIC DESCRIPTION. 
 

Alexander A. Mikhailichenko 
Cornell University, LEPP, Ithaca, NY 14853 

 
We represent here parameters and some details of calculations done for pulsed helical undulator with 
period 2mm. This undulator is planned for experiment suggested for test at SLAC polarized positron 
production scheme.    

 
INTRODUCTION  

 
We continuing here description of components of the scheme for polarized positron production 
[1] supposed to be tested at SLAC.  
One meter long pulsed undulator having 6 mm period and the axis field ~6kG ( K ≅ 0 35. 1) was 
successfully tested many years ago [2, 3]. The feeding current in a wire with 1×1 mm2 cross 
section was ~10 kA. Pulse duration was ~50 µ sec , feeding voltage  ~ 1.19 kV required by 
inductance ~1.3 µ H allowed operation with repetition rate of 25Hz2.  Such high current (and 
inductance) was forced by the aperture clearance of 4mm in diameter required.  
The idea to test the method of polarized positron production at SLAC was materialized recently 
[4,5]. As the length of the testing device is one meter only rather than a hundred meters in full 
project, the aperture of the undulator can be shrunken to ~1mm clearance. The concept of pulsed 
helical undulator suitable for this test was described in [6], Fig.1. As the SLAC energy is going 
to be more likely ~47 GeV, rather than 50 GeV, this forced to reduce period of undulator closer 
to 2mm.  So we decided to refresh the parameter list as well as to add some details into 
description of the undulator together with necessary formulas.    
Let us remind first, that the undulator has two helixes shifted in longitudinal direction by half of 
period. Technology for manufacturing of double helix with period 2.4 mm was tested 
successfully [6] and there was not found any limitation to make the windings with period 2 mm.  
 

 
FIGURE 1: Model of pulsed undulator with period of 2.42 mm and 231.5 mm long [6]. Three G-10 rods squeezed 

with help of short rings having cylindrical grooves. This arrangement serves as a positioning system 

                                                           
1 This value is optimal for 150 GeV primary beam.  
2 Required by VLEPP parameters at that time.  

 1



 
FIGURE 2: Another concept of fixture the rods. Two G10 rods are based in corners of long groove. Third rod with 

help of strip spring compresses the windings to the other two ones.  
 

In Fig.2, the transverse position of the helixes is well established in a slightly different way. 
Upper rod might have grooves with period of helix, fixing longitudinal positions of the wires 
[2,6]. The StSt tube id diameter suggested for now to be 0.889mm, the OD diameter -1.0668 
mm.   
In this publication we will concentrate on the physical part of the project, however. 
 

FIELDS IN AN UNDULATOR 
 

Fields in an undulator as in any magnet can be calculated analytically as well as numerically with 
help of appropriate 3D code. We used both ways for evaluation of the fields in undulator. Both 
gave the same results.   
Lower we will suggest that the feeding current is steady as the time of the beam passage through 
the undulator is much less, than suggested duty time (30 sµ ). So the radiation was calculated.  
For analytical calculation the easiest way is to use expressions derived in [7] for the vector 
potential of a pair of thin helical strips caring each opposite current values I, wounded on 
cylindrical surface as (SI units) 
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where a is the radius of the cylinder, uλ  is period of winding, 0ϕ  is the local angle between mid 
of the strip and axis x,  u/actg λπψ 2=   is a winding (pitch) angle of helix, α2  represents the 
angle under which the strip is visible from the central axis.  
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Transverse magnetic field can be calculated from these expressions using formula ArotB
rr

=  
written in cylindrical coordinates as the following  
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For the field on the diameter line connecting two wires centers of symmetry u/ λπϕϕ 20 +=  and 
expression for the filed comes to   
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what means that in rotating with period of winding coordinate system the field is constant at 
fixed radius.  
For the field at the axis  
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This formula illustrated in Fig.3.   

 
 

FIGURE 3: 3D plot based on formula (4).  Current I=1A.  
 
For the energy stored in magnetic field we have expression dV)Ai(LIW

rr
⋅== ∫2

12
2
1 , where L is 

inductance. Using formulas (1) it is possible to obtain inductance per unit length as the 
following, [7]    
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For the conductor of finite size and shape, the expression for the vector potential and fields can 
be represented as a sum of terms (1,2) with appropriately varying ii a,α  for each layer. The 
current in each layer must be calculated also taking into account the shape of conductor. 

Naturally . Here, however there is some uncertainty associated with proper current 

distribution. For helical geometry of the wire, the current has a tendency to run in the inner layer 
as the path here is shorter.   

iI
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In our design we calculating the fields with round wire as well as rectangular one. On the basis 
of result obtained from here, we make final conclusion. The difference between these two cases 
in of the order of 12-15% however in a favor of rectangular wire.  
The type of field representation described above was used in [3,8] for the field calculation in 
helical undulator and we are using it here for some extend below. Numerical calculations 
represented here done with 3D code MERMAID. 
Let us represent also some simplifications of (2) what might be useful for analytical evaluations 
in future.  Derivative of the Bessel function (of the second kind) can be expressed as the 
following  
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With these formulas the expression for magnetic field (2) can be represented as the following  
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Bessel functions in its turn can be expressed as the following, (see for example [9]) 
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For many cases the only first longitudinal harmonics is important. This defined by how much the 
particle is shifted from the central axis ( ρ  value) and by u/a λ  ratio. We will see (Fig.10) that 
even for 1≈a/ρ description with 3 longitudinal harmonics is acceptable. So for the first 
harmonics  
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The terms in rectangular brackets are the constants depending on ratio of diameter to the period, 
which is about 222 //)a(/a uu πλπλπ ≅≡  in our case, so 71022 20 .)/(K)/(K ≅+ ππ . For a 

thin conductor also 1≅αα /sin , so expanding ...xxx ++++
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obtain dependence of magnetic field on transverse coordinate, ρλπρ ≅= 2    
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Normally the terms in rectangular brackets describe the dipole, sextupole, decapole, … fields 
responsible for the perturbation of emittance of a primary beam as a result of motion in nonlinear 
fields. What is important here is that the measure of these effects is the ratio of the beam size to 
the period of undulator ( ) , where 88 22 //// uu DD εβρ ≅ ε  is emittance of the beam and β  is 
envelope function. We will describe these effects in separate publications.  
 

 
FIGURE 4: Exact solution (9) and approximation with three terms (10).  

 
One can see, that the difference in magnetic field values obtained with formulas (9) and (10) at 
0.45 mm is less than 2%,  
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For SLAC emittance cm×rad in a crossover of envelope function having value 

there 

≅γε 3103×

≅0β 300cm sigma of the beam goes to cm/)( 3
0 103 −×≅≅ γβγεσ .  At 0.3 mm, what is 

ten sigma, the field deviation from constant is ~10%.   
On the Figures 5-11 there are represented different field distributions obtained with formulas 
described above. 

 
FIGURE 5: Transverse distribution of the field (Gauss) across the line connecting the centers of conductors.      

 
Radius of the winding in all examples is a=0.5mm, period 2=uλ mm, feeding current is 1.6kA. 

Factor undulatority  for these parameters goes to . 
Heating per pulse with 30 µsec duty time goes to ~3 o /pulse. Voltage required to support the 
current 1.6kA goes to ~1.7 V/cm.  

)m()T(H.mc/eHK uu λπλ ⋅⋅≅= 4932 2

C
1.0=K

 
FIGURE 6: Transverse components of magnetic field, G on axis as functions of longitudinal coordinates. 

Longitudinal component of the field is absent. Period of undulator is 2 mm, feeding current 1.6kA. Lines are pure 
sin/cos ones. 
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 FIGURE 7: Vectorial visualization of the transverse fields at the axis of helical undulator from Fig.6. The dots are 

representing the ends of the vector of magnetic field components Bx,  By  as  a function of transverse 
coordinate. Center of the helix coincides with line {x=0,y=0}. At the left- the front view of the helix is 
represented.  

 

 
FIGURE 8: Longitudinal axis is now shifted in radial direction on ∆r =0.3 mm. In such a way the fields look for 

ultrarelativistic particle moving along this line. Feeding current 1.6kA.  
  

One can see, that in this case the curves remains sinusoidal. The longitudinal field rises to the 
significant value ~6 kG.  

 
FIGURE 9: Vectorial visualization for the fields on shifted axes from Fig.4. One can see that in this case ends of 

magnetic field vector remain on just slightly deformed circle, but with shifted center. The shift is 
equal to the field value at ∆r =0.3 mm. Ellipticity remains small.  
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FIGURE 10: Longitudinal axis is now shifted in radial direction on ∆r =0.45 mm, practically to the edge of the 

wire. One can see, that the field value module is about twice of that was at center.  Feeding current 1.6 kA.  
 

One can see from Fig.10, that the field becomes significantly non sinusoidal in longitudinal 
direction, requiring few longitudinal harmonics for description.   
 

 
  FIGURE 11: Vectorial visualization for the fields on shifted axes from Fig.10. One can see that in this case ends 

of magnetic field vector are deflected from circle. Average radius of this oval is about to be twice as 
on Figs. 7 and 9.  

 
  
3D code MERMAID allowing calculation 3D field distribution as well as energy stored in 
magnetic field per longitudinal unit.   
As we mentioned above the current distribution inside the wire needs to be evaluated in 
additional run.  In [13] there was made an estimation of the current distribution, however for 
infinitesimal in thickness winding.   In this case the current distribution is the value of the 
magnetic field distribution divided by magnetic permeability of vacuum 0µ .  
In reality the current distribution in the wire need to be calculated as a solution of equation 

0=jdiv
r

 with appropriately given boundary condition. In MERMAID the current distribution 
obtained in a separate run. Boundary conditions are given as the points, where the currents enter 
the wires. Also there is some perturbations of the field due to the effect of establishing the 
equilibrium current distribution inside the wire, by choosing the entrance point for the current far 
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enough from the region of interest, one can diminish this effect.  Typically the end fields are the 
mostly interesting ones. So choosing the geometry starting few periods from the ends is enough 
for proper modeling.  
 

 
 

FIGURE 12: Field profile across undulator aperture starting from the center. Feeding current 1.6 kA. Calculations 
have done with MERMAID.  

 
Left graph on Fig.12 must be compared with one in Fig.5, where the same transverse 
dependence, but calculated analytically is represented.  One can see, that agreement is very good. 
At the right in Fig.12, the same transverse dependence with extended limits is represented. Wire 
occupies the distance from 0.05 to 0.1 cm in this picture. The slice line is going between the 
wires. One can see, that behind 2.1 mm from center, the field is practically absent. This gives an 
idea on how close the walls in Fig.2 can go to the helix. So the window in Fig.2 1×1 cm2 is 
enough for the helix positioning avoiding influence of surroundings.  
 

 
FIGURE 13: Longitudinal field profile, kG along undulator aperture around the end, cm. There is no end 

correction.   
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Longitudinal profile is represented in Fig.13. This type of field mapping used for modeling end 
field effects (will be described separately).  
For testing of analytical formulas the measurements were done many years ago with scaled 
models of undulators. Winding radius was about 2 cm and wires were 1×1 cm2, period 42 mm.  
Hall probe was easily moved between wires.  Transverse and longitudinal dependence of the 
field like the one represented in Figs.12 was measured and compared with calculated, showing 
good agreement [2]. 
 

RADIATION  
 
Radiation was investigated in many publications. Pioneering among them is [10]. As the fields in 
undulator can be treated as pure sinusoidal ones as functions of longitudinal coordinate, one can 
obtain the formulas for radiation rather easily after all. We will refer to [11] however. This 
publication contains all references (see also [12]3).  
For the full intensity we have the expression   
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One can see that intensity and cdt/dγ  are not functions of the undulator period.   
Radiation coming from helical undulator can be represented as a sum of harmonics, associated 
with period of the undulator which is basically the frequency of spontaneous radiation    
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( )2/1 ββββ ⊥−⋅=  is longitudinal normalized to c velocity, ⊥β  is transverse normalized 
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The amount of energy radiated in solid angle οd  on harmonic with number n can be written as 
the following, [11]   
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3 We would like to attract attention that in this publication ([12]) there is a mistake in FIG.2 (a). In reality in the rest 

frame intensity of radiation in x, y direction is not a zero, but is ½ of maximal, radiated in z direction, factor 
. In Lab frame the deg angle between y and z goes to ~1/γ and the radiation is present under this 

angle. 
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One can see from (14) that the function in rectangular brackets can be treated as density of 
probability to radiate the photon with certain helicity in polar angle 
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We represented these formulas here for future usage in description of modeling of conversion 
with numerical code. 
In [14] all these formulas were expanded for small argument of Bessel function as (see(8))  
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One can also expand  
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For undulator having M periods in dipole approximation K ≤ 1  [14], maxn/s ωω hh= , 
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For the first two harmonics  
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 One can see that the photon spectrum density, normalized to the maximal photon energy for 
each harmonics  is not a function of energy of primary electron beam   s n n= ω ω/ max

The phonon flux as a function of (not normalized) energy goes respectively   
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As the function of the angle the photon density goes to [14]      
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Polarization in dipole approximation becomes 
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One can see, that polarization becomes linear (ξ ξ21 22 0= ≅ ), when the angle of observation 
ϑ γ≅ 1 / .  
Total number of the photons radiated at each harmonic from s = 1 (straight forward direction), to 
the threshold value  defined by the maximal possible angle of incoming radiation, selected 
by the diaphragm  
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what is a function of the fractional energy only.  The  fractional energy st defined by diameter of 
the diaphragm hole in front of the target  
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where R is the distance to the target from the end of undulator. s  corresponds to absence of 
any selection,  – straight forward direction,   selection in 20%  down from the 
maximal  possible energy of the quanta.   The corresponding maximal values of the angles for 
selection (minimal value is zero for the forward direction) are  

t = 0
st = 1 st = 0 8.
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If the diaphragm is large, Rd ≥γ , then the number of the photons is not a function of the beam 
energy at all. One can see that for keeping the same fractional energy, it is necessary to keep the 
ratio Rd /γ  constant. So reduction of the photon density  is not a limitation.  2/1~ γ
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Using (18), (19) one can obtain  
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 If system collects only 20% of maximal possible energy down from the maximum, i.e. , 
then  

st ≅ 0 8.

  < >≅ξ 21 0 96. , < >≅ξ 22 0 95. . 
 

 For  (30% interval) st ≅ 0 7. < >≅ξ 21 0 92. , < >≅ξ 22 0 89. . These figures indicate that the level of 
polarization is high.  
According to (26) for K=0.1  the angle under which the target is seen from the end of undulator 

goes to 51056010165070 −⋅≅+≅= ...).s( t γ
ϑ

≅⋅× −51056.m

rad for .  If we suggest the distance between 

the undulator and target ~10m, then the increase of the size of gamma spot at the target will be 
0.65mm.  The increase of the spot due to the angular spared of the SLAC’s 

beam in undulator 

510=γ

≅∆ 10r

mm.mm/m/r 1010101010310 53 =×≅××≅×≅∆ −−βεϑ / 10300 5 . The last 
means that angular selection is possible in planned experiment.   
For K=0.1 angular and spectral distributions look like the following.  
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FIGURE 14: Angular distribution of intensity for right and left handed helicities as functions of angle 
 for the first harmonics, left. Ratio totI/)(I ϑϑ

±∂ 1 [ ] [ ])(I)(I/)(I)(I ϑϑϑϑ ϑϑϑϑ
−+−+ ∂+∂∂−∂ 1111

510=γ
 

formula (17), represented at the right. Undulatority factor K=0.1, , 50 GeV.  
 
Parameter max/s 1ωω=  on the graphs is the same as introduced above. Is introduced for each 
harmonics and can not be more than one, there is no confusion on how to use it for presentation 
of few harmonics on the same graph, however.    
The lowest frequency in the system associated with the photons, radiated backwards, πϑ =

u

 in 
formula (13). These photons have the wavelength, which is twice the undulator period λ . So 
strictly speaking there is no radiation below the frequency uth c λπβω /)1/( ≅+Ω=

acrit ⋅= 613.2

 what is 
4mm radio waves. However restriction occurs even earlier as the vacuum chamber suppresses 
propagation of the waves with wavelength ~  (with coefficient ~1.3065 for round chamber, so 
critical wavelength for the chamber with round cross section is

a2
λ ). If however the 

vacuum chamber is multiply connected, the waves with this lowest frequency can be (coherently 
for the frequencies ) radiated as well.  bunch

zu /c/c σωλπ ≤≤
One can see, that as the frequency of radiation is a function of angle, (13), the spectrum of 
radiation is a contiguous one if integrated over all angles. The spectrum remains a line type is 
however the radiation considered under fixed narrow angle.  
We would like to say that all formulas represented here valid for infinitely long undulator. For 
undulator with finite number of periods M one needs to introduce the factor   

2









−

−

nn

nn
/)(n

]/)(Mnsin[
ωωω

ωωωπ  

into intensity. The length of formation of radiation having wavelength λ  is . For 
undulator this is exactly equates to period of undulator. The length of formation of radiation in 
magnetic field itself is however l  (K=0.1). After this 
length the photons radiated in angle 

λγ 22~l f

uuB .~K//)eH/mc(/~ λγγγρ 712 D≅= ⊥

γ/1  from different periods are not interfere.  
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FIGURE 15: Spectral distribution of intensity for right and left-handed helicities as functions of normalized 

frequency  for the first (left) and second (right) harmonics. K=0.1, (50GeV).  sIsI tot∂∂ ± /)(2,1
510=γ

 

 
 

FIGURE 16: Total spectral distribution of intensity for right and left-handed helicities as functions of normalized 

frequency 
sI
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∂
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∂
∂+

∂
∂ −+−+ )()()()( 2211  for the first and second harmonics.  K=0.1, 

.  510=γ
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FIGURE 17: Spectral distribu n of polarization. Basically this is the ratio tio

[ ] [ ]ssIssIssIssI ∂∂+∂∂∂∂−∂∂ −+−+ /)(/)(//)(/)( 2,12,12,12,1  from the graph in Fig.15.    
 
 
 
 

 
 

FIGURE 18: Spectral distribution of the photon density for the first (left) and second (right) harmonics and for left 
and right circular polarization for each harmonic. Basically this is sN)s(N tot, ∂±

21∂ . Undulatority 

factor K=0.1, , 50 GeV.  510=γ
 

 16



CONCLUSION  
 
Let us represent here the summary list of parameters.  
 

Parameter  Value 
Period  2mm 

Axis field 5.6kG 
K ~0.1 
ωh   12.28MeV(50GeV);  10.4MeV(46GeV) 

 Losses/particle 0.1518×  J/m 1210−

Losses  0.948  MeV/m  
Number of quants/particle 0.16/m 

Feeding current  1.6 kA 
Feeding pulse duration  30 µs 

Heating/pulse ~3 degC 
Feeding voltage 1.7V/cm 

Average polarization  ~90% 
 

One can see, that radiation in the undulator is typical for quantum regime: the amount of energy 
radiated by particle in less, than energy of quanta. This brings the radiation process in statistical 
regime.  
The questions associated with conversion itself will be considered in other publications.  
Summarizing we can say that undulator radiation generated by SLAC’s beam has excellent 
properties for the experiment planned.  
Pulsed undulator itself despite its unique parameters looks also a pretty guaranteed from the 
engineering point of view.  
From the table above yields than the undulator having the length 1/(0.16)~6 metes will generate 
one gamma quant per each initial electron(positron).  
We believe, however, that for future linear collider an SC undulator with large (~6mm in dia) 
aperture and ~8mm period is more suitable from the exploitation point of view.  
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