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      In this brief report we described  the field interference in dual bore focusing magnets.

Introduction
• For CESR next stage upgrades the dual bore lenses with superconducting coils were proposed [1]. Each
of these lenses is a combination of two quadrupole magnets that share the same iron yoke. Distance
between axes required about 80 mm. Dual bore superconducting multipole (sextupole, skew quadrupole or
octupole and dipole) magnets supposed to be installed in series with these quads in the same cryostat.
The field quality required for quadrupole lens is about
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• For this high field quality required, however, the path way of the magnetic field lines in the iron yoke
influence to the field quality in the lens aperture. Really, one can see that the path integral for magnetic
field vector over closed loop L around the current  I  can be split  in two parts (in practical units  Gs, cm,
Ampere)
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For quadrupole field this yields
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where  R0 stands for the radius of inscribed circle, µ  is the effective magnetic permeability along the line in
iron.  We would like to have the second term in the brackets as small as possible. In typical magnet,
however, L RIRON ≈ 0  , so from (4) yields even for relatively high magnetic permeability as µ ≈ 1000
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or noticeable change of gradient with changing LIRON . Situation becomes  much worse, when the iron yoke
becomes saturated.    This effect, however does not influence to the symmetry of problem if the lens is a
single aperture one. One can trim the poles in symmetrical way to adjust the field. For modeling the
problem  calculation within 45o  is enough for mostly cases.
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Cross interference of the fields
•  When dual bore lenses shared the same yoke and placed close one to another, some magnetic lines
travel around both centers, Fig.1. So in the presence of neighboring lens, magnetic lines lose its
quadrupole symmetry in the yoke, and, hence in all lens.  Now not only quadrupole-associated harmonics
allowed. Dipole and sextupole components are the strongest among allowed now. The same happens,
sequentially, for the whole lens.
 • So one needs to have ability for effective  compensation of this effect. This mechanism needs to be
simple and effective.  The lenses, where the poles and the coils acting together for the field generation
were chosen finally for the next stage of CESR upgrade [2]. This type of lens was suggested in [3]. The
superconducting coils are a racetrack type of single layer windings.
• We will consider asymmetrical case, when the gradients in both neighboring lenses have the same sign
and about the same value. This means that the neighboring currents on the sides of the septum have the
same value and there is no, hence, vertical component of magnetic induction in the iron septum.
• The shortest ways have the lines that travel around currents in the center of the lens. Example of such
behavior is clearly seen in Fig. 1.

Fig. 1. The magnetic lines of dual bore lens. Windings are single layer racetrack like coils,
which are thin in the drawing scale. They occupy the whole straight sections. The
gradients in both lenses have the same sign. The distance between quadrupole axes is
79 mm.  Yoke septum is 4 mm. Printout from MERMAID [4].

Here in Fig. 1 the example with superconducting coils is represented. The similar behavior, however, has
any dual bore symmetrical lenses. One can also see from Fig. 1, that the lines spaced at the same distance
from the center of each quad, have different path lengths in the material of yoke. So, as we mentioned
above, the quadrupole symmetry is broken here. This effect yields a sextupole (and so on) component of
the field at the center of each quadrupole.
• How big is this sextupole and how to compensate it?  To estimate the sextupole value one can compare
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the difference in the path for central and side lines, what is approximately equal to the height  a of  vertical
side.

So the difference in field values will be ∆B GR
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where we supposed that a R≈ 0 . At the distance x R≈ 0    relative field variation will be
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Substitute here again µ ≈ 1000 one can estimate relative variation as 2 5 104. ⋅ −  what affects the field
quality required.
• To compensate this effect, some appropriate non-symmetrical deformation of the poles required. Let us
consider sextupole component. The pole profile could be found from expression for complex potential
which must be constant on the pole surface, [3]

[ ]Re{( )− ⋅ + ⋅ =i G z S z Const2 3 ,                                                (8)

where G and S stand for quadrupole and sextupole coefficients correspondingly,  z = x + iy, i 2 1= − , x and
y  are Cartesian coordinates, Fig.1. The last expression (8) yields the formula for the pole profile as
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where R0 stands for the  radius of inscribed circle.  At the vertical level equal to the radius of aperture  R0 ,
y = R0  the equation (9) becomes
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and relative deviation of the pole from hyperbola 2 0
2XY R=  could be estimated as
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where B(sext) and B(grad) stand for the sextupole and quadrupole field amplitude on the radius R1

correspondingly. If we require that the ratio B sext B grad( ) / ( ) ≈ ⋅ −5 10 4  at the radius R = 27 mm, then for
the radius of inscribed circle of R mm0 35≈ , controlled deformation of the pole profile must be of the order

δ ≈ ⋅ ⋅ ⋅ =−3

8
5 10

35

27
35 0 00854 . mm, or 8.5 micrometers at the vertical level y = R0. The same

considerations could be applied to the radial disposition x = R0.
• We can also treat the consideration represented above in a different way. Namely, if we fix, that the
accuracy of the field required is of the order B sext B grad( ) / ( ) ≈ ⋅ −5 10 4 , then the accuracy of fabrication

must be δ ≈ ⋅ −85 10 3. mmfor the point around y = R0. One can see, that if we fixed the sextupole field
variations on the radius R  and we would like to know what is the deviation of the profile allowed at bigger
radius, then we can scale the absolute deviation δ = −x X  quadratically  with the radius increase.  This
example gives an idea for the accuracy of fabrication required.

                                                       
1 Radius R, where the fields arising from different harmonics are compared, called normalization radius.
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•  So one can see that the profile is rather complicated. In simplest case, however, when hyperbola is
approximated by an arc of constant radius, the arc radius of  the left and right poles could be made slightly
different, keeping the vertex of the arcs in the same place.
 • One can see also, that sextupole is not the only multipole allowed by broken quadrupole symmetry.
From the other side, for the lens described [3], if it is far from neighboring lens, the field quality could be
obtained ideal (confirmed by computer calculations down to numerical noise of the computer, what is 5.10-

6) in all cross-section of the lens. So we chose a different approach to the problem solution. Namely we
keep the radiuses of all poles the same, but  different from optimal, obtained, when the lens is far apart
from neighboring one.
• Below we represent the graphs of absolute deviation of the field for different pole radius2.

Fig. 2. Calculated field deviation (in kG) from linear behavior for different pole radius.

The smallest deviation from linear law indicates the lens with the pole radius of  37.45 mm. Maximum
deviation of 0.15 Gauss occurs at distance 2.25 cm. Magnetic field value, associated with pure quadrupole
having  gradient G kG cm= 1075. /  (for this particular radius and for 6 kA/coil) is 2.4187 kG .  So, relative

deviation in this point is  015 2418 7 6 2 105. / . .= ⋅ − . Namely this radius was chosen for manufacturing.
• The lens was fabricated and tested. Results of measurements  are represented in Fig. 3.

Fig. 4. Measured relative field deviation in one of the dual bore aperture.

                                                       
2 We would like to mention that absolute value of gradient is also slightly different in each case.
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 The graph plotted is a reconstruction of a vector sum of different harmonics measured in assembled dual
bore magnet3.

LHC example
• In much more difficult situation were designers of LHC dual bore quad (and dipole). As the exact coil
dimensions are not available, we can make only some general remarks in this case, see Fig. 3. We took
dimensions from the publication [5]4.

Fig. 3. LHC dual bore quadrupole lens.  ¼ of the lens is shown. Diameter of the inner space
is 56 mm. Outer diameter of the coils is 110 mm. Outer diameter of the collar   is 172
mm. This fraction is enough for correct calculations. Indeed, calculation   within 45o

or  90o is not enough for the correct answer.

• One can see that the symmetry is broken here also.  We considered  the case with equal gradients in both
apertures.  The  case  with  opposite gradients is even more difficult from the point of perfect field
generation. We suggested current-turns in a single coil as high as 150 kA.  In Fig. 4 there is represented a
difference between calculated gradient for the model, represented in full Fig. 3 and the model limited by 90o

line in Fig. 3.  Roughness on the curve explained by the mesh size chosen for modeling. One can see that
the difference is bigger at the center of the lens. This has a natural explanation in fact that the influence of
the iron becomes more significant for magnetic lines, what is closer to the center of the lens, see Fig. 3.
• The gradient line behavior as a function of transverse position is much better for 90o model5. Typically,
this variation is keeping zero on Fig. 4 down to center of the lens. At big displacements the gradient
behavior defined mostly by the coils, so there is no big difference  in gradient behavior at distance's ~1/3 of
full aperture.
• As the gradient is about 11.4 kG/cm, the relative variation is about 0 06 114 52 103. / . .≈ ⋅ − .  Of cause this
value can be  easily  compensated  by  slight  motion  of  left  up  coil  in  azimuth  direction  counter-
clockwise and left lower coil clock wise.

                                                       
3 Measurements were carried out in a standard cryostat. Warm  long coil was rotated inside the space arranged with two
coaxial stainless steel tubes going through the magnet. Tubes in between were vacuumed and wrapped with superinsulation,
see [2].
4 Which might be out of date, of case. This may slightly affect  the absolute value of effect.
5 As one can expect.
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• One can see, that this is, basically, the same problem what is present in our lens.

Fig. 4. The difference in absolute gradients for different modeling areas for dual bore
LHC lens as a function of radial position. Full gradient is about 11.4 kG/cm.
For 90o model there is no absolute gradient deviations at the center.

 Conclusion
• The nonlinarities arisen from broken quadrupole symmetry into iron can be taken into account by proper
choice   of problem for modeling. The level of nonlinarities required (1)  yields a strong dependence of field
on magnetic properties of the yoke material.
• We also took into consideration the magnetization of the iron6 (not described here) arising  from
circulating current.
• The same ideas were applied to other multipole elements (such as sextupole, skew quadrupole, octupole
and dipole corrector) of the ring.
• Serially installed quads and sextupoles in each module also may give the way for adjustment the
resulting field quality for all unit.
• However this is the only small part among peculiarities of dual bore magnets. Mostly strong interference
occurs at the magnet edge. Solution of this problem in application to the dual bore magnet designed  was
found, proved experimentally and will be described in other place.
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6 The current≈ 3A, circulating in the ring generates the field in the iron ≈ ≅3 20 015[ ] / [ ] .A cm Oe(for our geometry).


