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In this note, I describe estimates of the persistent magnetization currents in coils of the CESR Phase III IR
quadrupoles. A general result is derived for the magnetization, and a rough estimate given for the magnitude of the
effect compared to the main quadrupole field. This rough estimate indicates that the effect is very small, so the
detailed expression is not evaluated.

1. Filament and Wire Magnetization

Figure 1 illustrates one filament in a superconducting cable. We consider here only the case in which the
induced currents in the superconductor fill the entire volume of the filament at the maximum current density; this is
the situation in Type II superconductors for applied fields greater than a few tenths of a Tesla.
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Referring to Fig. 1, the magnetic moment of the current loop of length l is

m = dm =∫ PdI∫ (1)

in which

P = 2rlCos(φ ) (2)

is the area of an increment current loop at  dI (r,φ) (See Fig. 2, end-on view of Fig. 1)
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and



dI = Jcrdrdφ (3)

so

m = 2lJc dφ
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For a cable with N filaments, the total magnetic moment is Nm. If the total cable area is A, then

εA = Nπa2
(5)

where ε is the fraction of the cable which is superconductor. The total magnetic moment per unit length is then

ml = Nm

l
= 4

3π
εAJca

(6)

The critical current density is a function of the applied field B; the induced magnetic moment is opposite to
the direction of the applied field. So

  

r
ml = B̂

4
3π

εAJc (B)a
(7)

2. Magnetization field of a cable winding

We now consider the field created by this magnetic moment. We take the cable to be arranged in the form
of a thin shell of radius R (fig. 3), of thickness w, which extends from φ=0 to φ=φ0.
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The incremental magnetic moment per unit length at φ is

  
d

r
ml = B̂

4
3π

εJc (B)awRdφ

. (8)

The two-dimensional magnetic field   
r
Bd (r,φ )of a magnetic moment per unit length   

r
ml, located at (r', φ') is given

by (Fig. 4)
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4πρ2 2(
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Here

  

r
ρ = r

r − r
r '

ρ2 = r2 + r'2 −2rr' Cos(φ − φ ' ) (10)

Applying this to the case of Fig. 3, we have

  
d
r
Bd (r,φ ) = µ0

4π r2 + R2 − 2rRCos(φ − φ ' )( ) 2(d
r
ml • ρ̂)ρ̂ − d

r
ml[ ]

(11)

  
r
ρ = r

r −
r
R (12)

So the total field due to the current shell magnetization is

  

r
Bd (r,φ ) = µ0εawR

3π 2 dφ '
0

φ 0

∫
Jc (B) 2(B̂ • ρ̂)ρ̂ − B̂( )

r2 + R2 − 2rRCos(φ − φ ' )( ) (13)

The applied field   
r
B  depends on φ '  and so cannot be taken outside the integral. To compare this field to the main

quadrupole field, we evaluate it at the reference radius r0

  

r
Bd (r0 ,φ ) = µ0εawR

3π 2 dφ '
0

φ 0

∫
Jc (B) 2(B̂ • ρ̂)ρ̂ − B̂( )

r0
2 + R2 − 2r0 RCos(φ − φ ' )( )

. (14)

The error harmonics from this field can then be obtained by Fourier analyzing this expression as a function of φ.
We  also need to add the contributions from the other coil shells.

3. Estimate of the magnitude of the effect.

To obtain a rough estimate of the size of the effect from Eq. (14), we make the following approximations:

r2 + R2 − 2rRCos(φ − φ ' ) ≈ (R − r0 )2

2(B̂ • ρ̂)ρ̂ − B̂( ) ≈ 1

dφ '
0

φ 0

∫ Jc (B) = φ0 Jc (B)
 (15)

in which B  is the average value of the applied field over the cable shell. Then, neglecting the effect of the other
coil shells, we have

Bd (r0 ,φ ) ≈ µ0εawR

3π 2

φ0 Jc (B)

(R − r0 )2

(16)



For Nt turns of wire, each of which has area Aw ,we have for the total area of the cable block

wRφ0 = Nt Aw (17)

and the critical current in the wire is

Ic (B) = Jc (B)εAw (18)

so we have

Bd (r0 ,φ ) ≈ µ0 Nta

3π 2

εJc (B)Aw

(R − r0 )2 = µ0 Nt Ic (B)

3π 2

a

(R − r0 )2

(19)

The cases of interest are the magnetization fields produced by the main quadrupole, skew quadrupole, and
dipole coils, in the presence of the combined field (in practice, this is roughly the quadrupole field). The critical
current scaling with B is taken as

Ic (B) = Ic (4)
Bc2 − B

Bc2 − 4
  B > 4

= 2Ic (4)

1 + B

4

  B < 4

(20)

The field Bc2 =10.4 T. In Table 1, the relevant quantities are shown for each coil. The reference radius is taken as
r0= 50 mm. Bapp is the average applied field, called B  above, and Bquad is the quadrupole field at r0. Eqs. (19)
and (20) have been used. In all cases, the error field is much less than one unit. The main effect is due to the
quadrupole coil itself.

Coil R ( c o i l )
( m m )

a ( m i c
r o n s )

I c ( B r e f )
( A )

B r e f
( T )

Bapp
( T )

I c ( 4 ) ( A ) I c ( B a p p )
( A )

Turns B ( d ) ( T ) Bquad
( T )

B ( d ) / B
quad
( u n i t s )

Dipole 1 4 0 13.5 6 7 5.6 2 .6 89.33 108.28 710.00 5.4E-06 2.42 0.022
Skew Quad 1 3 5 3.1 1 1 0 0 4 3.5 1100.00 1173.33 216.00 4.6E-06 2.42 0.019
Main Quad 1 1 3 4.4 1 5 0 0 6.4 4 .5 2400.00 2212.50 364.00 3.8E-05 2.42 0.157

This note benefited from conversations with Jim Welch.


