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1. Introduction

In storage rings which operate with trains of bunches at high
currents the observation of the motion of these bunches is quite important.
An important reason is that the storage ring is often attempting to operate
at or above the instability threshold for coupled bunch instabilities of the
beam(s) and these observations are necessary to help to identify the cause
of the instability and its possible cures.  With single bunches or equally
spaced bunches the observation of beam position signals in the frequency
domain has been analyzed and gives fairly simple and understandable
results.  With trains of bunches the frequency spectrum is more
complicated, but is still capable of providing useful information.  This
paper will present a basis for understanding measurements of the
frequency spectrum of beam signals for trains of bunches.

Since we are typically interested in observing the beam while it is
stable or just at the onset of an instability, we will assume the amplitude
of the oscillating bunches is small compared to the scale distance at which
nonlinearities become important.  This allows us to treat the motion as
linear, small amplitude motion.  This analysis equally well describes
motion in the longitudinal or transverse directions for dipole, quadrupole,
etc. oscillations, however to simplify the expressions in this paper we will
treat the case of coupled bunch dipole betatron motion in the horizontal
direction.  The results of this paper may be trivially applied to any of the
other cases.

2. Description of the Motion of the Ensemble of Bunches

Before dealing with the signals from a position monitor, we must
establish a consistent way of describing the actual beam motion.  To
describe the motion of the bunches we will choose a reference location in
the ring which will be our measurement location.  When the first bunch in
the fill pattern passes this location, its phase space coordinates will be
(x0,x0').  At the same instant the second bunch will be some distance away
from the measurement point having its own independent phase space
coordinates at its location.  To remove the effects of differing betas around
the accelerator, we will spatially project the motion of this second bunch
forward to our measurement location using standard Twiss parameters.
These projected phase space coordinates are then called (x1,x1').  The
position vector Λ i  which contains these same projected phase space
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coordinates for all the bunches in the ring when the first bunch reaches
the measurement location on the i-th turn is then

Λ i  = 
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For later analyses it is convenient to use complex variables to describe the
oscillation of each bunch.  In this case the real part of the expressions will
describe the actual motion.  For the phase space coordinates undergoing
betatron oscillations we have the following form
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Thus λ i  may be defined to be the full complex expression for Λ i ,

Λ i = Re{  λ i }

The time development of the  freely propagating position vector
from the i-th turn to the next turn can be described by

λ i+1 = ( T + Z ) λ i
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where T is the well known one turn transfer matrix and Z is a real matrix
which contains the effect of the wakefields from each bunch producing
deflections for subsequent bunches.  The matrix T will be block diagonal,
while generally the matrix Z will contain non-zero elements off the
diagonal.  From the form of this equation there will be a set of eigen
vectors and eigen values each of which will describe simple repetitive
motion of the ensemble of bunches.  Each one of these eigen vectors will
evolve from turn to turn in a very simple way,

λ i+1 = e
jωTr λ i

where Tr is the revolution period of the ring and e
jωTr is the eigen value

corresponding to this eigen vector.  The full eigen equation is then

( T + Z ) λ i = e
jωTr λ i

Solving this equation yields a set of eigen values and corresponding eigen
vectors which describe the normal modes of the bunches.

From the form of the eigen equation several things are clear.
Because (T+Z) is a real matrix, it will have solutions which will break into
pairs of eigen values which are complex conjugates of each other.   This
gives pairs of angular frequencies which are equal in magnitude and
opposite in sign.   Since the elements of λ i  i pairs represent the phase space
coordinates of each bunch, the equal and opposite values of each pair of ω' s
simply reflects each bunch's oscillation being visible in both the x and x'
coordinates.  If the wakefield effects are ignored, Z is zero, the eigen values
are degenerate with ω being the betatron oscillation angular frequency and
the eigen vectors can be any set which spans the space of all possible
bunch motion.

If the wakefield effects are important, then the eigen values and
eigen vectors will depend on the details of the ring's impedance, the bunch
length and the exact distribution of current in each bunch.  In general the
eigen values will differ from each other in their real and imaginary parts.
The change in the real part when compared to the zero current case gives
the tune shift and the imaginary part yields the change in damping rate of
the eigen mode.  Depending on the ring's impedance and the distribution of
current, the growth rate of the most unstable mode and its normal motion
can vary dramatically.  In order to measure the beam(s) stability, locating
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and observing coherent tune shifts and damping rates for the most
unstable mode(s) are of great interest.

Making use of the results of the example in Appendix 1., for a single
bunch we see that the signal processed from a position monitor gives a line
spectrum of upper and lower betatron sidebands with a fairly flat
envelope extending from zero frequency up to a frequency fc = 1/∆T
determined from the sampling time, 2 ∆T.  When there are many bunches
in the ring, the pattern of amplitudes and half widths of sidebands is not in
general uniform from sideband to sideband as it is for a single bunch, but
there is a characteristic frequency for which the sideband pattern does
repeat.  This frequency is determined by the RF accelerating system
frequency or one of its subharmonics.  In the case of CESR when 14 ns (7
RF wavelength) spaced bunches are filled, the characteristic frequency is
71.4 MHz or 1/7 of the RF frequency.  When bunches fill relatively few of
the possible bunch locations for this characteristic frequency, it should not
be necessary to observe all sidebands over the same range of frequencies.
One would, rather, expect that it should be sufficient to make
measurements at a subset of sidebands whose number equals the number
of bunches filled, i.e. the degrees of freedom of the ensemble of bunches.
If the matrix Z is known exactly, then the set of eigen values and eigen
vectors would determine for each mode the actual pattern of bunch
oscillations, the envelope of the frequency spectrum of the motion and
thus the most appropriate sideband for observing each normal mode.  If
(as is generally true) Z is not known in detail, but if there is a periodic or
almost periodic pattern to the bunches which are filled, we should expect
to find some related pattern in the sideband spectrum.  For each set of
bunch patterns which is filled, the goal is then to find some basis set of
position vectors, bk, (and their corresponding frequency spectrum), which
span all the possible motion of the bunches.  When this is done, the eigen
vectors of (T+Z) can then be written in terms of these basis vectors,

λ i  = ∑
k = 1

number of bunches

  ck bk

where ck are coefficients, and the spectrum of sidebands for a given eigen
mode will be the superposition of all the basis vectors' sideband spectra.

3. A Basis for Oscillations of Equally Spaced Trains of Bunches

The are many possible choices for basis vectors for the oscillation of
trains of bunches.  In order to choose a reasonable set of basis vectors it is
useful to examine a simple case where the normal modes of oscillation are
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known, equal current bunches which are spaced uniformly around the
ring.  Uniformly spaced bunches may be also thought of as uniformly
spaced trains with a single bunch per train.  Although this is a semantic
distinction, it will be less confusing for notation later if we adopt this view.
For the case of Nt trains of one bunch there is a important symmetry which
is visible in the voltage of a position monitor; the signal is periodic at with
a period of Tr/Nt.  If bunches are undergoing an oscillation for which all
bunches are moving in phase with each other, the signal at the position
monitor will appear to oscillate at the betatron frequency.  For an
oscillation where the bunches move with a phase shift of 2π/Nt from bunch
to bunch the oscillation frequency will be the upper sideband of the first
rotation harmonic.  This sequence will continue by increasing the phase
shift from bunch to bunch by 2π/Nt to give a total of Nt independent
modes of oscillation.

With equally spaced single bunch trains the position monitor voltage
signals for each bunch v(t) will be identical in shape but delayed in time if
all the bunches have the same current.  The signal v(t) must be understood
to repeat with a period of Tr.  So we can write the voltage signal from all of
the single bunch trains, which are undergoing an oscillation with a phase
shift 2π mt/Nt from train to train, as

v  tr
 mt (t) = ∑

nt= 0

Nt-1

 v
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where mt, the coupled train mode number, ranges from 0 to Nt-1.  The
frequency spectrum of the train voltage signal may computed to be
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= v(ω) 
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where v(ω) will have the spectral envelope of the periodic position monitor
signal.  v(ω) may be written as an envelope function v(ω) and the betatron
line spectrum.  Substituting

v(ω) ≡  v(ω) ∑
n=-∞

∞
δ(ω - {ωβ + nωr}) ,

and examining

∑
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∞
δ(ω - {ωβ + nωr})   
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= Nt ∑
n=-∞

∞
δ(ω - ωβ - { nNt + mt } ωr)

since {  } = 0 unless n = mt + Nt k  (where k is an integer).

Making use of this substitution, the frequency spectrum of the train
voltage signal may written more concisely as

v  tr
 mt (ω) = v(ω) Nt ∑

n=-∞

∞
δ(ω - ωβ - { nNt + mt } ωr)

This result gives a line spectrum of upper betatron sidebands of the
rotation harmonics where the set of lines which correspond to a phase shift
of 2π mt/Nt from train to train occur at the betatron sideband above the
mt-th rotation harmonic and every Nt sidebands thereafter.  For a beam
excited at one of betatron sidebands the response will be Nt times the
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response of a single bunch since all the bunches are superposing their
signals coherently.

Having described the case of equally spaced single bunch trains, we
shall now investigate the case of a single train of Nb (equally spaced)
bunches.  Making use of the simplicity of the multiple train case which has
bunches oscillating with a phase shift of 2π mt/Nt from train to train, we
will choose oscillation patterns which have phase shifts of 2π mb/Nb from
bunch to bunch within the train.  Therefore, the position monitor signal is

v B
 mb (t) = ∑

nb= 0

Nb-1

 v(t +nbTbb)  exp
 






jωβnbTbb + 2π j 

nb mb
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where Nb is the number of bunches,

Tbb is the spacing between bunches &

mb = 0, .., Nb-1 is the coupled bunch mode number

This signal may be Fourier transformed to give its frequency spectrum
which is
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This result gives a spectral envelope which is an interference pattern times
the signal's spectral envelope.  For coupled bunch mode 0, this interference
pattern has a peak at ω equal to ωβ which is Nb times the amplitude of a

Coupled Bunch Modes for 1 Train with 3 Bunches
Spaced by 28 nsec
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Figure 1. Envelope functions for three 28 nsec spaced bunches in a single
train oscillating in each of the three coupled bunch mode patterns.

single bunch.  Generally the envelope will have other smaller peaks and
will repeat with a periodicity in angular frequency of 2π/Tbb.  The overall
envelope will have the shape similar to the angular dependence of the
interference pattern of monochromatic light passing through multiple slits.
An example of the  three envelope functions for three bunches spaced by
28 nsec in a single train may be found in Figure 1.  Notice in Figure 1 that
the highest spectral peaks occur at frequencies of mb/Tbb, where the other
two envelope functions have zeroes.  This suggests that betatron sidebands
near these spectral peaks have the largest fraction of their signal coming
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from this particular mode of oscillation and  are the best frequencies at
which these modes may be observed.  Notice also that as the spacing
between bunches Tbb increases, the peaks in the spectral envelope will
crowd together until Tbb = 1/3 Tr (or the bunches are equally spaced
around the ring) at which point the peaks in the envelope function will lie
on top of every third betatron sideband.  This is the same result as was
found for three equally spaced trains.

We are now in a position to combine the last two results to give the
signal for Nt trains of Nb bunches at a position monitor,

v Tr . B
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where Nt is the number of trains, Nb is the number of bunches,

T bb is the spacing between bunches within the trains 

mt = 0, .., Nt −1;  mb = 0, .., Nb-1  

(mt . mb) is the coupled bunch mode number

Each of the different oscillation patterns may be labeled by the pair of
numbers (mt,mb).  The frequency spectrum of the bunch train signal is
then given by
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where  v(ω) is the envelope of v(ω) .



1 0

This is, of course, a spectrum for which every Nt-th betatron sideband
corresponds to the same train mode oscillation pattern and the overall
spectral interference envelope is determined by the bunch mode
oscillation pattern.  From this we can now see that there are more
favorable betatron sidebands which will be useful for observing each of
the different basis modes of oscillation.  Upper sidebands of the rotation
harmonics near mb'/Tbb will contain the largest fraction of their signals
from the mode patterns (mt',mb') where mt' = 1, ... , Nt-1.  These correspond
to basis vectors λ mt',mb' in which the bunches oscillate with phase shifts of
2π mt'/Nt from train to train, and 2π mb'/Nb from bunch to bunch within
each train.

The set of basis modes λ mt,mb is a complete set of independent modes
so that any oscillation of bunches in the beam may be written as a
superposition of elements in this set.  For any arbitrary impedance in the
accelerator there will be eigen modes for the beam and these, therefore,
may be written as the superposition of the set λ mt,mb.  As an example of
this superposition, we will measure the coherent damping rate of the least
stable eigen mode.  To accomplish this we will select the betatron sideband
at ω corresponding to a particular λ mt,mb which has a significant projection
from the eigen mode's spectrum.  Since the set of basis modes is complete
there will always be a mode (mt',mb') which has the largest projection from
the given eigen mode.  To measure the damping rate of the given eigen
mode, we excite the beam at the frequency which has the largest
component coming from λ mt',mb'.  This means that on the n-th turn there
will be an excitation δλn driven by some type of kicker in the ring.  This
will produce a position on the n+1-th turn given by

λn+1 = ( T + Z ) {  λn  + δλn }

If we make use of a periodic excitation,

δλn = λe e
j nωTr

for a total of N turns beginning initially with λ 0 = 0 , we may formally
solve for λ N, the beam's position after the excitation has ceased, and obtain

λN = ∑
n = 0

N−1

  ( T + Z )n  δλn =  ∑
n = 0

N−1

  ( T + Z )n  λe e
j nωTr
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     =  [   ( T + Z ) e
j  ωTr − I ]−1 [   ( T + Z )N e

j N ωTr − I ]    λe

when    det [   ( T + Z ) e
j  ωTr − I ]   ≠  0

Having solved for λ N we may then project it into its different eigen vector
components.  Therefore, after turning off the excitation, we will, in general,
see a decay in the amplitude which is made of several different signals
(coming from different eigen modes which have projections to this

Figure 2.  Temporal response of the spectral amplitude of a synchrotron
sideband at 32.7 MHz due to the excitation of a multiple bunch train beam

at this sideband frequency with a duration of 2.5 msec.
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frequency) decaying with different time constants.  Waiting until the other
eigen modes have decayed, we observe the component with the longest
time constant, i.e. the least stable mode.  An example of this may be seen
in Figure 2.  Here we are exciting a synchrotron sideband at 32.7 MHz for
about 2.5 ms and we observe the response of the longitudinal position
detector.  After the excitation, the beam's amplitude decays with at least
two different time constants.

Another important effect is also clear when we recall that the
wakefields experienced by different bunches will cause different tune
shifts (as well as the different damping rates) for each of the eigen modes
of the beam.   When we observe the amplitude of the beam's response to
excitation at a range of frequencies including a particular betatron
sideband, we will generally see multiple spectral peaks having amplitudes
and tune shifts which correspond to the eigen modes which have
projections at this sideband.  These spectral peaks will not be able to be
resolved if their half widths are larger than or comparable to the tune
shifts of the different eigen modes which contribute to the given sideband.
However, in the case when one or more eigen modes are only marginally
stable, the spectral peaks from these modes will appear as narrow, large
amplitude peaks superposed on the broad spectral peak coming from the
superposition of the other eigen modes.  Thus observation of the mode
spectrum itself (without the necessity of driving the beam) will give useful
information about the onset of an instability.

4. Basis Modes for Nearly Equally Spaced Trains of Bunches

In CESR the spacing between lead bunches in the trains is not exactly
equal.  Consequently the results from the analysis performed above does
not accurately describe this situation.  However, since the train spacing in
CESR is not too far from being equal, this analysis does suggest trying the
same basis set of vectors as is used for equally spaced trains.  To motivate
this line of thought we will consider the case of 9 trains of 3 bunches
circulating in CESR as an example.

Since we fill every seventh RF bucket in CESR, there are 183 of these
71.4 MHz super-buckets around the circumference of the ring.  If we first
consider nine trains of one bunch each, these bunches occur repeatedly
with a spacing of 20, 20 and 21 of the super-buckets.  As was seen above,
with nine equally spaced trains, the frequency spectrum of a position
signal would have every ninth of the upper sidebands of the rotation
harmonics corresponding to the same basis mode of oscillation of the beam
and, in particular, the 0-th and 180-th harmonics would correspond to the
same mode.  In the actual case the upper sidebands of the 0 and 183
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harmonics correspond to the same mode of oscillation.  Therefore, at
intermediate sidebands the frequencies correspond not to a single mode,
but to an admixture of three of the basis modes.  This mixing is necessary
for the "identification" of a sideband with one basis mode to "slide"
forward three rotation harmonics after every 183.  As we will see this
underlying structure persists when we add more bunches to the trains.

For a known set of basis vectors we can compute the frequency
spectrum of each vector by superposing the effect of each bunch.   For the
current distribution shown in Figure 3, we assign a delay of t(nt,nb) to the
nb-th bunch in the nt-th train with respect to the first bunch in the fill.
Then the signal v[t] from a bunch on one turn may be summed to give the
signal from all bunches in the fill pattern,

v  Tr . B
 (mt . mb )(t) = ∑
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Nt-1
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where Nt is the number of trains, Nb is the number of bunches,

t(nt , nb) is the time delay for train, nt, and bunch nb 
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(mt . mb) is the coupled bunch mode number

This bunch signal may then be Fourier analyzed to give the spectrum for
this particular basis set of modes,
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=  v(ω) ∑
n=-∞

∞
δ(ω - {ωβ + nωr})   *
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where  v(ω) is the envelope of v(ω) .

The last expression gives the spectral components at each of the upper
sidebands of the rotation harmonics.  Notice that the complex phase is
evaluated at {n ωr} and not at {n ωr + ωβ} as one might be inclined to expect.
(The sum of these complex phases may also be treated as a sum over
phasors.)

This last, more general expression has been used to calculate the
spectral components for the different basis modes of oscillation for 9 trains
of 3 bunches having a spacing of 28 ns between bunches within the train.
Results of the calculations are plotted in Figures 4 through 6 for all of the
train modes which correspond to the bunch modes number 0 through 2,
respectively.  These figures may be compared with Figure 1 which has the
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T   + t(0,2)  T   + t(1,2)         

T   + t(0,1)  T   + t(1,1)           

Figure 3.  Temporal distribution of current in a fill.

envelope function for 3 equal spaced bunches within a train.  Notice in
Figures 4 through 6 that there are generally non-zero mode amplitudes for
three different basis modes at each frequency, as is expected.  Also, with a
28 ns spacing of bunches, we would expect the spectrum to repeat in 36
MHz intervals.  All three figures show that, with the unequally spaced
trains in CESR, the spectral amplitudes of the three different basis modes
become comparable to each other at frequencies near 36 MHz producing a
relatively smaller envelope for the spectrum than for the single (or equally
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Figure 4.  Spectral components 9 trains of 3 bunches (28 ns spaced) for all
train modes having a bunch mode number of 0.

Figure 5.  Spectral components 9 trains of 3 bunches (28 ns spaced) for all
train modes having a bunch mode number of 1.
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Figure 6.  Spectral components 9 trains of 3 bunches (28 ns spaced) for all
train modes having a bunch mode number of 2.

spaced) train case.  Note also that the square root of the sum of the squares
of all the spectral amplitudes at each frequency will give a spectral
envelope of the same shape as the single (or equally spaced) train case.
Finally, it is clear that we can select a best upper sideband frequency for
each bunch train mode (basis mode) which has a significant fraction of the
spectral amplitude originating from the mode of interest.  This implies that
the bunch train basis modes of equally spaced bunches are still a good
choice for basis modes for nearly equally spaced bunches.

5. Basis Modes for Two Counter-Rotating Beams

In CESR it is also necessary to study instabilities which occur with
stored current in the two counter-rotating beams (electrons and positrons.)
The analysis in section 2 may be easily extended so that we may identify
half of the components of λ i  as those from one beam and the other half
from the other beam.  The eigen equation may be solved and the set of
eigen vectors determined.  It is natural with two beams to consider basis
vectors which have displacements for the two beams "in phase", the zero
mode, and "out of phase", the π mode.  However, unlike the single beam
case where the betatron oscillations "travel" with the beam, with two
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counter-rotating beams the traveling waves for each beam produce a
combination of traveling and standing waves as observed in a position
monitor at any point in the ring.  For a given mode of oscillation the
standing waves will cause the amplitude of the oscillation to vary around
the ring, going through maxima and nulls.  If the beams have equal
currents and equal excitations, then there will be only standing waves.
Since the deflections from the wakefields (present in Z) and from a kicker
(if it is exciting the beams during the measurements) ultimately determine
the relative phase of oscillation between the two beams at every point in
the ring, this implies that there will be places in the ring where the signal
from a zero or π mode will be at a null and at a maximum π/2 in betatron
phase from these points.  Therefore, it is possible for a position monitor to
be placed at a location where either the zero or π mode may have no signal
when observing the total position monitor signal for both beams.

There are different ways to resolve the difficulty cased by the
standing waves from the two beams.  The simpler conceptually is to have a
second position monitor at approximately π/2 away in betatron phase and
to observe the signal from both monitors at the frequencies normally used
for observing bunch train basis oscillations.  This method requires two
complete sets of monitoring systems, but will work.  Another method
would use only a single monitor and by gating would look at signal from
only one of the beams.  Since there are no standing modes when only one
beam is observed, the motion from all modes of oscillation will be
observed albeit with some reduction in sensitivity (since the two beams
are not contributing coherently to the signal in the best case.)  If is
possible to choose either or both beams for observation at the single beam
bunch train basis vector frequencies and if it is possible to drive either or
both beams with an excitation, then the problem with possible standing
waves in the motion for two beams obscuring an instability may be
overcome.  In CESR since we are most interested in the observation of the
least stable modes, we have chosen the latter method for initially finding
theses modes which we can then observe more closely during operations
or machine studies.

So it is possible to construct a basis set of oscillation vectors for two
beams, these being the zero and π modes of oscillation for one beam with
respect to the other.  Since the exact phasing of the standing waves caused
by the counter-rotating beams is not entirely determined by the excitation
of the beam by a kicker, the resulting standing waves from these two
beam basis modes cause difficulties for guaranteeing that an unstable
mode will be observed.  it is probably simpler to just observe the motion
of one of the beams and, if the instability is not observed, then measure
the other beam.  With an adequate signal to noise ratio this should
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generally allow the observation of marginally stable modes of oscillation of
the beams.

6. Conclusions

This paper has presented a basic analysis of the modes of oscillation
of a beam of trains of bunches.  There is enough symmetry even in the
case of nearly equally spaced trains of bunches that a basis set of modes of
oscillation and their frequency spectra may be constructed.  These basis
modes determine a specific set of sideband frequencies which provide a
set of references from which marginally stable modes of oscillation of the
beams may be observed.  As was mentioned at the beginning of this paper,
the results here are derived for dipole betatron motion of the bunches, but
this is only an example since the results may equally well be applied to
longitudinal and transverse motion in dipole, quadrupole etc. modes of
oscillation.
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Appendix 1. Description of Signals from Single Bunches

A single bunch of particles of current Ib, which executes betatron
motion of amplitude x0 at an angular frequency ωβ, has a transverse dipole
moment d(t) as it passes a position monitor at some point in the ring.  The
signal from the beam position monitor will be proportional to the dipole
moment of the charge distribution.  Modeling the bunch as a delta function
in time and realizing that the bunch passes the measurement point with a
period Tr, the dipole moment may be written as
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d(t) = x0 Ib e
jωβt

 ∑
n=-∞

∞
 δ(t + nTr)

Making use of the results of Appendix 2., this periodic dipole moment may
be Fourier transformed to give the frequency spectrum, d(ω) ,

d(ω) = x0 Ib ∑
n=-∞

∞
 e

j nTr(ωβ-ω)

        = x0 Ib ωr ∑
n=-∞

∞
 δ(ω - {ωβ + nωr})

which is a line spectrum with lines occurring at the upper betatron
sidebands of revolution harmonics.  The Fourier transform yields a set of
lines which appear at negative frequencies.  In a spectrum analyzer these
lines will appear to be reflected through the origin (zero frequency) to
become positive lower sidebands of the rotation harmonics.

The peak signal produced by the beam in the position monitor will
equal d(t) times some characteristic resistance Rx.  This signal is often
processed by sampling the peak signal and holding it for a time 2 ∆T to a
voltage v(t),

v(t) = x0 Ib Rx ∑
n=-∞

∞
 e

jωβnTr  { U(t − nTr) - U(t - nTr - 2∆T) }

where U(t) is the unitary step function.  (U equals 0 if t is less than 0, and
U equals 1 otherwise.)  The frequency spectrum of v(t) is thus

                 
v(ω) =  ∫-∞

∞
dt e-jωt v(t)

                         

=  x0 Ib Rx ∑
n=-∞

∞
 e

jωβnTr  ∫nTr

nTr + 2∆T

dt e-jωt



2 0

=  x0 Ib Rx ∑
n=-∞

∞
 e

jωβnTr  [ e
-jω(nTr+2∆T)

 - e
-jωnTr ]

=  2 x0 Ib Rx e-jω∆T ∑
n=-∞

∞
 e

j(ωβ-ω)nTr 
sin(ω ∆T)

ω

=  2 x0 Ib (ωr∆T) Rx e-jω∆T 
sin(ω ∆T)

ω ∆T
∑

n=-∞

∞
δ(ω - {ωβ + nωr})

This is a line spectrum with an envelope which peaks at ω equal to zero
frequency and has nulls occurring for angular frequencies at multiples of
1/∆T.  Most position monitors produce a bipolar signal which has an
envelope with very little amplitude at low frequencies and a spectral
maximum at fairly high frequencies.  Thus the advantage of sampling and
holding the peak signal is that the envelop of the spectrum will be altered
to give the maximum of the spectrum at low frequency.  Examples of the
envelope function for the frequency response of circuits with 7 nsec and
28 nsec sample and hold times may be found in Figure A1.1.  We see that
the envelope remains fairly constant up to angular frequencies of 1/3 to
1/2 of 1/∆T .
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Figure A1.1 Spectral envelope for circuits with 7 nsec and
 28 nsec sample and hold times.
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Appendix 2. Fourier Analysis Conventions

Some useful results from Fourier analysis which are used in this
paper are presented here.  The Fourier transform of f(t) is defined as

F(ω) = ∫-∞

∞
dt e-jωt f(t)

The inverse Fourier transform is therefore

f(t) = 
1

2π
 ∫-∞

∞
dω ejωt F(ω)

A function of time equal to another function delayed by a time T has this
t ransform

g(t) = f(t+T)  -->

  G(ω) = ∫ dt e-jωt f(t+T)  = ∫ dt’ e-jω(t’ - T) f(t’)

            = e-jωT F(ω)

The sum of an infinite number of periodic complex exponentials can
be written as an infinite sum of delta-functions,

∑
n=-∞

∞
 e

-jωnTr  = ωr  ∑
n=-∞

∞
 δ(ω + nωr)

This result may be proven using

∑
n=-∞

∞
 f(αn)  =  

1

α
 ∑
n=-∞

∞
 F(2π n

α
)

       where F(ω) = 2π δ(ω + ωr)  &   α  = 
2 π

ωr

 = Tr


