
CBN 98-9

Integration of Uni�ed Accelerator Libraries with CESR.

Nikolay Malitsky and Tom Pelaia,
Laboratory of Nuclear Studies, Cornell University, Ithaca, NY 14853

March 20, 1998

1 Introduction

The performance of an accelerator depends to a large extent on the quality of the theoretical
algorithms and the level of their integration with the control software. Modern accelerator
facilities are complex industrial-scale systems that are characterized by tightly bound, diverse
scienti�c and technical problems. New severe requirements for accelerator parameters result
in the strong specialization of scientists on particular physical e�ects, algorithms, or tech-
nologies. On the other side, the accelerator overall performance is determined by a variety of
combined heterogeneous e�ects and requires steering theoretical and experimental activities
of several laboratories in a common direction. There is a present need for a software envi-
ronment that will facilitate reuse and integration of diverse accelerator algorithms, provide
compatible and independent implementation of critical applications, and promote standard-
ization of the best accelerator solutions and approaches. The Uni�ed Accelerator Libraries
(UAL[1]) has been addressed to solving this task.

The UAL is an object-oriented and modular software environment for accelerator physics
which comprises an accelerator object model for the description of the machine (SMF, for
Standard Machine Format), a collection of Physics Libraries, and a Perl interface that pro-
vides a homogeneous shell for integrating and managing these components. At this time, the
UAL joins several libraries: Platform for Accelerator Codes (PAC[2]), a collection of Accel-
erator Objects that can be shared, exchanged, or converted by other codes and processes;
TEAPOT++, a collection of C++ physics modules conceptually derived from TEAPOT[3];
ZLIB++[4], a di�erential algebra package for map generation; and Accelerator Libraries' Ex-
tensions (ALE), a collection of the UAL extensions, such as adaptors, user-friendly interfaces,
DA Runge-Kutta and Lie integrators, and others. This software environment has been used
to build LHC and RHIC models and to simulate their performance [5][6]. The reported work
presents the design and implementation of the UAL-based CESR o�-line simulation module.

1

2 CESR Database

The CESR control system[7] enables independent control of most powered electric and mag-
netic elements in the storage ring. Elements are numbered individually within groups called
nodes and labelled with appropriate twelve character mnemonics. For example, sextupoles
are controlled and monitored by referring to the sextupole node labelled "CSR SEXT CUR"
and the relevant element numbers, (in this example ranging from 1 to 98), for the speci�c
sextupoles. An optics can be regenerated simply by restoring the appropriate data to every
element of every node with the exception of a few mechanical changes that are not automated
such as IR quad rotation angles and for some exotic experiments, quadrupole polarity
ips.
The optics will also depend on the actual magnet positions and errors. Together, the magnet
positions and errors along with the control system data and a few other non automated data
speci�ed in text �les, completely describe an optics.

A complete description of a CESR optics is available as a collection of �les which we will
refer to as the CESR database. A layout �le, Master6.dat, provides survey based data de-
scribing the lengths and positions of every major element in the storage ring. Also, it provides
a mapping between each physical element and its corresponding node mnemonic and element
control system reference. A saveset �le is a snapshot of the present control system state and
contains an unordered list of node mnemonics and the data for the corresponding elements
in computer units. Several such saveset �les may exist for one particular design optics but
re
ect di�erent tuned conditions. Restoring a saveset will restore the conditions that existed
when the saveset was taken. CESR has recently adopted a MAD derivative, commonly called
BMAD[8], to describe the design optics. Typically, a BMAD optics description consists of
two �les. One �le is a layout �le which may be shared among several di�erent design optics
since it contains layout information likely to change only with scheduled infrequent hard-
ware movements. A second �le contains information speci�c to an optics such as the design
strengths of magnets. These �les may be used to provide information not saved or restored
in savesets, but necessary to complete the description of an optics. Finally, a number of �les
exist which specify how to convert the computer units for elements of nodes to physical MAD
style units.

3 CESR UAL Adaptor

The migration of accelerator parameters between the CESR database and UAL environments
is implemented as the Perl package. The overall architecture is illustrated in Fig. 1 and Fig. 2.

The CESR::SMF::SMF class is a typical object adaptor that inherits an SMF interface
and overrides two persistence service methods, store and restore, for translating SMF data
to and from CESR �les. The BMAD layout �les are parsed by CESR::SMF::Shell. Be-
cause the BMAD input format is very similar to the MAD language, this class reuses the
services previously developed for the SMF-MAD bridge. The PAC::MAD::Shell class does
not only provide the connection of two environments, but also implements a user-friendly
MAD-speci�c interface and gives MAD users convenient access to underlying SMF struc-
tures and services. The following example illustrates the similarity between a MAD di-
rective for the de�nition of a quadrupole and the corresponding PAC::MAD::Shell method:

2

LHC

SMF

Parser

SMF

FieldMigrator

RHIC

SMF

Migrator

CESR

Parser

MAD files

- beam lines
- design elements

Perl scripts:

- parameters - field errors

Perl scripts: BMAD
layout

database files

SMF

PAC

Adaptors

Tier 2: Standard Machine
Format

Tier1: User Interface and Applications

Tier 3: Data Stores

Figure 1: Three-tier UAL architecture

file
SaveSet
CESR

Conversion
CESR

files

1

1

1

SMF

restore
store

ParserShellOther
Accelerator

Classes

PAC::SMF PAC::MAD

CESR::SMF

Shell

SaveSet

*

SaveSetNode

BMAD
layout
file

Migrator

Converter

SMFUsers
UAL

1

Miscellaneous
script

Figure 2: Structure of the CESR-SMF Adaptor.

3

MAD 8. qf1 : quadrupole, l = 1.2, k1 = 2.3e-5
MAD::Shell. element(\qf1", \quadrupole", l => 1.2, k1 => 2.3e-5)

The last line is written directly in a programming language and does not require addi-
tional e�orts for its translation. Moreover it can be processed inside other Perl modules and
statements.

The CESR::SMF::Migrator class extracts data from CESR database �les and records them
in Perl objects. Each CESR �le is managed by the corresponding Perl class. An instance of a
SaveSet is a collection of SaveSetNode objects hashed by mnemonic, thus forming an object
representation of a saveset �le. It provides the following services: reading of saveset nodes,
diagnostic printing of data to the terminal window, and counting of nodes and elements.
Methods for producing new saveset �les from SaveSet objects will be implemented in the
future. A CESR::SMF::Converter class converts data between computer and physical MAD
format units. Its algorithms are based on several CESR conversion �les that are stored in
Perl data structures after initialization. The class implements two methods, CU To MAD
and MAD To CU that transform data in both directions.

The present CESR database does not include all required data (such as quadrupole ro-
tation, solenoid �eld, etc.) for simulating accelerator parameters. Eventually, they may be
organized as additional �les or replaced by the BMAD persistent representation. To com-
plete the bridge between the CESR and UAL environments we describe all miscellaneous
data directly in a Perl script. This script works as an open universal interface to the SMF
data structures and permits one to insert measured �elds, distribute position or �eld errors,
represent composite elements by Taylor maps, and make other project-speci�c extensions.

Most of CESR elements are described by the standard MAD attributes. But there are two
element types, wiggler and element with the superimposed quadrupole and solenoid �elds,
that require special consideration.

There are two permanent magnet wigglers installed in CESR which are typical devices of
most electron facilities for generating synchrotron radiation. They a�ect the beam dynamic
aperture and should be included in the simulation experiment to predict the machine luminos-
ity and other integral characteristics. The wiggler �eld is very ununiform and 3-dimensional,
therefore it cannot be correctly approximated by the standard 2-dimensional elements. The
UAL environment provides the mechanism for representing such \unconventional"elements
by Taylor maps of arbitrary order. The wiggler is implemented as the CESR::DA::Wiggler
Perl class (See Fig. 3), a specialization of the DA Runge-Kutta integrator. The Perl language
supports operator overloading and creates ideal conditions for automatic di�erentiation. The
DA::RK::Integrator class generates a Taylor map for elements with no magnetic �eld, and
the CESR::DA::Wiggler reuses its algorithms for a wiggler described in the Halbach's ap-
proximation.

In the CESR interaction region there are areas where the CLEO detector solenoid covers
two CESR permanent magnet quadrupoles. It is convenient to represent such areas by a new
element type with superimposed characteristics. The superposition of element attributes
is a distinguished feature of the SMF design [9]. At this time, the corresponding tracking
algorithm has been implemented directly in the the TEAPOT integrator. The new TEAPOT
version will provide a more powerful solution that allows accelerator scientists to extend and

4

Space GlobalTable

vector of propagates

performs algebra with performs algebra with

defines a sole instance of

VectorTps VTps

1*

*

ZLIB

Integrator

Multipole

RK

Integrator

Multipole

Lie

ALE::DA

Wiggler

CESR::DA RHIC::DA

C++ & Perl

Perl

Helical Dipole

propagates propagates

Figure 3: UAL di�erential algebra packages and their application to a CESR wiggler.

5

augment existing algorithms by their own independently developed approaches.

4 Application Programming Interface

The Application Programming Interface (API) to the UAL environment is implemented in
the Perl language. The development of software in two languages, interpreter and compiler,
has many bene�ts ([1]) and is becoming a commercial standard (Java/JavaScript, Visual
C++/Visual Basic, etc.). On Unix platforms the Perl environment provides the homogeneous
shell to control and integrate together diverse C++ libraries and Perl services. One can reuse
Perl modules to extend existing interfaces in various ways: to make them more speci�c or
convenient; to add new capabilities; or to integrate with other reusable components.

However, such useful and powerful features as modularity, reusability, and extensibility
necessary in the period of software development and customization may disrupt the interface
or make it too complex and error-prone, increase the learning curve, and eventually diminish
its e�ectiveness. This problem can be solved by introducing an additional layer, an end-user
shell. In computer terminology, it is called a facade whose main purpose is to hide complexity
of underlying components and its organization and to simplify their control. Each team and
collaboration may de�ne their own interface better suited to their tasks, background, vision,
or other requirements (See Fig. 4). For our project we have reused the ALE::UI::Shell class
provided by the ALE package. Its interface and the sample Perl script are documented in
the Appendix.

5 Scenario

The integration of CESR and UAL environments is designed to provide a consistent approach
for CESR o�-line simulation with the primary purpose of facilitating machine study and
operation control. To verify robustness and correctness of future results, the facility has to
be tested against an independent analysis scheme. It is desirable if this alternative variant
utilizes a di�erent architecture and di�erent theoretical algorithms, and intersects with the
UAL components only in two places: input data and �nal results. The CESR-BMAD-
MAD chain satis�es these criteria and has been chosen for comparing primary accelerator
parameters: tracking results and Taylor maps. Fig. 5 illustrates the structure diagram of this
scenario.

The control system along with a lattice layout �le serves as a common data space for
the two alternative approaches. For a �xed lattice layout, the control system can reproduce
an optics from a CESR saveset and a collection of various conversion tables. Lattice layout
information is provided in the BMAD layout description �le and is typically stable over
several months, and only changing to accommodate new hardware installation and update
survey data and unique lattice con�gurations.

At the time that we made our comparison, CESR was in the process of converting its optics
design and description from the "Z" format to the new "BMAD" format. A Z-�le lattice
description has been used to load an optics into the CESR control system and produced a
saveset, a persistent representation of the CESR element parameters. This data is brought
into the UAL formalism via the CESR::SMF package. This package initializes in-memory

6

ShellLHC
users

LHC

Extensions

Shell
users

Extensions

Shell
users

Extensions

RHIC CESR

CESRRHIC

SimpleShell

ALE::UI

UAL core libraries

Figure 4: User shells: application-speci�c user interfaces.

Conversion Tables

CESR::SMF

BMAD

MAD Input

 Tracking Results

SaveSet

BMAD Layout

CESR::UI

SMF

TEAPOT + DA

Tracking Results

USER

Control System

Z file

Maps Maps

MAD 8

MAD

CESR

UAL

BMAD

Figure 5: Structure of the CESR o�-line simulation module.

7

SMF data structures from three di�erent sources: the saveset, conversion tables and the
BMAD layout �le. All components are glued together by the CESR::UI package that provides
the uniform CESR-speci�c user interface to SMF data and UAL tracking, analysis, and
�tting services. The tracking results and Taylor maps are produced by the same TEAPOT
algorithms using the automatic di�erentiation technique1.

The BMAD-MAD scheme is initialized by the same Z and BMAD layout description
�les. These sources include only linear element parameters, such as dipole, quadrupole, and
solenoid �elds and can be described directly in the MAD input format. However, there is one
element type that does not have prototypes in the MAD environment. We call it \solquad".
This element has arisen from a superposition of the CLEO solenoid and an IR permanent
magnet. The BMAD program is designed to support this superposition of attributes and to
generate the standard MAD input �le where the solquad is represented by a linear transform
matrix. We have evaluated this �le and found that MAD generates di�erent tracking results
in TRANSPORT and LIE4 modes:

position: x px y py

MAD/LIE4 -0.38204e-04 0.87381e-04 0.50631e-04 -0.88505e-07

MAD/TRANSPORT -0.11604e-04 0.17941e-05 -0.92072e-05 0.31670e-03

UAL/TEAPOT -0.11605e-04 0.17841e-05 -0.91972e-05 0.31692e-03

The TEAPOT one-turn map coe�cients are consistent with TEAPOT and TRANSPORT
tracking results. The same procedure has been repeated for the case when the solquad is
represented by the standard MAD skew quadrupole (without a linear matrix). These tracking
results and Talor maps agree with reliable accuracy:

position: x px y py

MAD/LIE4 -0.37256e-04 -0.18726e-05 -0.85675e-05 0.32130e-03

MAD/TRANSPORT -0.37256e-04 -0.18726e-05 -0.85675e-05 0.32130e-03

UAL/TEAPOT -0.37271e-04 -0.18852e-05 -0.85645e-05 0.32151e-03

The discrepancy between UAL and BMAD-MAD schemes is not signi�cant and has well-
controlled sources: convenrsion mechanism and TEAPOT thin element representation.

6 Conclusions

A CESR SMF package has been developed to provide UAL access to the CESR database.
Using the Shell object to abstract the details from the user, a user may import CESR database
information to the Standard Machine Format (SMF), for various operations including particle
tracking, data manipulation and output. Studies may be performed on both the design optics
and the actual optics run for high energy physics. It is hoped that o�-line studies will provide
insight on machine errors and account for discrepancies. In addition to studying machine

1This tracking engine is implemented as a C++ class template and instantiated for
oating-point and
truncated power series (Tps) variables

8

errors, we have interest in studying electron injection from the Synchrotron into CESR in the
presence of stored electrons and positrons. During electron injection, one must accomodate
three beam apertures simultaneously, that of the injected electrons, and the stored positrons
and electrons. Additionally, a pulsed three element closed bump is used to bring the stored
electron beam closer to the injection septum to reduce the amplitude of the injected electron
excursions. The bump is a half wave sine pulse lasting for six turns. The �lling rate and
stored beam lifetimes are sensitive to the pulsed bump closure. However, the bump cannot
be closed simultaneously for both the stored electrons and positrons. It would be useful to
study the injected electrons in the presence of the two stored beams in order to develop a
clearer understanding of the limiting apertures.

References

[1] N.Malitsky and R.Talman. Uni�ed Accelerator Libraries, AIP 391, Williamsburg, 1996

[2] N.Malitsky, A.Reshetov, G.Bouriano�. PAC++: Object-Oriented Platform for Acceler-

ator Codes, SSCL-675, June 1994.

[3] L.Schachinger and R.Talman. Teapot: A Thin-Element Accelerator Program for Optics

and Tracking, Particle Accelerators, 22, 35(1987).

[4] N.Malitsky, A.Reshetov, Y.Yan. ZLIB++: Object-Oriented Numerical Library for Dif-

ferential Algebra, SSCL-659, 1994.

[5] N.Malitsky and R.Talman. Study of LHC Aperture Dependence on Tune Separation

Using Thin Lenses, Phase Trombones, and \Uni�ed Accelerator Libraries", LHC Project
Note, 1998.

[6] F.Pilat, S.Tepikian, C.G.Trahern, N.Malitsky. A model of RHIC using the Uni�ed Ac-

celerator Libraries, RHIC/AP/146, 1998

[7] C.R.Strohman and S.B.Peck. Architecture and Performance of the New CESR Control

System, PAC 89, Chicago, IL, pp. 1687-1689.

[8] D.Sagan and D.Rubin. Private Comminications.

[9] N.Malitsky, R.Talman, et.al. A Proposed Flat Yet Hierarchichal Accelerator Lattice Ob-

ject Model, Particle Accelerators, 55, 67(1996).

9

Appendix.

Class ALE::UI::SimpleShell

Extends:

The SimpleShell class provides a simple user-friendly (MAD+TEAPOT-specific) interface to UAL
environment.

Sample Script: SimpleShell.pl

Public Methods

Constructor

new()
Constructor.

Accelerator description, selection, etc.

split(%parameters)
Splits selected elements into several thin multipoles.

parameters{$pattern} - an associative array of pattern for selecting elements and TEAPOT
split number (1 - IR, 2 - IR2, etc.).

Example :
split("^(i_qx|qx).*" => 1)

use($lattice)
Selects an accelerator lattice for operations (Builds a lattice from a MAD line or MAD sequence
with the same name).

lattice - a lattice name.
Example :

use("lhc")

Analysis

analysis(%parameters)
Finds the closed orbit and performs twiss analysis of the machine.

$parameters{print} - an output file name (default: "./analysis").
$parameters{delta} - a momentum offset.

Example :
analysis("print" => "./data/analysis.out", delta => 1.0e-3)

Figure 6: The ALE::UI::SimpleShell interface.

10

Fitting

hsteer(%parameters)
Flattens the orbit horizontally (Delegates the request to the corresponding TEAPOT command).

$parameters{adjusters} - a regular expression for selecting adjusters.
$parameters{detectors} - a regular expression for selecting detectors.

Example :
hsteer(adjusters => "^kickh\$", detectors => "^bpmh\$");

vsteer(%parameters)
Flattens the orbit verically (Delegates the request to the corresponding TEAPOT command).

$parameters{adjusters} - a regular expression for selecting adjusters.
$parameters{detectors} - a regular expression for selecting detectors.

Example :
vsteer(adjusters => "^kickv\$", detectors => "^bpmv\$");

tunethin(%parameters)
Fits the tunes of the machine (Delegates the request to the corresponding TEAPOT command).

$parameters{bf} - a regular expression for selecting focusing elements.
$parameters{bd} - a regular expression for selecting defocusing elements.
$parameters{mux} - a requested horizontal tune value.
$parameters{muy} - a requested vertical tune value.
$parameters{method} - a method to alter correction elements, multiplicative (’*’) or additive
(’+’) (default: ’*’).
$parameters{numtries} - the maximum number of iterations for the fitting (default: 100).
$parameters{tolerance} - the maximum absolute value of the difference between requested
values and the fitted values at convergence (default: 1.0e-6).

Example :
tunethin(bf => "^qf\$", bd => "^qd\$", mux => 28.19, muy => 29.18);

chromfit(%parameters)
Fits the chromaticity of the machine (Delegates the request to the corresponding TEAPOT
command).

$parameters{bf} - a regular expression for selecting focusing elements.
$parameters{bd} - a regular expression for selecting defocusing elements.
$parameters{chromx} - a requested horizontal chromaticity value.
$parameters{chromy} - a requested vertical chromaticity value.
$parameters{method} - a method to alter correction elements, multiplicative (’*’) or additive
(’+’) (default: ’*’).
$parameters{numtries} - the maximum number of iterations for the fitting (default: 10).
$parameters{tolerance} - the maximum absolute value of the difference between requested
values and the fitted values at convergence (default: 1.0e-4).

Example :
chromfit(bf => "^sf\$", bd => "^sd\$", chromx => -3.0, chromy => -3.0)

Figure 7: The ALE::UI::SimpleShell interface (cont.)

11

decouple(%parameters)
Zeros two elements, E12 and E22, of the matrix E = B + bar(C), as well as adjusting the tunes
(Delegates the request to the corresponding TEAPOT command).

$parameters{a11} - a regular expression for selecting the 1st sextupole family.
$parameters{a12} - a regular expression for selecting the 2nd sextupole family.
$parameters{a13} - a regular expression for selecting the 3rd sextupole family.
$parameters{a14} - a regular expression for selecting the 4th sextupole family.
$parameters{bf} - a regular expression for selecting focusing quadrupoles.
$parameters{bd} - a regular expression for selecting defocusing quadrupoles.
$parameters{mux} - a requested horizontal tune value.
$parameters{muy} - a requested vertical tune value.

Example :
decouple(a11 => "^sqsk6\$", a12 => "^sqsk8\$", a13 => "^sqsk12\$", a14 => "^sqsk2\$", bf
=> "^qf\$", bd => "^qd\$", mux => 28.19, muy => 29.18)

Survey (Accelerator Geometry)

survey(%parameters)
Calculates an accelerator geometry (survey) and prints results for selected elements.

$parameters{print} - an output file name (default: "./survey").
$parameters{observe} - a regular expression for selecting elements (default: " ").

Example :
survey(print => "./data/survey.out", observe => "ip")

Tracking

beam(%parameters)
Defines beam parameters (Initializes the Pac::BeamAttributes object).

$parameters{energy} - beam energy (GeV, default: infinity).
$parameters{mass} - particle mass (GeV, default: 0.93828).
$parameters{charge} - particle charge (default: 1).

Example:
beam(energy => 42.e+2, mass => 0.93828, charge => 1)

start(@positions)
Defines particles’ initial coordinates, displacements from the reference orbit (Initializes the
Pac::Bunch object)

positions - an array of MAD particle coordinates, [x, px/p0, y, py/p0, dt, de/p0].
Example:

start([1.e-5, 0.0, 1.e-5, 0.0, 0.0, 1.e-5], [2.e-5, 0.0, 2.e-5, 0.0, 0.0, 1.e-5],)
firstturn(%parameters)
Tracks a particle for an one turn and prints results at selected elements.

$parameters{print} - an output file name (default: "./firstturn").
$parameters{observe} - a regular expression for selecting elements (default: " ").

Example :
firstturn(print => "./data/firstturn.out", observe => "ip")

Figure 8: The ALE::UI::SimpleShell interface (cont.)

12

Mapping

space($shell, $order)
Defines global parameters of 6D maps.

order - the maximum order of Taylor maps.
map(%parameters)
Makes a one-turn 6D map.

$parameters{order} - the map order.
$parameters{print} - an output file name.

Example:
map(order => 2, print => "./data/map.out")

matrix(%parameters)
Makes a one-turn 6D linear matrix (FTPOT approach).

$parameters{print} - an output file name.
Example:

matrix(print => "./data/matrix.out")

I /O methods

read(%parameters)
Reads accelerator data from local sources (Delegates parameters directly to the
PAC::FTPOT::Shell::restore method).

$parameters{files} - a pointer to array of MAD file names.
Example :

read(files => ["./data/lhc.Kinj", "./data/lhc.seq"])
write(%parameters)
Writes SMF data to a MAD file (Delegates parameters directly to the PAC::FTPOT::Shell::store
method).

$parameters{file} - a MAD file name.
Example :

write(file => "./data/shell.out")

Figure 9: The ALE::UI::SimpleShell interface (cont.)

13

Class CESR::UI::Shell

Extends: ALE::UI::SimpleShell

The Shell class provides a user-friendly (MAD+TEAPOT-specific) interface to UAL environment.

Sample Script: Shell.pl

Overridden Methods

new()
Constructor.

Figure 10: The CESR::UI::Shell interface.

14

use lib ("$ENV{UAL_CESR}/api");
use CESR::UI::Shell;

Make the shell
my $shell = new CESR::UI::Shell();

Define DA Space
my $maxOrder = 2;
$shell->space($maxOrder);

Intialize SMF structures from CESR data sources

$shell->read(layout => "../data/cesr_layout.bmad");
$shell->read(misc => "../data/misc.pl");

$shell->split("^(q|b|qadd_)[0-9][0-9].*" => 4);
$shell->split("^q01.*" => 12);
$shell->split("^q00.*" => 12);

$shell->read(line => "cesr",
 saveset => "../data/history.dat",
 energy => 5.289);

Select an accelerator for operations
$shell->use("cesr");

Calculate and print out an accelerator geometry (survey)
$shell->survey(print => "./out/survey", observe => " ");

Define beam parameters
$shell->beam(energy => 5.289, mass => 0.511e-3);

Make Analysis
$shell->analysis(print => ">./out/analysis");

Make matrix
$shell->map(order => 1, print => "./out/map");

Define initial particle coordinates
$shell->start([1.0e-5, 0.0, 1.0e-5, 0.0, 0.0, 0.0]);

Make and print a first turn track
$shell->firstturn(print => "./out/firstturn", observe => "");

Write FTPOT/MAD input files
$shell->write(layout => "./out/layout",
 strengths => "./out/strengths");

Figure 11: The sample Perl script.

15

