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It has been suggested1,2 that the phenomenon  of intrinsic localized modes in
anharmonic condensed matter systems3,4,5,6,7 may also be observed in the excitations of
multibunch modes in accelerators, in the presence of significant lattice nonlinearities. In this
note, this possibility is explored quantitatively, for multibunch coupling produced by the
resistive wall impedance, and an octupole-generated nonlinearity. The conditions under
which such modes might be produced at CESR are discussed.

1. Introduction

Consider M equally spaced bunches in a ring, of equal population. Let yn(t)
(n=0,1,...,M-1) be the "snapshot" transverse (vertical) displacement of the nth bunch. The
displacement is given by

 yn (t) = ỹn exp −iΩt( ) (1)

where ̃yn  (a complex number) represents the amplitude and phase of bunch n at time t=0.

The equation of motion8  for bunch n, in the rigid-beam approximation (i.e.,
neglecting internal motion of the bunch and the length of the bunch):

d 2yn (t)

dt2 + ωβ
2 yn (t) = − Nr0c

γT0

W1
m=0

M −1

∑
k =−∞

∞
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M
C



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


(2)

In this equation, W1(z)  is the transverse dipole wake function, ω νωβ = 0  is the vertical
betatron frequency, N is the number of particles per bunch, C  is the ring

circumference,T
c

C0
0

2= = π
ω

 is the revolution period, and γ = E

m c0
2 . All quantities and

equations in this note are given in SI units. Using the above form for yn(t), we can write

this (for Ω~ωβ) as
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Transforming to the frequency domain and introducing the transverse impedance Z1
⊥ ω( ) ,

we have

d 2yn (t)

dt2 + ωβ
2 yn (t) − ym t( )L(m − n)

m=0

M −1

∑ = 0
(4)

with
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L(m − n) = i
4πNr0

µ0cγT0
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∑ exp −2πip
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
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
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2. Normal Modes

The normal modes of the M bunches are obtained by the usual technique. Let the
normal modes qn given in terms of y

n
 by the relation

q = C • y (6)

in which C is a matrix. In matrix form, the equation of motion (4) is

˙̇y + S • y = 0 (7)

in which

Smn = ωβ
2δmn − L(n − m) (8)

Using (5) to introduce the normal modes, this becomes

˙̇q + C • S • C−1q = 0 (9)

The matrix C diagonalizes S.  The eigenvalues are the normal mode frequencies. The
required matrix is

Cµn = 1
M

exp
−2πiµn

M




 (10)

The matrix C obeys the following orthonormality condition:

CµαCαn
*
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
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(11)

in which r is any integer. Since Cµn
* = Cnµ

* = Cnµ
−1 , C is a unitary matrix.  Using relation

(11), it follows that the eigenvectors are

Ωµ
2 = ωβ

2 − i
4πMNr0

µ0cγT0
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r =−∞

∞

∑ (12)

in which µ is the normal mode index. This relation between the mode frequency and the

mode number is the analog of the ω(k) dispersion relation encountered in condensed matter
systems. The relation between the displacement of the nth bunch, and the normal modes
qµ, is given by inverting Eq. (6), using (11):

yn (t) = Cnµ
−1

µ =0

n

∑ qµ (t) = 1
M

exp
2πiµn

M






µ =0

n

∑ qµ (t)
(13)

We can define the frequency shift of normal mode µ using the approximation (for Ωµ~ωβ)
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Ωµ
2 − ωβ

2 = (Ωµ − ωβ )(Ωµ + ωβ ) ≈ 2∆Ωµωβ (14)

So we have
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The above expression is correct only for a point bunch, with zero chromaticity. To include
the effects of a finite bunch length (assumed Gaussian, of width σ z) and a finite

chromaticity ξ, we make the replacement 10
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So we get
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0 0
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3. Development of the Green's function.

In the analysis of localized modes3,4,5, we will need to develop the Green's
function for the equation of motion, Eq.(4). In that equation, if we let
yn (t) = ỹn exp −iΩt( ) , we have

−Ω 2ỹn + ωβ
2 ỹn − ỹm L(m − n)

m=0

M −1

∑ = 0
(20)

If we define the matrix

Rmn (Ω ) = −Ω 2 + ωβ
2( )δmn − L(n − m) (21)
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then the equation of motion is

R ynm m
m

M

( ) ˜Ω
=

−

∑ =
0

1

0
(22)

The Green's function is Gmn (Ω ) = Rmn
−1 (Ω )  and it satisfies the equation

R Gnm mn
m
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1

δ
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To find it, we expand the Green's function using the normal mode eigenvectors as a basis
set
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substitute into Eq.. (23) and make use of (11) to get

Gmn (∆Ω ) = − 1
2Mωβ

exp
2πil(m − n)

M






∆Ω − ∆Ωl( )l =0
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∑ (25)

in which ∆Ω = Ω − ωβ , and ∆Ωl  is given by Eq. (19).This result will be used below in
section 7.

4. Coupling Impedance

We will only consider the resistive wall impedance, for the sake of simplicity. The
existence and general character of the localized modes is not expected to depend sensitively
on the details of the frequency dependence of the impedance.

The transverse impedance associated with the resistive wall9 is, for low frequencies

ω << µ0σ
4π
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


1

3

,
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2
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corresponding to the wake function

W1(z) = − 2
πb3

4π
cµ0σ

C

z
1

2

 for  σµ0cb2 >> z >> b2
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



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1

3

(27)

In these equations, σ is the conductivity of the vacuum chamber wall, b is the
radius of the (assumed round) vacuum chamber, and Z0 is the impedance of free space

(377 Ω).
For the resistive wall, then, we have, combining Eq. (19) and (26),
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5. Spectrum of the Normal Modes

We choose the following specific case to calculate the normal mode spectrum for CESR.
We take N=1.3x1011 (corresponding to about 8 ma per bunch). Using C=778 m, we take
an aluminum (σ=3.5x107 mho/m) vacuum chamber of radius b=25 mm. We take η=0.01,

and a bunch length of σz=20 mm. The chromaticity is set to ξ=2, which makes all of the
multibunch modes stable (i.e., they have a negative imaginary part).  Figs. 1 and 2 give the
real and imaginary parts of the frequency shift (Eq. (28)), as a function of the mode
number, for M=21 bunches. Fig. 3 shows the frequencies at which the various modes
would be observed on a spectrum analyzer.  Figs. 4, 5 and 6 present the same information,
but for M=9 bunches.
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Fig. 1
Real part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for M=21
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Fig. 2
Imaginary part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for

M=21
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Fig. 3
Coupled-bunch mode spectrum for M=21
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Fig. 4
Real part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for M=9
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Fig. 5
Imaginary part of the frequency shift (abscissa, rad/sec) vs. mode number (ordinate), for

M=9
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Fig. 6
Coupled-bunch mode spectrum for M=9

6. Octupole Nonlinearity

We introduce an octupole into the ring at the location s1. Provided that we are not
operating close to a second or fourth order resonance, the octupole field perturbation results

primarily in a dependence of the betatron tune, ν =
ωβ

ω0

,  on amplitude:

ν(a) = ν0 + µa2  (29)

in which

µ
π

β
β

= 3
16 6

3 1
2

0

k L s( )
(30)
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In this equation, k
B

d B

dy3

3

3

1=
ρ

 is the octupole strength, L is the octupole length, β (s1) is

the beta function at the location of the octupole, and β0  is the beta function at the point at
which the oscillation amplitude is a.

7. Localized Modes

Returning to the original equation of motion, we have, including the octupole
nonlinearity,

d 2yn (t)

dt2 + ωβ
2 (an )yn (t) − ym t( )L(m − n)

m=0

M −1

∑ =

d 2yn (t)

dt2
+ ωβ

2 yn (t) + ′µ an
2yn (t) − ym t( )L(m − n)

m=0

M −1

∑ = 0
(31)

where

 ′µ = 2µωβω0 (32)

and we assume that µa2<< ν.
We now look for solutions of the form, yn (t) = an exp −iΩt( ), in which an  is the

oscillation amplitude. Equation (31) becomes

−Ω 2an + ωβ
2an − am L(m − n)

m=0

M −1

∑ = − ′µ an
3

(33)

The equation with ′µ =0 is the same one for which we have found the Green's function.
Thus, referring to Eq. (22) above, we have

Rnm (Ω )am
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3
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for which we have the solution, using the Green's function,
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
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

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3
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∑
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Using Eq. (32), we have

an = µω0

M

exp
2πil(m − n)

M






∆Ω − ∆Ωl( ) am
3

l =0
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∑
m=0

M −1

∑
(36)

This is essentially a nonlinear eigenvalue equation. There will be normal modes,
corresponding to some linear combination of the an amplitudes, and for each mode there

will be a frequency shift ∆Ω. Because of the nonlinearity, the mode pattern is complex, and
the mode eigenvector and frequency shift will depend on the amplitude of the oscillation. 
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We are interested in specific modes, which are "localized" to one or two bunches;
they are like solitons in continuum field theories. If µ is negative, the localized mode will
have a frequency below the lowest normal mode frequency shown in Fig. 1 (which is
mode  # 11 for M=21). If µ is positive, the localized mode will have a frequency above the
highest normal mode frequency shown in Fig. 1 (which is mode # 1 for M=21).

 Following reference 5,  let an = αξn , with α a measure of the oscillation

amplitude, and Max(ξn)=1. Then we have

ξn = µα 2ω0

M

exp
2πil(m − n)

M






∆Ω − ∆Ωl( ) ξm
3

l =0

M −1

∑
m=0

M −1

∑
(37)

Note that µα 2ω0  is just the frequency shift produced by the octupole for an oscillation of

amplitude α. This equation can be solved iteratively as follows. We first assume that only

the n=0 bunch is excited, so ξ0=1, and all other ξn are zero. Then we have

1 = µα 2ω0

M

1

∆Ω − ∆Ωll =0

M −1

∑
(38)

This equation gives the zero-order eigenfrequency shift ∆Ω0. We then substitute this into
Eq. (37) to get

ξ1 = µα 2ω0

M

exp − 2πil

M






∆Ω0 − ∆Ωll =0

M −1

∑
(39)

Then, with this value for  ξ1, we solve

1 = µα 2ω0

M

1

∆Ω1 − ∆Ωl

+ ξ1
3

exp − 2πil

M






∆Ω1 − ∆Ωll =0

M −1

∑
l =0

M −1

∑
















(40)

to get the 1st order eigenvalue shift ∆Ω1. This is then used, with ξ1, to get ξ2, and so on.
Another approach is to observe that Eq. (37) is a set of M simultaneous nonlinear

equations; the M unknowns are the ξn (except for ξ0=1) and the frequency shift ∆Ω. The
M equations can then be solved for the M unknowns. This procedure gives the same result
as the iteration technique for the example discussed below.

8. Results

In CESR, there are octupoles at 45W, 48W, 48E, and 45E. Each has a length
L=0.391 m. The vertical beta functions at 45W and 45E are 23.56 m and 22.68 m
respectively; the vertical beta functions at the other two octupoles are much smaller. The
strength of each is k3[m-4]=0.213 CU/E(GeV), where CU refers to computer units. The
frequency shift which appears in Eq. (37) can be written as
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∆ωoct = µα 2ω0 = ω0

3

16π
k3L

6
β (s1)2 α 2

β0

= ω0

3ε y

16π
k3L

6
β (s1)2 α

σ y








2

(41)

in which the rms vertical emittance is ε y =
σ y

2

β0

 and σy is the rms vertical beam size.

Plugging in the above numbers, and using ω0=385,000 rad/sec, εy=10-8 m-rad, we get,
summing over the two octupoles at 45W and 45E,

 ∆ωoct = 0.0041
α
σ y








2

CU  rad / sec (42)

For example, for -1000 computer units in both octupoles and α=5σy (2 mm

@β=20 m), we have ∆ωoct = −103 rad / sec .
With this nonlinearity, the solution of Eq. (37)  for M=21 gives a localized mode

with a frequency shift of  -504.9-85.6i rad/sec. It is shifted down by about 63 rad/sec from
the mode #11 frequency. The bunch pattern corresponding to this  localized mode is shown
in Fig. 7.

Fig. 7:
Localized mode bunch pattern for ∆ωoct = −103 rad / sec  and M=21

For +1000 computer units in both octupoles and α=5σy , we have
∆ωoct = 103 rad / sec . With this nonlinearity, the solution of Eq (34) with M=21 gives a
localized mode with a frequency shift of –317.7-86.6i rad/sec. It is shifted up by about 89
rad/sec from the mode #1 frequency. The bunch pattern corresponding to this localized
mode is shown in Fig. 8.
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Fig. 8:
Localized mode bunch pattern for ∆ωoct = 103 rad / sec  and M=21

For M=9, ∆ωoct = −103 rad / sec  gives a frequency shift of –511.3-85.3i rad/sec
(shifted down by 85.5 rad/sec from mode #8); the localized mode pattern is shown in Fig.
9. For M=9 and ∆ωoct = 103 rad / sec , we get a frequency shift of –320.9-85.9i rad/sec
(shifted up by 91.9 rad/sec from mode #4). The localized mode pattern is shown in Fig.
10.

Fig. 9:
Localized mode bunch pattern for ∆ωoct = −103 rad / sec  and M=9

Fig. 10:
Localized mode bunch pattern for ∆ωoct = −103 rad / sec  and M=9
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9. Conclusion

Localized modes may be possible in the coherent motion of arrays of bunches in
CESR, in the presence of nonlinearities generated by octupoles. With a bunch-to-bunch
coupling produced by the resistive wall impedance, with vertical oscillation amplitudes of
about 2 mm (at a βy of about 20 m) and for octupole strengths corresponding to about 1000
computer units in both the 45W and 45E octupoles, these modes appear for both 21 and 9
equally spaced, equally populated bunches.
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