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Transverse wakefields are responsible many of the dynamic instabilities observed
in high-energy accelerators. However, wakefields can also cause “static” effects.1  For a
storage ring with a single bunch, the short-range transverse wakefield produced by the
head of the bunch will cause a distortion in the closed orbit of the tail of the bunch. When
observed at a fixed location in the storage ring, the bunch will acquire a static “tilt” or
distortion. The magnitude of this tilt will depend on the bunch intensity. It will also
depend on the transverse displacement of the bunch from the center of the vacuum
chamber at each point around the ring. The closed orbit of the bunch centroid will also be
affected, and will become a function of the beam intensity. For machines with many
bunches, in addition to the single bunch effect, the trailing bunches will be influenced by
the wakefields from the leading bunches; the extent of the effect will depend on the range
of the wakefields.

For a collider, this static “tilt” can have deleterious consequences for the
luminosity. When the beams collide, the “tilt” will amount to a crossing angle; this can
cause a luminosity reduction if the difference between the orbit of the bunch head and tail
is comparable to the bunch rms size at the interaction point. In this note, I make some
simple estimates of this effect and work out the numbers for CESR.

Following Chao2, the transverse kick received by a test charge e at position z, due
to the preceding bunch, is
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in which we consider only short-range wakes, neglecting multi-turn effects. In this
equation, N is the number of particles per bunch, y0  is the transverse displacement of the
bunch, ρ(z) is the bunch longitudinal charge density (normalized), and W1 is the (short-
range) wakefield.

Let us consider the case of a simple wake function
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in which ẑ  is the bunch length for a uniform bunch, for which
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Then Eq. (1) gives
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The maximum value of ∆ ′y  is
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Using the following approximate relations,
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in which b=radius of the vacuum chamber, R=ring radius, and 
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is the total longitudinal

impedance,  we have
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This equation is in cgs units. To convert to SI units, we replace Z Z0 0 04|| ||⇒ πε , and

introduce the impedance of free space Z
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 in Ohms. As a result of this angular kick, the tail of the bunch will have a closed

orbit which is different from that of the head. As a worst-case rough estimate, let us
consider the entire impedance of the machine to be localized at s=sZ. Then the closed
orbit difference between the head and tail of the bunch will be given by
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In the spirit of a worst-case estimate, let us assume that the phase difference between the
location of the impedance and the IP is such as to make the cos function in Eq. (9) equal
to 1. Then we have, for ν y near a half-integer,
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This displacement of the bunch tail relative to the head is equivalent to an angle in the y-s
plane; the angle is
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For two counter-circulating beams which have a common offset (Fig. 1) at the
impedance, when the beams collide, the beams will have an effective crossing angle
given by Eq. (11). For beams on pretzel orbits (electrostatic deflection), as in Fig. 2, each
beam is “tilted” in the same sense, and there is no effective crossing angle when they
collide (provided the tilt is perfectly linear, which is only true for a uniform bunch).
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Fig. 1

Bunch tilt due to common offset of both beams from the center of the vacuum chamber
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Pretzel orbit

Fig. 2
Bunch tilt due to equal and opposite offsets of each beam from the center of the vacuum

chamber

The figure of merit for luminosity reduction due to a crossing angle is
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The luminosity is reduced roughly by the factor 1 0
2+ ν .

Let us evaluate this for some typical parameters of CESR. First consider the
horizontal plane: We’ll use N=1.3x1011 (8 ma), r0=2.8x10-15m, R=123.8 m, γ=104, b=40

mm, 
Z

n
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||

=1 Ω, β(sZ)=15 m, β(IP)=1 m, ε=0.2 mm-mrad, and ẑ=2 cm. For a 1 mm closed

orbit error at the impedance, we have ∆ ′ymax =4.7 µrad, ∆y(IP)= 9µm, α(IP)=0.28 mrad,
and ν0=0.01. This is a negligible effect.

However, the effect on the luminosity is much larger in the vertical plane (for flat
beams). We take most of the same parameters as for the horizontal plane, but use ε=0.003
mm-mrad (1.5% coupling), b=25 mm, and β(IP)=2 cm. Then, for a 1 mm closed orbit
error at the impedance, we have ∆ ′ymax =19 µrad, ∆y(IP)= 5µm, α(IP)=0.13 mrad, and
ν0=0.34. Such a value of ν0 would result in a significant (~5%) luminosity reduction, as



well as possibly contributing to the excitation of beam-beam driven synchrobetatron
resonances.

Of course, the worst case assumptions have been made to obtain this number, and
a very simple model for a highly localized impedance has been used. On the other hand,
the estimates are made for only one bunch, and could increase with multiple bunches.
The estimated centroid offset of the beam due to this effect (half of ∆y(IP), or about 2.5
µm) is of the same order of magnitude as the vertical trajectory difference seen between
cars 2 and 5 with the BBI luminosity monitor3 (about 1 µm). This effect may be due to
the same process described in this note, except that it is the wakefield of car 2, as seen
by car 5, which is at work, which may explain the reduced size of the effect.

To investigate this further, one might look for the centroid offset directly. At a
location where β=30 m, rather than the IP, the centroid offset in the vertical plane should
be about 100 µm for the above parameters. This would appear as an intensity-dependent
shift in the closed orbit; the CESR orbit measuring system should be able to observe
this. The effect can be enhanced by introducing a local vertical bump at the location of a
large transverse impedance. In fact, depending on the sensitivity of the measurement,
one might be able to use this technique to map out the short-range transverse impedance
of the ring as a function of azimuth.

                                                  
1 A. W. Chao and S. Kheifets, “Beam Shape Distortion Caused by Transverse Wake Fields”, IEEE
Transactions on Nuclear Science”, Vol. NS-30, No. 4, p 2571 (1983)
2 A. W. Chao, The Physics of Collective Beam Instabilities in High Energy Accelerators”, p. 145
3 D. Sagan, J. Sikora, S. Henderson, “A Luminosity Monitor using the Coherent Beam-Beam Interaction”,
CBN 97-13 (1997)


