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Localized Multibunch Modes
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It has been suggestedthat the phenomenon of intrinsic localized modes in

anharmonic condensed matter systfis6 ’may also be observed in the excitations of
multibunch modes in accelerators, in the presence of significant lattice nonlinearities. In this
note, this possibility is explored quantitatively, for multibunch coupling produced by the
resistive wall impedance, and an octupole-generated nonlinearity. The conditions under
which such modes might be produced at CESR are discussed.

1. Introduction

Consider M equally spaced bunches in a ring, of equal populationg(bet y
(n=0,1,...,M-1) be the "snapshot" transverse (vertical) displacement of the nth bunch. The
displacement is given by

Ya(t) = ¥, exp(-i Q1) 1)

wherey, (a complex number) represents the amplitude and phase of bunch n at time t=0.

The equation of motidh for bunch n, in the rigid-beam approximation (i.e.,
neglecting internal motion of the bunch and the length of the bunch):

d’y,(t) . o _ Nre & 'Sy 0~ M-n T _m-n_[
Sarein®=-T 5 5 wrke- T Co¥net KT, 7 Tor o

In this equation\W,(2) is the transverse dipole wake functia), = v, is the vertical
betatron frequency is the number of particles per bun€hjs the ring

, c _2m. . . .

circumferencel, = c = o is the revolution period, angd = All guantities and
0

equations in this note are given in Sl units. Using the above form(frwe can write

this (for Q~wp) as

c®’

A2y, (t Nrc < " [ m-n 0 m=n
é/tz()J,w;yn(t):—y?o z Zwlm_kc_ Y CDexpEwﬂTo%’f M %Ym(t)(?,)
0 k== m=0

Transforming to the frequency domain and introducing the transverse impegfdack,
we have

d2 ) M-1
20 6y, 3 yLm=r) =0

(4)
with
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L(m-n) =i B (5)

2. Normal Modes

The normal modes of the M bunches are obtained by the usual technique. Let the
normal modes ggiven in terms of yby the relation

q=Cey (6)
in whichC is a matrix. In matrix form, the equation of motion (4) is

y+Sey=0 (7)
in which

Sm = @30, — L(n—m) (8)
Using (5) to introduce the normal modes, this becomes

q+C+SeC'q=0 9)

The matrixC diagonalizes$. The eigenvalues are the normal mode frequencies. The
required matrix is

1 (27N
Cn= NexpD VRS (20)

The matrixC obeys the following orthonormality condition:

N- N
Z » ;n:iz wﬂ .
&= M &= M (11)

in which r is any integer. Sinc@[m = C;“ =C ', Cis a unitary matrix. Using relation

nu !
(11), it follows that the eigenvectors are

47‘[MN
HOCVTZ 2 Zf(wﬁ +(rM + u)wo) (12)

in which is the normal mode index. This relation between the mode frequency and the

mode number is the analog of k) dispersion relation encountered in condensed matter
systems. The relation between the displacement of the nth bunch, and the normal modes
gu. is given by inverting Eq. (6), using (11):

00=3 Cla,0 = Y ee {0

We can define the frequency shift of normal mpdgsing the approximation (f&®,,~wp)

2 2
Qu—wﬁ

(13)
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Qr - =(Q, - w)(Q, +w,) = 24Q,,w, (14)

So we have

AQ, = —i% Zf(wﬁ +(rM + u)wo)

ﬁ“OCyTO r=-oco (15)
The above expression is correct only for a point bunch, with zero chromaticity. To include
the effects of a finite bunch length (assumed Gaussian, of aigitand a finite

chromaticity, we make the replacemefit

- T
:Z Zlm(a)ﬁ +(rM + H)wo) - ZMCU#(ZE)eﬁ (16)
in which
“ U (o, +(rM + pt) o, - w 2022D
> Z(w, +(r™ +/J)wo)expﬁ( A C3 o) %
(ZiD)eff = H 2 5[]
i - (a)ﬁ +(rM + yz)wo —a)f) %
= B : d (17)
and
o=
n (18)
So we get
. JnINr
AQ, =-i———"0_(z]
! | wﬁuoyazTo (Zl )eﬁ (19)

3. Development of the Green's function.

In the analysis of localized modesS we will need to develop the Green's
function for the equation of motion, Eq.(4). In that equation, if we let

y, (t) = ¥, exp(-iQ2t) , we have

M-1
_szn + wzyn - ymL(m_ n) = O
g mZo (20)

If we define the matrix

Rmn(2) = (-Q% + w2)3,,, = L(n-m) (21)
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then the equation of motion is
M-1 .
> Rn(Q)¥, =0
m=0 (22)
The Green's function i§_ () = R}(Q) and it satisfies the equation
M-1
Y R(Q)G (@) =3,
m=0 (23)

To find it, we expand the Green's function using the normal mode eigenvectors as a basis
set

Gn*n(Q)_i z 2raml mannl'ga(Q)

ex
M & & o v
~ 1 e D 271|mID O 2mnl’
(Q)=— kil fe)

substitute into Eq.. (23) and make use of (11) to get
rl(m-n
1 M- -1€X] pEQ(M )E

Gml A =" Mw, & (a2 -40)

(25)

in which AQ = Q - w,, and AQ, is given by Eq. (19).This result will be used below in
section 7.

4. Coupling Impedance

We will only consider the resistive wall impedance, for the sake of simplicity. The
existence and general character of the localized modes is not expected to depend sensitively
on the details of the frequency dependence of the impedance.

The transverse impedance associated with the resistivéisydtir low frequencies
1

w << OUC—“@
am p2d’

C 1-sign(w)i
Zlm(w)_zos ||( ign(w)i)
4 w (26)
corresponding to the wake function
1
2 | 4Am C 0 b? [P
W,(2) = - for ou,ch? >>|7>>
! 7'lb3\ CU,O |Z| ° EOCUE 27)

In these equations;, is the conductivity of the vacuum chamber wall, b is the
radius of the (assumed round) vacuum chamber, gisitle impedance of free space

(377Q).
For the resistive wall, then, we have, combining Eg. (19) and (26),
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X

1{1-sign(w; +(pPM + L)a,)i
ﬁ+(pM+/1)wo‘2( : i )
- w, +(PM + ),

[ 2
g U af(wﬁ +(pM + 1), —wf) O
rexpl- 2 U
N, z (8 g H H
AQ, =-1—— 2 3,J 2
AT, YTy T,0° \ o0 ® O af(wﬁ +(pM + L), —wz) O
Z exp- > O
.57 c ]
(28)

5. Spectrum of the Normal Modes

We choose the following specific case to calculate the normal mode spectrum for CESR.
We take N=1.3x18! (corresponding to about 8 ma per bunch). Using C=778 m, we take
an aluminum@¢=3.5x10" mho/m) vacuum chamber of radius b=25 mm. We tpk&01,

and a bunch length of,=20 mm. The chromaticity is set§g2, which makes all of the
multibunch modes stable (i.e., they have a negative imaginary part). Figs. 1 and 2 give the
real and imaginary parts of the frequency shift (Eq. (28)), as a function of the mode

number, for M=21 bunches. Fig. 3 shows the frequencies at which the various modes
would be observed on a spectrum analyzer. Figs. 4, 5 and 6 present the same information,
but for M=9 bunches.
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Fig. 1

Real part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for M=21
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Imaginary part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for
M=21
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Fig. 3
Coupled-bunch mode spectrum for M=21
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Fig. 4

Real part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for M=9

6 August 18, 1998 Localized multibunch modes



[
- 70 L
- 75 L
[
-80 | o
-85} .
[
-90 | °
[ ] ‘
2 4 6 8
-100}
[ ]
Fig. 5
Imaginary part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for
M=9
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Fig. 6
Coupled-bunch mode spectrum for M=9

6. Octupole Nonlinearity

We introduce an octupole into the ring at the locatiosovided that we are not
operating close to a second or fourth order resonance, the octupole field perturbation results

w
primarily in a dependence of the betatron tune,—, on amplitude:
w,

0

v(a) = v, + ua’ (29)
in which
_ 3 kL Bs)’
H= 16m 6 S, (30)
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3

In this equationk, = Bip is the octupole strength, L is the octupole lenfis,) is

dy®
the beta function at the location of the octupole, Bnds the beta function at the point at
which the oscillation amplitude is a.

7. Localized Modes

Returning to the original equation of motion, we have, including the octupole
nonlinearity,

0+ 0@ 3 (0L m-n)=

R CRE MOk RACT LRI

where
H' = 2,0, (32)

and we assume thaa?<< v.
We now look for solutions of the forny, (t) = a, exp(=iQt), in which a, is the
oscillation amplitude. Equation (31) becomes

M-1
-Q%, +wia, =y aL(m-n)=-p'a]
=0 (33)

The equation withu' =0 is the same one for which we have found the Green's function.
Thus, referring to Eq. (22) above, we have

M-1
> Rm(@)a, =-p'a;
m=0 (34)
for which we have the solution, using the Green's function,
Rrl(m-n)Q]
L ; M-1 , ' M—lM—leXpDTD ,
a,=-u' ) Rn(Qa,=-1") G, (4Q)a;, =
mZO mzo 2Mw, mzo; (4a0-4Q) (35)
Using Eqg. (32), we have
(Rrl(m-n)g
w M_lM_leXpDTD
=502 > 0= al
M && (4Q-4Q) (36)

This is essentially a nonlinear eigenvalue equation. There will be normal modes,
corresponding to some linear combination of tharaplitudes, and for each mode there

will be a frequency shithQ. Because of the nonlinearity, the mode pattern is complex, and
the mode eigenvector and frequency shift will depend on the amplitude of the oscillation.
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We are interested in specific modes, which are "localized" to one or two bunches;

they are like solitons in continuum field theories1 I§ negative, the localized mode will
have a frequency below the lowest normal mode frequency shown in Fig. 1 (which is

mode # 11 for M=21). Ifr is positive, the localized mode will have a frequency above the
highest normal mode frequency shown in Fig. 1 (which is mode # 1 for M=21).

Following reference 5, led, = aé,,, with a a measure of the oscillation
amplitude, and Max()=1. Then we have

rml(m-n
M—lM—leXpEQ(NI)l:|

:Uazwo Ugs
S = ZZ (40-29) n (37)

Note thatua®w, is just the frequency shift produced by the octupole for an oscillation of

amplitudea. This equation can be solved iteratively as follows. We first assume that only
the n=0 bunch is excited, §6=1, and all othe€, are zero. Then we have
B IJCYZCUO M-1 1

M =0 AQ - A.Q| (38)

1

This equation gives the zero-order eigenfrequency&fift We then substitute this into
Eqg. (37) to get

0O 2nlg
‘- pa’w, m-18XD ™M O
1
M & AQ,-AQ, (39)
Then, with this value fok 1, we solve
O O 27l
1: uaZwO [I\/I—l 1 M—leXpD M D]

4 53
M D;Agl—AQI 51;491—495

H 'H (40)

to get the 1st order eigenvalue siAif21_This is then used, witéy, to getéo, and so on.
Another approach is to observe that Eq. (37) is a set of M simultaneous nonlinear
equations; the M unknowns are fyg(except forgp=1) and the frequency shiiQ. The

M equations can then be solved for the M unknowns. This procedure gives the same result
as the iteration technique for the example discussed below.

8. Results

In CESR, there are octupoles at 45W, 48W, 48E, and 45E. Each has a length
L=0.391 m. The vertical beta functions at 45W and 45E are 23.56 m and 22.68 m
respectively; the vertical beta functions at the other two octupoles are much smaller. The

strength of each isgm4]=0.213 CU/E(GeV), where CU refers to computer units. The
frequency shift which appears in Eq. (37) can be written as
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3 kL 3g, kL
Awoc :/Jazw :Ol) __B( ) B( )
‘ T Y B “16n BFE 1)

0.2

in which the rms vertical emittance & = ,B_y andoy is the rms vertical beam size.
0

Plugging in the above numbers, and usipg385,000 rad/secz»:yzlo8 m-rad, we get,
summing over the two octupoles at 45W and 45E,

Og Of
Aw,, =0, 0041E;iE CU rad/sec (42)
y

For example, for -1000 computer units in both octupolesiaddy (2 mm

@B=20 m), we haveAw,, = —-103rad / sec.

With this nonlinearity, the solution of Eq. (37) for M=21 gives a localized mode
with a frequency shift of -504.9-85.6i rad/sec. It is shifted down by about 63 rad/sec from
the mode #11 frequency. The bunch pattern corresponding to this localized mode is shown
in Fig. 7.

Fig. 7:
Localized mode bunch pattern fdiw,, = —-103rad / sec and M=21
For +1000 computer units in both octupoles ar@oy , we have
Aw,, =103 rad/ sec. With this nonlinearity, the solution of Eq (34) with M=21 gives a

localized mode with a frequency shift of —317.7-86.6i rad/sec. It is shifted up by about 89
rad/sec from the mode #1 frequency. The bunch pattern corresponding to this localized
mode is shown in Fig. 8.

10 August 18, 1998 Localized multibunch modes



Fig. 8:
Localized mode bunch pattern fdiw,, = 103rad / sec and M=21

For M=9, Aw,, = -103rad/ sec gives a frequency shift of -511.3-85.3i rad/sec
(shifted down by 85.5 rad/sec from mode #8); the localized mode pattern is shown in Fig.
9. For M=9 andAw,, =103 rad / sec, we get a frequency shift of —320.9-85.9i rad/sec
(sglifted up by 91.9 rad/sec from mode #4). The localized mode pattern is shown in Fig.
10.

Fig. 9:
Localized mode bunch pattern fdiw,, = -103rad / sec and M=9

Fig. 10:
Localized mode bunch pattern fdiw,, = -103rad / sec and M=9
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9. Conclusion

Localized modes may be possible in the coherent motion of arrays of bunches in
CESR, in the presence of nonlinearities generated by octupoles. With a bunch-to-bunch
coupling produced by the resistive wall impedance, with vertical oscillation amplitudes of

about 2 mm (at By of about 20 m) and for octupole strengths corresponding to about 1000
computer units in both the 45W and 45E octupoles, these modes appear for both 21 and 9
equally spaced, equally populated bunches.
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