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Introduction

A large-angle beamstrahlung detector at CESR appears feasible[1] except
for the unknown synchrotron radiation (SR) emitted at large (γθ >> 1)
angle by the beam line magnets, most notably the quadrupoles adjacent to
the CLEO IR. The purpose of this note is to describe a simple algorithm to
extend the validity of the classical SR approach to angles far exceeding the
typical angle θ = 1/γ.

The beamstrahlung detector could monitor instantaneously the beam-
beam interaction. By extracting information on the beam-beam overlap, it
could drive a feedback system that maintains optimal beam-beam overlap.
Gains in integrated luminosity of 10-20% at CESR could conceivably be had,
with larger gains obtainable if the device can allow detailed studies of the
beam-beam limit and further machine optimization[1]. Larger gains can be
had at two-ring machines, such as PEP II, where machine optimization is
far more complex.

The problems tackled by this note are the following two. First, large
angle radiation involves a coherent Fourier transform of the magnetic field
of the entire magnet. Our current algorithms work by propagating a beam
in small steps through magnetic fields, and adding the radiation from each
step incoherently. Thus a method must be developed to simulate coherent
radiation as the sum of many incoherent steps. Second, a cutoff in phase
space must be established, below which the classical approximation is valid,
and above which new formulae will be used.

The method presented here is valid for one electron only. The compli-
cations of predicting the exact beam shape and trajectory through various
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magnets are not tackled. The formulae here need to be convoluted with
beam shape etc. to arrive at meaningful conclusions. This can be done
either via Monte Carlo or numerically.

In CGS units, the classical[2] spectrum is as follows:

d2U

dωdΩ
=

3e2γ10

π2c
t2(

K2
2/3(t)

(1 + u2)
+

u2K2
1/3(t)

(1 + u2)2
) (1)

where ρ is the radius of curvature, equal to

ρ =
γmc2

eB
,

and
t =

ωρ

3c
(1/γ2 + θ2)3/2, u = γθ.

Other quantities of interest are the radiated power and the energy loss per
unit length. They are defined as follows

P =
2e2γ4c

3ρ2
,

dU

dx
=

P

c
.

When the observation angle is much larger than the deflection angle, the
short magnet approximation[3] is valid. In the short magnet approximation,
the length scale ρ is no longer the only relevant scale. The length of the
magnet L enters into the expressions, and is typically very different from
the radius of curvature. This will make matters more complicated. On the
other hand, the angle being so large it is fixed as a constant and taken out
of the Fourier transform, as described below.

Classical radiation approximation.

A simpler derivation of the method is afforded if one already decides that
the cutoff will be at angles much larger than 1/γ, which vastly simplifies the
equations, and then proves post facto that it is so.

Unfortunately, the choice of angles in Ref.[2] is non-standard, θ being
the latitude instead of the zenith. θ can vary from +π/2 to −π/2, so that
a factor of two is to be added if θ is to be a positive-defined quantity (the
convention chosen in this note). Integrating over φ yields 2π, and the solid
angle factor reduces to 4πdθ.
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Using known approximations for the modified Bessel functions[4], Eq.(1)
becomes at large angle (u >> 1)

d2U ∼ 4e2

c
(
ωρθ

c
) exp (−2ωρθ3/3c)dωdθ. (2)

Substituting for the total radiated power, the final double-differential dis-
tribution in (t, u) is obtained,

d2P =
27
π2

Pt2(
K2

2/3(t)

(1 + u2)
+

u2K2
1/3(t)

(1 + u2)2
)dudt. (3)

Short magnet approximation.

Although the original paper is Ref.[3], I use Eq.(16) of Ref.[5], where sev-
eral misprints have been fixed (there is still a factor of two missing in that
equation).

The general form for short magnet radiation is

d2U

dωdΩ
=

2e2γ2f

πm2c5
F 2(k),

where

k =
ω(1 + γ2θ2)

2cγ2
.

F 2 is the squared Fourier transform of the bending force, integrated along
the longitudinal coordinate z. f is the angular part, factorizing out of the
Fourier transform. Its complete form, for the unpolarized case, is

f =
1 + γ4θ4 − 2γ2θ2 cos 2φ

(1 + γ2θ2)4
. (4)

The magnetic field shape along the beam line is assumed to be of the form

B(z) = B0g(z),

where g(z) is a dimensionless function, describing the magnetic field profile,
and ρ0 the curvature radius corresponding to B0. The Fourier transform of
g is defined as G. Substituting for eB0, the following expression is obtained

d2U

dωdΩ
=

2e2fγ4

πcρ2
0

G2. (5)

In the short magnet approximation, angles are defined as usual, so that

dΩ ∼ θdθdφ.
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Dipole magnet.

In the case of a dipole, g(z) = 1 inside the dipole length L, and zero else-
where. The modified Fourier transform, squared, has the form

G2 =
8 sin2 kL/2

πk2
,

a familiar result.
The oscillatory term G2 oscillates at least 102 times for visible frequencies

(ω ∼ 1016sec−1), a curvature radius of 102 − 103 meters, angles in excess of
1 mrad, γ ∼ 104 and L ∼ 1 meter. Thus it can be averaged in the large
angle approximation to give

G2 ∼ 4
πk2

.

This is important because the length scale disappears from the formulae. In-
tegrating over the azimuth, the large-angle approximation for short magnet
radiation now becomes

d2U ∼ 32e2c

πρ2

1
ω2θ7

dωdθ. (6)

The steps of the previos section are repeated, but this time t′ = kL. Upon
substituting for P , integrating over φ, and using the (t′, u) variables of the
previous section, the result is (large angle approximation)

d2P (dipole) =
24P
π

sin2 t′/2
t′2

1 + u4

(1 + u2)5
dudt′ (7)

Algorithm.

The fact that the length scale L disappeared from the problem means that
smaller sections of the magnet add up incoherently. This affords vast sim-
plifications. First, Eqs.(2) and (6) can now be compared directly to give
a cutoff which is independent of L, and second, the current algorithm that
propagates the beam step-by-step does not need to be encumbered with a
Fourier transform taken over the whole magnetic field (I correct below for
fringe effects). Indeed, a magnet, such as a quadrupole, that presents a
variable magnetic field to the beam, can be broken into many small dipoles,
which is the method used now.
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Thus the final algorithm is simply to replace the current step-by-step
calculation of the field with one that computes the angle between the source
and the detector, and uses the classical or short-magnet approximation de-
pending on cutoff.

Setting Equations (2) and (6) to be equal the cutoff condition is obtained:

K =
27π
8θ

t3e−2t = 1,

which is the main result of this note. When K is greater than one, the
classical approximation is used, otherwise the short magnet approximation is
used. For visible frequencies, a curvature radius of 100 meters, and γ = 104,
the condition is satisfied at θ ∼ 2.5mrad, which is 25 times larger that 1/γ,
thus proving that the large angle approximation was valid throughout.

Fringe effects and quadrupole approximation.

At large angle, the magnet is seen as a whole by the observer, therefore
all length scales associated with the magnet have to be studied. The exact
fall-off of the magnetic field around the magnet ends affects dramatically
the high-part of the Fourier transform. If the fall-off is very sudden, there
will be no exponential cutoff in frequency. If the fall-off is gradual, there
will be an exponential cutoff. The following simple modeling of edge effects
provides an answer.

The step function g(z) of the previous sections is now replaced by two
error functions

g(z) =
1
2
(erf(

L + 2z
σ

) + erf(
L− 2z

σ
)),

where L is again the length of the magnet and σ the length over which
the magnetic field falls off (meters and centimeters are their typical sizes).
Integrating by parts gives (large angle approximation)

G2 = G2
dipole exp (−k2σ2). (8)

The exponential correction is small, and does not affect appreciably the total
radiated power, but becomes eventually large at angles of order a few mrad
(indeed it should. Both the beam length and the edges of the magnet are
a few centimeters. Thus they should be experiencing a fall-off at similar
angles). This correction is potentially important, if the radiation at the
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chosen angle is seen to come predominantly from the center of the beam. It
is not important if radiation is seen coming predominantly from the tails.

In a quadrupole, the magnetic field seen by a particle is (assuming the
for simplicity that the quadrupole extends from 0 to L)

g(z) = (1− sin (βz/c)),

with β being the oscillation frequency about the axis of the quadrupole. The
Fourier transform of this object is very simple, if β << ω:

G2 = G2
dipole cos2 (

βL

2c
).

Notice the independence of the correction on ω. If the sin (βz/c) term is not
too large, which is true in most practical cases, then the step-propagation
through the magnet will average the radiated power in such a way that
to first and second order in βL/2c the result will be the same to the one
obtained above. Therefore, a program with step propagation of particles
computes this correction to high accuracy. In conclusion the final algorithm
to be used in the short magnet region is

d2P =
24P
π

sin2 t′/2
t′2

1 + u4

(1 + u2)5
exp (−t′2σ2/L2)dudt′. (9)

Assuming that the magnetic field fringe is of order 1 centimeter, the expo-
nential factor is close to one at around 2 mrad and for optical frequencies,
and therefore the previous derivation of the cutoff is still valid.

Polarization.

At these angles, the classical approximation clearly fails badly to reproduce
the correct polarization, in particular, its azimuthal dependence[3]. I be-
lieve we can postpone this problem until we learn more about quadrupole
radiation. The problem is also somewhat secondary, our primary interest is
the total level of backgrounds. The obvious solution is to model all of the
polarization, inside and outside of the cutoff, according to the short magnet
approximation, using the fπ and fσ polarization factors described in Ref.[5].

Conclusions.

I was surprised that the algorythmic modifications to the code, to implement
short magnet radiation, could be so simple. Choosing a spectrum (Eq. 3)
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or another (Eq. 9) based on a simple cutoff decision will suffice. While
the magnet length disappears from the solution, the magnetic field fall-off
length at the magnet’s edges cannot be made to disappear. The model
extends its accuracy to very large angle by implementing fall-off corrections,
which become important only far above the cutoff. Corrections for the exact
type of magnet being studied are not necessary.

An algorythm to sum up radiation in the detector was not developed.
There are no particular problems in writing one. The choice of fringe fall-
off, σ, also needs to be made to complete the algorythm, but is generally
available from magnetic field measurements.

I notice in passing that, if the backgrounds at the chosen location for
the beamstrahlung detector (6 mrad) are seen to be coming mainly from
the beam core, they can be suppressed by several orders of magnitude by
simply tapering off the magnetic field at the ends of the quadrupoles.
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