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Design of superconducting multipoles and theirs parameters are represented here.    

 
1. Introduction.  

Multipoles are intristic elements of magneto-optics of the  dual aperture storage ring [1-4]. Basically 
they have the same functions as the similar components in any single aperture ring. As the multipoles 
have superconducting coils, each of them assembled into separate unit and installed in series in the 
same cryostat (see Fig. 14,15 lower). Few elements in such a cryostat represent a focusing unit. Basic 
focusing unit contains a quadrupole, a sextupole and a dipole steering elements [1]. Some of the units 
will have an octupole or skew quadrupole instead of vertical steering unit or instead of sextupole. 
Below we represent the design parameters of each of such element what could be used for the 
reference. We describe here in brief Sextupole, Skew Quadrupole, Octupole and Steering dipole 
assembly. 
Dual bore multipole magnets have some peculiarities of inter influence of the fields from neighboring 
element [5]. All these peculiarities, arisen from cross-field interference in a magnet yoke and at the end 
of the magnet, are taken into account. Fortunately,  the field quality for each higher (than quadrupole) 
multipole is not so high as for the main quadrupole2, so some simplifications allowed. These 
simplifications drastically reduce the mechanical tolerances, and relax mostly of technological 
problems. The field quality remains at the level [ (  in all aperture 
required 
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∆ x m≅ ± 27 m  however. We will notify the places where some improvements could be done.    

The distance between  the axes at present design is about 80 mm.  This distance could be easily 
accommodated to other value. 
Full 3D description of each multipole will be given in separate publications. 
 

2. Sextupole.   
2.1. The field. 
The field distribution  in the aperture could be represented as the following (see for example [9])  
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where  – is a complex variable and  W(z) –is a complex potential.  z x iy r ei= + = ⋅ ϕ

2.2. Sextupole value.   
Sextupole is used for compensation the chromaticity. This chromaticity arises from the dependence of 
focal distance of the quadrupole lens on the energy of the particle. The focal distance F of the 
quadrupole-sextupole doublet can be found from expression   
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where –is an effective length of the quadrupole, –is an effective length of the sextupole, x–is the 
actual transverse coordinate of the particle, p–is the particle's momenta. For the momenta other, than 
equilibrium,  (2) can be represented as following 
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where sub indexes 0 numerates equilibrium values, η – is the dispersion function at the lens's location. 
So if one chooses Sl GlS Qη / ≅ 1, the doublet will be achromatic. This gives estimation for the 
sextupole as  
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For quadrupole lens with gradient 1 kG/cm, dispersion function value η ≈ 200cm  this yields 

estimation S
kG cm

cm
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. [ / ] , where the ratio 60/27.8 represents the ratio in the 

lengths of quadrupole to sextupole in CESR.  This value gives the minimal possible value of sextupole 
strength.  
The real value, however, must be a few times bigger, taking into account, that the sextupole also 
cancels the chromaticity, generated by final focus lenses and the fact, that cancellation of chromaticity 
in one degree of freedom generates it in other. So effective cancellation is result of differences of beta 
function and dispersion functions at location of the sextupoles associated with focusing and defocusing 
quadrupole lens. As it can be pointed out from (2), the chromaticity arisen from the sextupoles only3 is  
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The same formula could be written for vertical tune shift with sub-indices y instead x. Basically the 
sextupoles assembled into the families, the minimal number of which is two. For CESR's sextupole the 
integral value is about ∫  for 10 A of a feeding current [6]. Maximal value of 
feeding sextupole current in working structure is about 7 A, while a typical value is 0.7 A only. So if 
we fix the integral on the level 0.7 kG/cm, and the length of sextupole about 10cm

S s ds kG cm( ) [ / ]≅ 1

4, the sextupole 

 
3 Full formulas for chromaticity in first order are  
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where α β= − ′ / 2   and  ρ --is a current bending radius.  
4 Effective length. Geometrical length is something around 8.5 cm.  
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gradient required will be 0 . So the strength of 0.1[kG/cm7 10 0 07 2. [ / ] / [ ] . [ / ]kG cm cm kG cm≅ 2] could 
be taken as a major value for the sextupole with 10cm effective length.  
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From the other hand, the sextupole value gives an idea of maximal possible dynamic aperture A. If we 
agree, that absolute limit for dynamic stability defined so that the angular kick to the particle arisen 
from the sextupole is of the order of angular divergence in the beam,  
 

,                                                               (6)  

 
where εx –is an emittance, –is an envelope function. Substitute here estimation from (3), one can 
obtain  
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For betatron tune shift per cell µ π= / 2 ,  ratio βx F/ .0 4 82≅  and one can obtain A ≅
η
5

. For 

dispersion function η ≈ 100cm  dynamic aperture could not be bigger, than . We obtained 
this estimation supposing, that sextupole cancels the only chromaticity of the neighboring quadrupole. 
If sextupole is bigger, then this maximal possible dynamic aperture shrinks by the factor, which is the 
ratio of the real sextupole strength to this minimal one. For CESR, according to previous estimation 
this is below two-three times in maximum, what still being acceptable. In Fig. 1 the dynamic aperture 
for CESR is represented. Here sextupoles cancel the only chromaticity arisen from neighboring 
quadrupoles, not the final focus lenses.  

A c≤ 20 m

 

 

rad 
CESR's radial dynamic aperture 

cm 
 

Fig. 1.   Dynamic aperture for CESR's regular part of the ring, referred to the 
entrance of a dipole magnet.  Regular part of the ring only. 

 
So as we know now what is the range of the sextupole strength, we can move further.  
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2.3. The field generation.  
For generation the  field distribution required,  there are two major approaches.  One uses magnetic 
poles of necessary shapes, while the influence of the current is practically eliminated. The other one, 
indeed, uses a current distribution on the walls of the aperture practically without any particular 
magnetic poles.  Saying ahead, we will use an intermediate approach. Let us make, however, some 
preliminary considerations.   
The equation (1) means, that vertical field behavior along the vertical line, say, x = a, is a parabolic 
one . If we suggest that at coordinate B x a y S a yy ( , ) (= = ⋅ −2 2 ) x a=  a vertical magnetic wall is 
located, the longitudinal current density along the wall in vertical direction will be required for 
satisfaction the boundary conditions as  
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where µ0 – is a magnetic permeability of the vacuum5.  One can see that  the current distribution must 
be a parabolic one6.  One can also consider some other profiles (parabolic) of the wall, to get a uniform 
current distribution along the surface. From the other hand, the ratio of the current density at the 

midplane to the current density at height y = b will be 
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b a/ /≈ 31 , the difference will be on the level of 10% only. So if we interrupt the current here and 
continue the wall with a pole of appropriate shape, we can reduce the influence of current density 
variation. Total current (per one pole) required for generation of the sextupole harmonic can be found 
from (7) as  
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where we used a practical system of units and R – is a radius of the circle, inscribed into the aperture 
given by a pole shape.  For estimation we can suppose, that ,  S kG c≅ 01 2. / R cm≅ 35. , then the 
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Compare (10) and (11) one can conclude, (  , what basically means, that the point with 
coordinates x = a, y = b  belongs to the pole shape, what is a cubic hyperbola, defined by the 
sextupole. One can came to this conclusion, considering the pole shape required described by the 
formula   what is  
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For angle ϕ π= / 6  , what is a normal location of the pole tip, e and (11) yields a formula for the 
pole of sextupole  as   
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5 We used a SI units here. For practical units: G, A, cm , (1/ µ0 ) should be replaced by 1/(0.4π ) 
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In polar coordinates the pole profile can be expressed, according to (11) as  
 

R3 3 3= ρ sin ,                                                             (14) 
 
where ρ ϕ, – are polar coordinates of the point at the pole profile. After this preliminary remarks let us 
go to design aspects.  
 
2.4. Sextupole design.  
The cold mass of the sextupole is represented in Fig.2. The poles are made removable and 
manufactured as parts of a cylinder. They are attached to the yoke by screws. At  the end they have 
some cut  to improve the harmonics content.  

  
 

Fig.2. Sextupole cold mass. Dimensions are in mm. The inner boundary of the helium 
container is the circle with the biggest radius (shown at the right). Outer wall of 
helium container wraps the yoke.  

 
Six racetrack type single layer coils generate the necessary field profile, Fig. 3. Wire is a 
superconducting one with 54 filaments of NbTi of  0.4318 mm (0.017in) in diameter. Each wire 
wrapped by Kapton insulation and impregnated by Bondal.  Coil has 23 turns per pole. 
If we fixed this concept, we can move further and calculate the fields is the aperture.   
 
2.5. The field quality.  
One can see, that similar to quadrupole field [5], the lines in the yoke have the different path lengths. 
Moreover, the lines in the septum of the yoke, right side on Fig.3, are more condensed and hence 
reduce the field strength at the right side additionally. To compensate this effect one can make the pole 
radiuses at the left and right side of the lens slightly different. The field behavior is represented in 
Fig.4  for the same pole radiuses. Zero of the field is slightly shifted on 0.042 mm to the right side.  
 
 

 5



 
 

Fig. 3. Magnetic lines in sextupole. Upper half of the left aperture in Fig.2 is shown. 
Neighboring sextupoles have the same value.  

 

 
 

Fig.4. Vertical field behavior as a function of transverse coordinate.   
 

Expansion of the field behavior made around mechanical center of the sextupole gives the formula for 
the feeding current 2.5 kA.turns/pole or 108 A of feeding current. This current is about three times the 
working one. With this current the field dependence is  

 
B x kG x x x x xy ( )[ ] . . . . . .= − − ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ −− − −0112 4 1 10 0 229 4 7 10 19 10 2 8 104 2 4 3 4 4 5 5

− ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅− − −8 66 10 139 10 385 106 6 6 7 6 8. . .

−

x x x   [x, cm]                        (15) 
 

So the field deviation within aperture remains within .  2 10 3⋅ −

2.6. Parameters. 
Parameters of the sextupole are summarized in Table 1.  

Parameter Value 
Sds kG cm, [ / ]∫    0.7 

S kG cm, [ / ]2  0.07 
Current, A 35 
Turns/pole 23 

Aperture, cm 5.4(dia) 
 
 

3. Skew quadrupole  
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3.1. The field.  
The field distribution  in the aperture could be represented as the following   
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where –is a complex variable and  W(z) –is a complex potential.  z x iy r ei= + = ⋅ ϕ

 
3.2. The skew quadrupole value.  
Skew quadrupole is used for compensation of coupling in betatron motion arisen from misalignments 
of installation (and fabrication) elements of beam optics around the ring.   
 
3.3. The field generation.  
This is basically the same as used for main quadrupole [2,8].  
3.4.  Design. 
Skew quadrupole cold mass is represented in Fig. 5. The coil has 36 turns. Four of these coils are used 
for each of quadrupole. This number of the turns slightly differs from the number of turns in main 
quadrupole (42) due to reduced area available for the poles.  The same mold will be used for winding 
as it was used for main quad. This mold allows reduction the number of the turns with minimal 
adjustment.  The length of the skew quadrupole's yoke is about 8.5 cm , what yields an effective length 
about 12 cm. 

 
 

Fig.5. Skew quadrupole cold mass.   
 

3.5. The field quality. 
We represent below the graphs for gradient. One can realize the  accuracy for the field deviation from 
linear is  higher, as it is defined as 

 [ ( ,                (17) ) ] / [ ( ( )) ] /
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where g(x) – is an actual gradient, and δ g x g x G x( ) ( )= − ⋅ – is a deviation from a linear part.  
 
 
 
3.5.1. Symmetric  case  
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Fig. 6 . Magnetic lines map and gradient as a function of transverse coordinate. Gradient    
 at both apertures have the same sign. Notice that gradient have a linear slope down to  
   the right. Poles are cylindrical with radius 3.6 cm. Variation of gradient  is   ± ⋅ −15 10 3. .

 
3.5.2. Asymmetric  case.  
 

    
 

Fig. 7. Magnetic lines map and gradient as a function of transverse coordinate.  
Gradients  in neighboring  apertures are opposite. Notice that gradient have a linear    
slope up  to  the right. Poles are cylindrical with radius 3.6 cm. Variation of gradient     
is   ± ⋅ −15 10 3. .

 
3.6. Parameters.  

Parameter Value 
Gds kG, [ ]∫    3.0 

G kG cm, [ / ]  0.25 
Current, A 35 
Turns/pole 36 

Aperture, cm 5.4(dia) 
  

 
4. Octupole   
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4.1. The field. 
The field distribution  in the aperture of octupole could be represented as the following    

 

B B iB i Oz O y x y iO x xy
W z

z
i O r ex y

i= − = − = ⋅ − + − ⋅ − = = − ⋅( ) ( ) ( )
( )

( )3 3 2 3 23 3 3 4∂
∂

ϕ ,        (18) 

where –is a complex variable and  W(z)–is a complex potential.  z x iy r ei= + = ⋅ ϕ

4.2. The octupole value. 
Octupole used for compensation dependence the betatron tune on the betatron amplitude, generated by 
different nonlinarities in machine. The horizontal force acting to the particle can be represented as 

, where x–is an actual coordinate in sextupole. Transverse displacement could be 
represented as  
F eO s xx = ⋅( ) 3

x s a
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where a–is an amplitude of transverse displacement at the place where envelope function is β 0 , ψ –is 
constant.  In the presence of octupole,  a  and ψ  become a functions of it's amplitude. Using  the   
Bogolubov-Krylov method [9] one can obtain, that the dependence of the tune becomes  
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Substitute here expression for x from (17) and averaging over phases one can find  
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where – is the length of octupole.  lO

For amplitude  a c≅ 1 ,m ∆ Q ≈ 0 01. , β 0 20 2000≈ =m c
O ≈ 0

m ( ) .HR kG cm≅ ⋅ ⋅17 104

kG cm3. / lO ≅ 10

O ≈ 0 0022.

, , one can obtain 
from (21), that O l .  This gives  for  . One can see, 
that it is a strong octupole. To handle the dynamic aperture, one needs to use a few octupoles around 
the orbit. For example, ten octupoles will yield the octupole strength

kG cm2 2[ /O⋅ ≈ 0 2. ] 022 cm

cm7 . That will 
give a gradient about 

k /G 3

G O a≅ ⋅ ⋅3 2 kG cm048.≈ 0 /  at the boundary of aperture, i.e. about 5% of the 
main quadrupole.  
 
4.3. The field generation. 
For generation the  field distribution like (18) we used an intermediate approach, similar to one used in 
sextupole design.  Here on vertical wall at  x = a,  the current density distribution must satisfy the 
equation  

j y
I y

y
O a a ys ( )

( )
.

(= = ⋅ − ⋅ ⋅ )
∂

∂ π
1

0 4
33 2

                                                          

,                                               (22) 

 

 
7 For the same tune shift.  
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which yields a parabolic currant distribution here. Again, the ratio of the current density at the 

midplane to the current density at height y = b will be 
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times bigger, than for sextupole.  For octupole proposed  a  = 3.75 cm, b =0.75 cm  and the current 
variation expected to be   12%.   Once again we interrupt the current here and continue the wall with 
pole of appropriate shape, thereby reducing the current density variation influence. Total current (per 
one pole) required for generation of the octupole harmonic can be found from (18) as  
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.                                          (23) 

So for octupole , the current required is about O kG≅ 0 025 3. / I kA turns≈ ⋅1  total.  
4.4.  Design.  
Basically design follows the same scheme as quadrupole and sextupole.  A single-layer coil per pole is 
used here. Twelve coils are used totally for each dual bore sextupole magnet.  Two halves allow 
splitting the magnet along the median plane.  Similar to sextupole, the poles are made removable and 
manufactured as parts of a cylinder. They are attached to the yoke by screws. At  the ends they also 
have  cuts.  Additional metallic screens reduce the cross-interference the fields from neighboring lens. 
Basically the inner window without poles attached looks like a regular 16-pole shape one. So the space 
for the poles and coils had chosen the same. The length of each side of this 16-pole figure is about 15 
mm.  
 

 
 

Fig.8. Octupole cold mass.   
 
4.5. The field quality.  
The field quality defined as a result of calculation with MERMAID in ¼  of whole dual bore yoke. 
This takes into account the influence of neighboring lens. In Fig. 9 the picture of magnetic lines is 
shown. One can see from here that some of the lines are moving around both centers. The field and 
gradient behavior are shown in Fig. 10. For the feeding current 0.5 kA/pole,  the field can be 
represented here as  

B x x xy ( ) . .= ⋅ ⋅ + ⋅−56 10 0 01516 3 ,  

so at the boundary, x = 2.7 cm, the ratio will be .   ∆B O x/ ⋅ ≈ ⋅ −3 55 10
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Fig.9. Octupole field lines. Left aperture in Fig.8 is shown. Symmetrical case.   
 

 

Fig.10. Magnetic field  and it’s gradient B xy ( ) G x
B x

xy
y( )
( )

=
∂

∂ as the functions of 

transverse coordinate.  
 
4.6. Parameters.  
 

Parameter Value 
O s ds kG cm( ) , [ / ]2∫    0.15  

O kG cm, [ / ]3  0.015 
Current, A 30 
Turns/pole 17 

Aperture, cm 5.4(dia) 
  

 
5. Dipole  

5.1. The field.  
The field distribution could be represented as the following  
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where –is the amplitude, and B0 ψ –is the phase, which defines orientation the field vector inside the 
aperture.   
5.2. The dipole value.  
The angular  kick arising from the dipole  is  

∆ p
p
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HR
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 ,                                                                 (25) 

where  a –is an effective length of the dipole. For the beam energy lD E GeV≅ 5 ,   
, ,  , and for angle kick one can obtain the value of the 

order  or 1.2 mrad. 
( )HR kG cm≅ ⋅ ⋅7 104

∆ p p/ .≅ ⋅ −12 10 3

.16 l cD ≅ 16 m B0 125≅ . kG

5.3. The field generation. 
The field generated by two  flat saddle-type coils connected in series. Two coils together provide a thin 
sheet of current at the yoke wall.  The current  density along the wall must cancel the tangential to the 
iron  component of magnetic field, so  

j y
I y

y
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( )
.

= =
∂

∂ π
1

0 4 0                                                     (26) 

and the current is obviously constant along the wall. From last expression it follows an ordinary 
formula for  magnetic field calculation, B I0 0 4= . / Aπ , where A – is the aperture, I– is the full current.  
5.4.  Design.  
Design is represented in Fig. 11. Basically it was not so simple to achieve the necessary quality due to 
strong influence, what imperfections in corners gave to the field. Dipole field does not give fast decay  
for  non principal harmonics. One possible solution for this was found in slightly curved poles, see Fig. 
12. As the manufacturing of these poles becomes more complicated, the other solution was accepted. 
That is in arrangement of some controlled gap in the middle of the side winding. The height of this gap 
is twice as the gap between the last turn of the coil and the top of the corner.      

 
Fig. 11. Dipole corrector cold mass.  

 
5.5. The field quality.  
The field quality considered with the same numerical code as previous multipoles. Field lines 
represented in Fig. 12. Here in left aperture the field has the vertical component only, in right –both 
vertical and horizontal components are equal.  
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Fig. 12. Example of field generation in neighboring apertures with curved side walls 
model.  

 
In Fig. 13. There is represented  the field behavior as a function of transverse coordinate for 20 A of 
feeding current. Nonlinear behavior is a result of  the field dependence on path length in yoke. 
Material of the yoke –  Standard 1008.  
  

 
 

 Fig.13. Field distribution across the aperture. Maximal field is 0.5 kG. One division 
on vertical scale corresponds to 0  of relative deviation. Flat walls with 
gap compensation.  

5 10 4. ⋅ −

5.6. Parameters.  
Parameter Value 

Hds kG cm, [ ]⋅∫    20. 

H, kG 1.25 
Current, A 50 
Turns/pole 75 

Aperture, cm 5.4(dia) 
Angular kick, mrad 1.2 
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6. Multipoles  in  cryostat. 
Multipoles in cryostat are represented in Fig. 14.  The cold mass enveloped by copper shield cold 
down to nitrogen temperature. Nitrogen is going through tubing 29,56,57 in Fig. 14. High temperature 
rods made on BSCCO marked HTS in Fig. 14, used for reduction of the heat leakage  to the  cold  
mass  
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Fig. 14. Multipoles in the cryostat.  
held under temperature of boiling Helium. Total number of these rods may vary from 6 to 16, 
depending on the feeding independence required.  Minimal number of the rods (6) required when 
quadrupoles connected in series, same for sextupole and the only one component of the field is 
required from dipole corrector. Cold mass and nitrogen shield wrapped by superinsulation.  

 
 

Fig. 15.  Cryostat. The quadrupole cold mass is represented at the right. Multipoles are   
inserted into the same cold mass envelope. Copper nitrogen shield is shown 
inserted into the cryostat cabinet.  

 
7. Conclusion 
We represented here some general properties of multipoles for dual aperture storage ring.  Sextupole 
considered a little bit more detailed. In the present design a single layer coils is used for the multipoles. 
A two layer option will reduce the feeding current, keeping the field quality on the level required. The 
thickness of two layer coil about  1mm (instead of 0.5 mm for a single layer coil) allows an easy 
accommodation into the present design concept.  
3D consideration each of the multipoles will be described in separate publications.   
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