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1 Synchrotron Integrals

The synchrotron integrals used to compute emittances, the energy spread, etc., have
been analyzed assuming no coupling between the horizontal and vertical planes|1,
2]. With Mobius, these assumptions are not valid and so this paper presents the
appropriate generalizations. To simplify matters it will be still be assumed that the
bends are in the horizonal plane. In this case Iy, I, I3, and I5 are unchanged (but are
given below for completeness). Without proof, the generalized synchrotron integrals

are:
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I4b = %ds (G2 + 2K1) G’l’]bx
I4z = %ds (G2 + 2K1) G’l’]w
A:f@KﬂH

where 7,, and 7, are the horizontal components of 7, and 7, respectively. With
Eq. (1), the damping partition numbers are
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Since
Nazx —I' Moz = Nz > (4)
Robinson’s theorem, J, + J, + J, = 4, is satisfied.

2 Evaluation of the Integrals

The evaluation of I, I, I3, and I, does not depend upon whether there is coupling
or not and is given by Helm et. al[l]. Using the notation of Helm, the evaluation of
the other integrals is given below.

2.1 Evaluation of I,, and I

The relation between the dispersion in eigenmode coordinates and in z—7y coordinates
is (cf. Sagan and Rubin[3])
N =vinld, (5)

where the superscript (4) is used to distinguish a 4 element vector from a two element
vector (for compactness, the superscripts on the 2 element vectors will be dropped).

Through a bend were the transfer matrix between two points is of the form

M 0
To=(y N): (©)
with !
M — cos kl 7 sin kl
( —ksinkl coskl ’ (7)
and )
k2 — ? + kl ) (8)

k, being the strength of the quadrupole component of the bend. The propagation of
77554) is

775542) =Ty 775541) + 77%) ) (9)
where 77%) is the contribution due to the ‘generation’ of dispersion within a dipole
n = (") (10)

with
p(l - COS(S/p))) . (11)

N1z = ( sin(s/p)



V! propagates as[3]

V,' =T, V' Ty}

~ -MC;N!
_ (chlM—l o . (12)
Using the above equations gives
Naz = M7y + 71 Mo 5
My = N7, + N cl M M1z - (13)

The z components of 17, and 7], are obtained by inverting Eq. (5). For the a mode
lr]a.r = 777& : (]‘4)
Also, from Eq. (12)
Y2 =" - (15)
Using Eqs. (13), (14), and (15) then gives
’r]a.’rZ =M M lr]al + 712 773:12 : (]‘6)
From Egs. (6), (9), and (10) 77, propagates as
Moy = M7, + 7,4, (17)

Comparing Eq. (16) with (17) shows that 1), propagates like 77, except for extra
factors of ;. Thus, the integrated 7,, can be obtained from a modification of Helm

Eq. 14:
sin kl 1—coskl ~2kl—sinkl
/dS Mlaz = Y07a0 —— + 70 Tao T p kB : (18)

Eq. (18) can be used to evaluate I5, (cf. Helm[1]). For Iy, the integral of 17, can then

be obtained using Eq. (4)
/dsnbw = /dsnw —/dsnm. (19)

2.2 Evaluation of I;, and I,

To compute I5 we go back to the equation for ‘H

H=7n"+2anq + Bn"”
= [n,837], (20)



where [A, B] = A'B, S is given by

S

0 -1
(1 ) (21)
and J is the Twiss matrix (cf. Courant and Snyder[4])

i=(* 7). (22)

—y —a
The propagation of J through the bend is given by
Jo=MIJ M,
Jpo=NJ,'N'. (23)
In the case were there is no coupling H, would propagate like
Hyz = [nxza S Jz2 nxz]
= [M 7, + 7,10, SM I M (M), +1,,,))]
= [M1> STar My | + 21,0, STt M1 1] + (24)
M1y SM I M 7y,

Where we have used the identity that for arbitrary matrices A and B
[AB, S| = [A,sA%]. (25)

The integration of Eq. (24) is straight—forward, if tedious, and is given by Helm Eq. 20
(reproduced here for convenience)

[ 4t = [1 (a0 + 2 0w o i + B 20)] +

2 sin kl — kl 1 —coskl

2 | + o) ™ EE (s + ) + (26
1 3kl — 4sin kl + sin kl cos kl (1 — cos kl)? kl — cos kl sin kl
? Y=o 2k5 — Qg0 o + Bao 2k

The 3 terms in Eq. (26) correspond to the integration of the 3 terms in Eq. (24).
With coupling, the propagation of H, is obtained with the help of Eqgs. (13), (20),
and (23) to be

Haz = [nap S Ja 77a1] +2m [nap S Ja M~ 773:12] + (27)

M [mm SMJ, M™ 773:12]



This is similar to Eq. (24) with the addition of some factors of 4;. The integration of
H, is thus obtained from Eq. (26) by inspection

/ dsH, = [l (’)’ao 7720 + 2 040 Mao 77;0 + ﬁaoﬂlio)] +

2 sin kil — kl 1 —coskl
2t + ouanto) A+ G+ | 4 (a9
o 3kl — 4sin kl + sin kl cos kl (1 — cos kl)? kl — cos kl sin kl
p_2 Va0 2k — Qqp . + Bao 2k
For H; Eqgs. (13), (20), and (23) give
Hpr = [nbv S Ju 77b1] +2 [nbv S Ju Cil—M_l 779512] + (29)
[mm S M(Cl Ju CT)M_I 77x12]
Again the integration is straight—forward and gives
/ dsHy = [l (60 Mo + 2 0 M0 Mo + ﬂboﬂ'Zo)] +
2 sin kl — kl 1 —coskl
; (m1022 — my 021) T + (m2011 —my C12) T + (30)
1 3kl — 4sin kl + sin kl cos kl (1 — cos kl)? iy kl — cos kl sin kl
p2 Yeft 2k5 Qleft k4 efl 2k3
where
M1 = Ya0Tao + X0
My = AeoTao + Baollg 5 (31)
and the effective Twiss parameters are defined by
Jeﬂ‘ = Co JbO CEIJ— (32)
which when multiplied out give
Bet = 031 Bro — 2 ¢y cr2 oo + Cfg Yoo
Qeff = —Ca1 €11 Bro + (€11 €22 + €12 €21) Qo — €12 €22 Yoo (33)
Yeft = 031 Bro — 2 €21 Ca2 0tpo + 032 Yo0 (34)
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