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We have developed a simulation of the beam-beam interaction
in e+e� storage ring colliders which is speci�cally intended to reveal
the dynamic collective behavior of the colliding beams. This pro-
gram is a true 6-dimensional strong-strong simulation in which the
electromagnetic �elds of longitudinal slices of the colliding beams
are recalculated for each slice collision. Broadband wake �elds are
included. No constraints are placed on the distribution of particles
in the beams. This simulation makes it possible to characterize the
beam-beam modes, to see whether the saturation of the beam-beam
parameter is sometimes due to collective motion, to determine the
thresholds for wake �eld induced instabilities in the presence of the
beam-beam interaction, and to determine the Landau damping rate
for any beam-beam mode.

1 Introduction

The beam-beam interaction is of fundamental importance to storage ring col-
liders because it limits the attainable luminosity. However, several aspects of
the beam-beam interaction, especially those involving collective motions of the
beam, are incompletely understood.

In CESR the observed instability threshold for the m = �1 head-tail in-
stability is lower when beams are in collision. We expect that, in general, any
wake �eld induced instability will have a di�erent threshold for colliding beams,
for three reasons. First, the beam-beam force produces a coupling between the
colliding bunches, so the modes of oscillation are the coupled-bunch modes. Sec-
ond, the beam-beam force is typically much stronger than wake �eld forces, and
does not possess the same symmetry. The internal modes of the bunches will be
di�erent from those of the non-colliding bunches. Third, the nonlinearity of the
beam-beam force produces Landau damping. The Landau damping rate may
be di�erent for each beam-beam mode.

Collective e�ects arising from the beam-beam force alone can limit luminos-
ity. The ip-op instability, in which the steady state has beams of unequal
transverse sizes, is commonly observed in e+e� storage ring colliders. The DCI
storage ring at LAL, Orsay, France, had four colliding beams in which the e+

beam charge was compensated by the e� charge, but the beam-beam limit was
not signi�cantly di�erent from that for uncompensated beams [1]. The beam-
beam limit in DCI was attributed to a collective beam-beam instability. This
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suggests that the beam-beam limit for two-beam collisions may also be due, in
some cases, to a collective instability.

We wish to characterize the beam-beam modes; to determine whether the
saturation of the beam-beam parameter is due, under some conditions, to col-
lective oscillations of the bunches; to �nd the thresholds for wake �eld induced
instabilities in the presence of the beam-beam interaction; and to determine the
Landau damping rate for any beam-beam mode.

Because the beam-beam force is strongly nonlinear in transverse position,
exact calculations are di�cult and particle tracking simulations are a suitable
method for studying the beam-beam interaction. Weak-strong simulations, in
which probe particles in the \weak" beam are tracked through a \strong" beam
with a �xed charge distribution, have been used extensively and successfully
to predict single particle motion, such as the growth in transverse amplitude
leading to the formation of beam tails. Strong-strong simulations, in which
the force on each beam from the opposing beam is calculated, are capable of
generating self-consistent charge distributions and have been used to examine
the collective behavior of round beams [2], charge-compensated round beams [3],
and beams of arbitrary ellipticity [4]. These simulations are very time-intensive
because of the need to repeatedly calculate the electromagnetic �eld of each
beam, and previous strong-strong simulations have included only transverse
degrees of freedom. To our knowledge, ODYSSEUS is the �rst 6-dimensional
strong-strong beam-beam simulation in which no constraints are placed on the
beams, and the �rst to include wake �elds. This enables us to investigate any
mode of oscillation of the colliding beams.

Unlike previous simulations, ODYSSEUS is capable of rapidly calculating the
electromagnetic �eld of a beam divided into many longitudinal slices because
it adaptively chooses from a variety of di�erent �eld computation methods.
Di�erent algorithms are used for the core and transverse tails of the beam, and
for longitudinal slices with large or small charge. The parameters of the program
can be changed to model at or round beams. The inclusion of the longitudinal
degrees of freedom and wake �elds allows us to probe previously inaccessible
physics. ODYSSEUS is designed to serve as a exible, e�cient, and portable
tool for investigating beam-beam e�ects.

2 Field calculation

For purposes of calculating the electromagnetic �eld from the beam, each beam
is divided into longitudinal slices. Although the number of slices can be set
arbitrarily, around twenty are typically used. The �eld from each slice, inte-
grated over the length of the slice, is calculated independently. The beams are
assumed to be ultra-relativistic, so the �eld due to each slice is transverse and
a�ects only particles within the region of that slice.

The calculation of the electromagnetic �eld of each beam is adaptive, to
maximize the speed of the program. Di�erent methods are used depending on
whether the �eld is calculated for the region of the beam core or for the beam
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tails, whether the number of macroparticles within a slice N is large or small,
and whether the number of grid points Ng used in the �eld calculation is large
or small.

2.1 Beam core

2.1.1 Small N

If the number of macroparticles N within a slice is very small, the �eld (inte-
grated over the length of the slice) at a (probe beam) macroparticle is calculated
from the exact radius vector from each opposing (source) beam macroparticle.
The �eld must be calculated at the position of each macroparticle in the probe
beam, so the number of calculations goes as N2, making this method e�cient
only for very small N . In practice, this method is only used when N is less than
�fty.

2.1.2 Large N , small Ng

For larger values of N , the electromagnetic �eld is calculated on a rectangular
grid, using precalculated Green's functions for charges on the grid points. The
beam charge is assigned to the grid points using an area-weighted technique
known as 'cloud-in-cell' [5]. For small values of the number of grid points, the
convolution of the charge density and Green's function is done as a summation
in real space. The number of calculations required for this convolution goes as
N2
g , where Ng is the number of grid points. The portion of the code whose

speed is dependent on the number of macroparticles is now only linear in N .
This technique is used only when the number of grid points is quite small, under
two hundred.

2.1.3 Large N , large Ng

For larger values of Ng, the convolution of the Green's functions and charge
density is done as a simple multiplication in wavenumber space. The speed
of this method is limited by the speed of the necessary Fourier transform to
wavenumber space and inverse transform back to real space. The number of
calculations goes as Ng log2Ng. To suppress edge e�ect problems in the Fourier
transforms, the size of the wavenumber space is doubled in both directions and
padded with zeros [5].

2.2 Beam tails

The tails of the beam, typically taken to be particles with a displacement of
more than (10=3)� in the horizontal, vertical, or longitudinal directions, are
treated di�erently than the core particles. The tail particles have very little
e�ect on the beam-beam force. They do, however, respond to the beam-beam
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force and must be tracked to determine the beam lifetime. Performing a strong-
strong calculation for the beam tails with the grid method is computationally
ine�cient and unnecessary, so we use a weak-strong calculation.

2.2.1 Longitudinal tails

Longitudinal tail particles are subject to forces from the core of the opposing
beam. A full calculation of the �eld from the opposing beam slice is performed,
as described above for the beam core. This is a weak-strong calculation, however.
The tails are assumed to have no e�ect on the other beam.

2.2.2 Transverse tails

The transverse tail particles are subject to a beam-beam force of similar magni-
tude to that experienced by the core particles. The �ne structure of the charge
distribution of the core has little inuence on the �eld in the transverse tails,
so the �eld in the transverse tails is calculated for a 2-D Gaussian charge dis-
tribution with the same 0th, 1st, and 2nd moments as the charge distribution
of the slice. The �eld from this Gaussian charge distribution is calculated using
the rational approximation of Talman and Okamoto [6] to the complex error
function solution of Bassetti and Erskine [7].

2.3 Wake �elds

Longitudinal and transverse wake �elds are included in the simulation. One
of the program inputs is a list of longitudinal and transverse resonators with
values for the resonant frequencies, shunt impedances R=Q, and quality factors
Q of the resonators. The wake functions are therefore the sum of exponentially
damped sinusoids. The transverse wakes are calculated from the 1st moments
of the slice charge distribution, and are assumed to be uniform over each slice.
The longitudinal wake has a uniform term that is dependent on the 0th moment
of the preceeding slice, and a term that is dependent on the 1st moments of the
preceeding slice that changes linearly with particle position.

3 Particle tracking

3.1 Single-turn loop

On each turn through the machine, from the collision point and back again, each
macroparticle is propagated through the linear optics of the storage ring, includ-
ing chromaticity, synchrotron radiation excitation and damping, RF phase fo-
cusing, and wake �eld deections. The full phase space distribution of macropar-
ticles is written to a �le at intervals of many turns. The 0th, 1st, and 2nd
transverse moments of the entire bunch are written to a �le on each turn. In-
dividual macroparticles undergoing longitudinal oscillations may migrate from
slice to slice, so on each turn the macroparticles are sorted and assigned to slices.
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Because the motion from slice to slice is slow, heapsort is an e�ective sorting al-
gorithm [9]. During collisions, each macroparticle is assumed to remain within
its slice. Macroparticles which have migrated past a transverse aperture are
removed from the simulation.

3.2 Collisions

During its passage though the opposing bunch, the transverse position of each
macroparticle changes appreciably, because the beta function (in CESR, ��V ) is
comparable to the bunch length. In the simulation we collide each pair of slices
sequentially, updating the transverse positions and momenta of each macropar-
ticle after each pairwise slice collision. For each slice collision, the 1st and 2nd
transverse moments of the slice charge distribution and the slice electromagnetic
�eld are calculated. The structure of the program is shown in Fig. 1.

4 Postprocessing

We are interested in the coherent oscillations of the bunch, so postprocessing
to analyze the bunch spectrum is necessary. Postprocessing is done in a Mathe-

matica [8] notebook. Beam-beam modes may be identi�ed in the Fourier trans-
form of the turn-by-turn moments of the bunch. Growth and damping rates of
these modes are determined by windowing around the mode frequency in the
frequency domain, then performing an inverse Fourier transform into the time
domain, where the amplitude is �tted by an exponential. Analytic estimates are
also displayed within the Mathematica notebook, allowing for easy comparison
to the computational experiment.

5 Status

Initial trials of ODYSSEUS using standard CESR colliding beam parameters
reproduce the expected single beam and colliding beam spectra. The program
is su�ciently fast to allow runs of several radiation damping times in duration
on a PC with an Alpha microprocessor. Trials including broadband wake�elds
are underway. In future months we plan to write a version of ODYSSEUS for
parallel processing.
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Figure 1: Structure of ODYSSEUS.
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