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Twiss Analysis With a Mobius Lattice

David Sagan

1 Introduction

The standard analysis for a coupled lattice is based upon the formalism of Edwards

and Teng[1]. This is �ne for weak coupling but with the strong coupling that arises

in a Mobius lattice there are complications that must be addressed. To see this

lets back step a moment and consider how the Twiss parameters are a�ected by

a coordinate transformation. To simplify matters consider the 1{dimensional case

where the laboratory coordinates (x; x0) are transformed to coordinates (a; a0) using

the matrix G:  
a

a0

!
= G

 
x

x0

!
: (1)

For example, if G is taken to be

G =

0
B@

1p
�

0

�p
�

p
�

1
CA ; (2)

then, in terms of the new coordinates, the Twiss parameters have been normalized

with �a = 1 and �a = 0. This example shows that the Twiss parameters are depen-

dent upon the particular choice of the coordinate axes. Since many standard formulas

are based upon the assumption that the axes are oriented along position and velocity

coordinates these formulas need to be modi�ed when using di�erent coordinates. For

example, the standard formulas

� /
q
� ;

d�

ds
=

1

�
; (3)

are no longer valid. Additionally, formulas for the emittance, damping partition

numbers, etc. need to be modi�ed.

With a highly coupled lattice we have a similar problem: The normal mode axes do

not correspond (even approximately) to the usual position and velocity axes. This is
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not just due to the way Edwards and Teng compute the normal modes. It is inherent

in the normal modes themselves. In the case of a Mobius lattice[4], a possibility is

to compute the Twiss parameters using the 2-turn transfer matrix instead of the 1-

turn transfer matrix. However, with the 2-turn transfer matrix, the two modes have

the same tune (that is, you are at the coupling resonance) so an arbitrarily small

perturbation can cause the normal mode axes to become just as convoluted as in the

1-turn analysis and you are back to the same problem.

The only remedy, as far as I can see, is to just live with the complications. Once

correctly analyzed, and after the pain of rewriting software, they should not be too

hard to live with.

2 Mode Flips

Following Billing[2], the Edwards and Teng decomposition of the 1{turn matrix

is written as

T =

 
M m

n N

!

= VUV�1 (4)

=

 
I C

�C+ I

! 
A 0

0 B

! 
I �C
C

+ I

!
:

where

 =

vuuut1=2 � 1=2

vuut (Tr[M�N])2

(Tr[M�N])2 + 4detH
(5)

C = � H � Sgn(Tr(M�N))


q
(Tr(M�N))2 + 4detH

(6)

H �m+ n+ (7)

C
+ =

 
C22 �C12

�C21 C11

!
(8)

2 +detC = 1 (9)

and

Sgnx =
��1 For x � 0

+1 For x � 0
: (10)

In general, it is possible to construct two distinct solutions for Eq. (4). One solution

uses the + sign in Eq. (5) and the � sign in Eq. (6), and vice versa for the other
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solution. Physically, the two solutions can be explained as follows: Call the two

eigenmodes of the system \h" and \v" (for a physical picture think, for example, of

the h eigenmode as the mode with the higher tune and the v mode as the mode with

the lower tune). The di�erence between the two solutions is whether the h mode

is associated with the a mode (i.e. gets placed in the upper left hand corner of the

U matrix) or whether the h mode is associated with the b mode. From a physics

standpoint it does not matter whether the h mode is associated with the a mode or

the b mode but the eigenaxes for the h mode (and the v mode) depend upon it and

therefore the Twiss parameters will be di�erent depending upon the solution used.

Furthermore, if detH < 0 then Eq. (5) allows only 1 solution. It can thus happen that

at one place in the ring with detH < 0 the h mode is forced to be associated with

the a mode and at another place in the ring the h mode is forced to be associated

with the b mode. This is not simply a theoretical matter. CESR Mobius lattices

typically have this property. The switching of the h and v modes between the a

and b modes as one propagates the twiss parameters through the ring is something

I call \mode ipping." Since  is constant when propagated through an uncoupled

element[6] mode ipping will only be forced when propagating through an element

that couples the x{y motions.

From the above discussion it is seen that the bookkeeping for a highly coupled

lattice is more complicated than if the lattice is only slightly coupled. For example,

with mode ipping you can have di�erent programs compute the Twiss parameters

at a point and come up with di�erent numbers depending upon how the programs

handle ips. In fact, if you try to compare two lattices to see how similar they are

you cannot just compare the Twiss parameters but have to look in detail what the

eigenaxes are.

Some additional points: First, at a point where the modes ip the Twiss param-

eters will be discontinuous. Furthermore, the integer part of the phase is not well

de�ned where there is a mode ip. The reason for this is the same reason why the

integer part of the tune is not well de�ned when you are only given the full 1{turn

matrix but are not given the full lattice description. Lastly, a lattice should always

have an even number of mode ips so that the eigenaxes you end up with when you

get back to the starting point are the same as the axes that you started out with.

If this is not done then even the fractional part of the tune will not be correctly

computed.
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3 The Projected Twiss Parameters

If the a mode is excited the position of the beam can be derived from Eq. (4)

(cf. Bagley and Rubin[3])

0
BBBB@
x

x0

y

y0

1
CCCCA
n

= Aa

0
BBBBBBBBB@


p
�a cos �a�p

�a
(sin �a + �a cos �a)

�C22

q
�a cos �a � C12p

�a
(sin �a + �a cos �a)

C21

q
�a cos �a +

C11p
�a

(sin �a + �a cos �a)

1
CCCCCCCCCA

; (11)

and for the b mode

0
BBBB@
x

x0

y

y0

1
CCCCA
n

= Ab

0
BBBBBBBBBB@

C11

q
�b cos �b � C12p

�b
(sin �b + �b cos �b)

C21

q
�b cos �b � C22p

�b
(sin �b + �b cos �b)


q
�b cos �b

�p
�b
(sin �b + �b cos �b)

1
CCCCCCCCCCA

; (12)

where the phase on the nth turn and at position s is

�a(n; s) = 2�Qan + �a(s) + �a0 ;

�b(n; s) = 2�Qbn+ �b(s) + �b0 ; (13)

where Qa and Qb are the tunes, �a, and �b are the betatron phases, and �a0 and �b0
are calculated from the initial conditions.

From the above equations the beam sigmas of the a mode are

�x;a = 
q
�a�a

�y;a =
q
�a�a

2
4 C22 +

C12�a

�a

!2

+

 
C12

�a

!2
3
5
1=2

(14)

And for the b mode

�x;b =
q
�b�b

2
4 C11 � C12�b

�b

!2

+

 
C12

�b

!2
3
5
1=2

�y;b = 
q
�b�b (15)
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The total sigma in a plane is then just the the quadrature sum of the mode sigmas

�2 = �2a + �2b : (16)

The normal mode betas are not simply related to the beam sizes. To remedy

this one can de�ne \projected" betas. For simplicity it will be assumed that the

emittances are equal

�a = �b � � : (17)

The projected betas �p are then de�ed by

�2 � � � : (18)

From Eqs. (14) and (15)

�px = 2�a + �bC
2
11 � 2�bC11C12 + bC

2
12 ;

�py = 2�b + �aC
2
22 + 2�aC22C12 + aC

2
12 : (19)

By extension, one can also de�ne projected alphas and gammas

�xx0 � �� �x ;

�2x0 � � x ; (20)

with similar equations for the vertical plane. The equations for the projected Twiss

parameters can be put in a more transparent form by writing the Twiss in matrix

form (Cf. Courant and Snyder[5] Eq. (2.23))

J =

 
� �

� ��
!
: (21)

The projected Twiss parameters are then given by

Jpx � 2 Ja +CJbC
+ ;

Jpy � 2 Jb +C
+
JaC : (22)

The problem with de�ning the projected twiss parameters in this way is that the

normalization condition

detJ = 1 (23)

(which is equivalent to � = 1 + �2) is not necessarily satis�ed. The proper nor-

malization can be obtained by dividing all the Twiss parameters by a normalization

factor obtained by taking the determinate of Eqs. (22). In this case, the emittance

used in Eqs. (18) and (20) would have to be multiplied by the same factor to keep
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these equations satis�ed. The problem here is that, in general, the emittance factor

would no longer be a constant around the ring. Since a constant emittance factor

is to be preferred over proper normalization it is the unnormalized de�nition for the

Twiss parameters that is presented here.

At the IP it is desired that the beams be round. Equal �px = �py does not

guarantee a round beam. For example, the beams could be at and tilted at a 45�

angle. For this one can de�ne a correlation function Cxy. Using Eqs. (11) and (12)

one �nds

Cxy � hxyi
hx2i + hy2i

=
 [C11�b � C22�a � C12(�a � �b)]

�px + �py
: (24)

where h� � �i means an average over all particles in the beam and it has been assumed

that �a = �b. The condition for the beams to be round is for �px = �py and

jCxyj � 1 : (25)

Given a lattice with a matched Mobius insertion[4], and given no couplers outside

the insertion, then outside the insertion region the x and y projected Twiss parameters

are the equal to the normal mode Twiss parameters which in turn are equal to the

Twiss parameters that would be had if the mobius section where not there. At the

match points the Twiss parameters without the insertion are

�x = �y = �R

�x = �y = 0 ; (26)

and transfer matrix T0 outside the insertion is given by

T0 =

 
R(�x) 0

0 R(�y)

!
; (27)

where R is a the appropriate rotation matrix

R(�) =

 
cos � �R sin �
� sin �
�R

cos �

!
: (28)

The matched Mobius insertion is

TM =

 
0 1

s 0

!
; (29)

6



where s = �1. With the insertion the 1{turn matrix T1 at the match point after

after the insertion is

T1 = TM T0 =

 
0 sR(�y)

R(�x) 0

!
: (30)

Using Eqs. (4), (5), (6), (7), and (9) gives at this match point

 =
1p
2

(31)

C = R

 
�y � �x

2

!
(32)

�A = B = R

 
�x + �y

2

!
(33)

where the following identity has been used:

R(�) +R(�) = 2 cos

 
� � �

2

!
R

 
� + �

2

!
: (34)

At the match point the normal mode Twiss parameters with the insert are given by

Eq. (33)

�a = �b = �R

�a = �b = 0 : (35)

Using Eqs. (22) then gives the projected twiss parameters

�px = �py = �R

�px = �py = 0 : (36)

[Notice that the projected Twiss parameters turn out to be properly normalized in

this case.] Eqs. (26), (35), (36) are identical to each other. it remains to be shown

that the equality remains when the Twiss parameters are propagated through the rest

of the ring. The propagation here is not through the Mobius insert so the transfer

matrix T12 from the match point to any point 2 is uncoupled

T12 =

 
M12 0

0 N12

!
: (37)

The propagation of the normal mode betas (with or without the insert) can be derived

from Sagan and Rubin[6] Eq. (17) to give

2 = 1

Ja2 =M12 Ja1M
�1
12 (38)

Jb2 = N12 Jb1N
�1
12

C2 =M12C1N
�1
12
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and using this with Eqs. (22) gives

Jpx2 = 22 Ja2 +C2 Jb2C
+
2

= 21M12 Ja1M
�1
12 +M12C1 Jb1C

+
1M

�1
12 (39)

=M12 Jpx1M
�1
12

With a similar equation for Jpy. Eqs. (38) and (39) show that the projected and

normal mode Twiss parameters, along with the twiss parameters without the mobius

insert, propagate exactly in the same manner and so they will remain equal everywhere

outside of the insert.

4 Twiss Measurement and Analysis

In the standard phase measurement a normal mode is excited and the phase and

amplitude of the signal at the beam buttons is recorded. From the button data the

phase and amplitude of oscillation of the horizontal and vertical components of the

motion is computed[3]

x = Axe
i�x ;

y = Aye
i�y ; (40)

where, for the h mode oscillations

�x(n; s) = 2�Qhn+ �xh(s) + �x0 ;

�y(n; s) = 2�Qhn+ �yh(s) + �y0 ; (41)

with similar equations for the v mode. The question is now asked as to what the

quadrupole strengths and rotations must be in order to get what is observed. The

simplest way to proceed would be to vary a set of \�t" quadrupole strengths and ro-

tations within the lattice model of the ring until the calculated oscillation amplitudes

and phases, as calculated from Eqs. (11) and (12), match the measured ones. On the

other hand, the standard analysis (using the program CESR FIT) matches measured

and �t betatron phases and C's. The �nal result of the �tting essentially does not

matter upon what is matched but it is easier on the user if what is matched does

not depend upon the type of lattice. In order to make the coupled lattice analysis

look like the standard analysis one must be able to convert from oscillation ampli-

tudes and phases to betatron phases and C's and vice versa. This is not di�cult but

the presence of strong coupling and mode ips complicates things somewhat so the

procedure used by CESR FIT is outlined below.
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It turns out to be simpler to use normalized C's so the x and y components of

Eq. (11) are rewritten as[3]

x = Aa
q
�a cos �a ;

y = �Aa

q
�b(C22 cos �a + C12 sin �a) : (42)

Comparing Eqs. (41) and (42) gives the phases of the horizontal and vertical motions

�xa = �a ;

�ya = �a + �ya0 ; (43)

tan �ya0 =
C12(th)

�C22(th)
;

where the notation is used here that tan � = c=d implies that sin � has the same sign

as c and cos � has the same sign as d. For the b mode

x = Ab

q
�a(C11 cos �b � C12 sin �b) ;

y = Ab
q
�b cos �b : (44)

Thus

�xb = �b + �xb0

�yb = �b (45)

tan �xb0 =
C12(th)

C11(th)

where (th) indicates the theoretical design lattice. To convert the measured Ax, Ay,

�x, and �y into betatron phases and C's one compares Eq. (40) with Eq. (42) or

Eq. (44). For the a mode

�a(meas) =
wxa�xa + wya(�ya � �ya0)

wxa + wya

C12(meas) =

q
�a(th)q
�b(th)

Aya sin(�ya � �xa)

Axa
(46)

C22(meas) =
�

q
�a(th)q

�b(th)

Aya cos(�ya � �xa)

Axa

where the values for the weights wxa and wya, and the value of the phase o�set �ya
are based on the theoretical lattice

wxa = 
q
�a(th)

wya =
q
�b(th)

q
C

2

12(th) + C
2

22(th) (47)
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where the notation is used here that tan � = c=d implies that sin � has the same sign

as c and cos � has the same sign as d. For the b mode the appropriate equations are

�b(meas) =
wyb�yb + wxb(�xb � �xb0)

wxb + wyb

C12(meas) =

q
�b(th)q
�a(th)

Axb sin(�xb � �yb)

Ayb

(48)

C11(meas) =

q
�b(th)q
�a(th)

Axb cos(�xb � �yb)

Ayb

with

wxb =
q
�a(th)

q
C

2

12(th) + C
2

11(th)

wyb = 
q
�b(th) (49)

Notice that Eqs. (46) and (48) are only approximations. Only in the limit where the

actual lattice corresponds to the theoretical one are the equations exact. Since, in

practice, the actual lattice is \close" to the theoretical this is not a problem.

The above equations are used by the PHASE ANAL program as follows:

1. PHASE ANAL reads in the two raw button data sets for the two modes.

2. By de�nition, if the modes are not ipped, the h mode corresponds to the a

mode and the v mode corresponds to the b mode.

3. PHASE ANAL chooses whether a data set is associated with the h or v modes of

the theoretical lattice by seeing which mode has its tune closest to the measured

tune of the data set.

4. PHASE ANAL converts the raw button data to horizontal and vertical ampli-

tude and phase values.

5. Depending upon which mode the data is associated with and whether the theo-

retical lattice is mode ipped or not PHASE ANAL uses the appropriate equa-

tions to convert phase and amplitude to phase and Cs.

6. PHASE ANAL writes a data �le of the results. This �le is used by CESR FIT.

In CESR FIT, the �rst problem to be able to associate the h and v modes of the

theoretical lattice with the h and v modes of some �t lattice. This could possibly
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be done by matching the tunes as closely as possible but what is done in practice is

to match the eigen planes. This is done because I believe it to be more robust. [I

don't have a proof of this in general, but for weak coupling it is de�natly true.] The

procedure for eigen plane matching is as folows. The matching procedure is done at

the starting point of the ring. Given V1 and V2 from two lattices we look at the

determinate of the two matrices

detaa =

����� 1 I C1

�C+
2 2 I

�����
detab =

����� 1 I C1

2 I C2

����� (50)

If jdetaaj > jdetabj then the modes are ipped relative to one another.

at a given detector, the comparison of the measured phase and C's with the �t ones

is straight forward except if the �t decomposition is mode ipped and the theoretical

decomposition is not (or vice versa). In this case one must compute new \ip �t"

phases and C's. This is done by requiring that the a mode motion with the ip �t

look like the b mode motion with the original �t. Equating Eqs. (42) with (44) then

gives

�a(ip �t) = �b(�t) + tan�1
C12(�t)

C11(�t)

�b(ip �t) = �a(�t) + tan�1
C12(�t)

�C22(�t)

C11(ip �t) = �(�t)
vuut�a(�t)

�a(th)

C12(�t)q
C
2

22(�t) + C
2

12(�t)
(51)

C12(ip �t) = �(�t)
vuut�a(�t)

�a(th)

C12(�t)q
C
2

22(�t) + C
2

12(�t)

= �(�t)
vuut�b(�t)

�b(th)

C11(�t)q
C

2

11(�t) + C
2

12(�t)

C22(ip �t) = �(�t)
vuut�b(�t)

�b(th)

C11(�t)q
C

2

11(�t) + C
2

12(�t)

Again Eqs. (51) are only exact in the limit where the �t equals the theoretical de-

sign. Note that the two equations for C12(ip �t) in Eq. (51) correspond to the two

equations for C12(meas) given in Eqs. (46) and (48). As an alternative to Eqs. (51)

the measured phases and C's could have been ipped to correspond to the �t state.

The advantage with what is actually done is that one can then directly compare the

�t with the theory without any more ipping.
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A How to mode ip

Given one decomposition solution to Eq. (4) with  < 1 the other \ipped"

solution is related to the �rst via

f =
q
1 � 2

Cf =
�
f
C (52)

Uf =WUW
�1

where

W =

 
0 C

f
�C+

f
0

!
(53)

Which gives for the x� 2 eigenmatrices

Af =
1

2f
CBC

+

Bf =
1

2f
C

+
AC (54)
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