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ABSTRACT

Chromaticity compensation (Q0
x � Q0

y � 0) is required to avoid the
\head-tail" e�ect in all high-energy accelerators. A potential advantage of
the \M�obius" scheme, or any other strongly coupled lattice, is that, be-
cause of cooperation between damping in the two planes, a less-restrictive
condition, Q0

x � �Q0
y, should be satisfactory. This \chromaticity sharing"

concept has been tested at CESR and, with quali�cation, been found valid.
During these studies numerous fascinating features have emerged. This
report contains theoretical calculations bearing on these phenomena, the
most important of which are the in
uence on the head-tail e�ect of coupling,
decoherence, and sympathetic damping. Most results are obtained inde-
pendently by the Krylov and Bogoliubov method and by near-symplectic
perturbation theory. In spite of the paper's considerable length and com-
plexity, signi�cant observational features are left qualitatively unexplained.
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1. Introduction

A simple description, due originally to Pellegrini and to Sands1, of the \head-tail"

e�ect to which single bunches are subject, is illustrated in Fig. 1.1. The actual charge

distribution is approximated by two super-particles, each undergoing betatron and syn-

chrotron oscillations. A \wake �eld" due to the beam environment trails each of the par-

ticles and, though the particle (temporarily) in front feels little force, the tail particle feels

a transverse force oscillating at the head particle's (and its own) natural frequency. Being

exactly \on-resonance" this force, if continued inde�nitely, would cause unlimited betatron

growth and eventual loss of the tail particle. But, because of synchrotron oscillation at

tune Qs = �s=(2�)
e:g:
= 0:05, the head and tail particles alternate roles;y

z2 = �z1 = A

2
cos�st;

�p2
p

= ��p1
p

=

�
dp

p

�
typ

sin�st (1:1)

where A is shown in Fig. 1.1 and (dpp )typ = 0:0006 is the r.m.s. fractional synchrotron oscil-

lation momentum spread assigned to the head and tail super-particles. This periodic (and

in our treatment inexorable) interchange has the possiblility of stabilizing the transverse

motion.

This paper describes the theory of a somewhat more complicated process in which,

because of intentionally-large cross-plane coupling, betatron oscillations slosh back and

forth between horizontal, x and vertical, y. For introductory purposes, even though the

uncoupled description can be obtained by specializing formulas appearing later in this

paper, the main results in the uncoupled case (all well-known) will now be summarized,

say for horizontal motion.

For describing the one-transverse-dimensional motion of the super-particles it is helpful

to introduce \�-mode" e1 = (x1+x2)=2 and \�-mode" e2 = (x1�x2)=2 coordinates. This

terminology is borrowed from the eigenmode description of two pendulums coupled by a

weak spring, where the in-phase �-mode has the same frequency as either pendulum by

itself, while the frequency of the out-of-phase �-mode is (doubly) shifted by the connecting

spring. In the accelerator, for pure oscillation in the �=�-mode, the particles' betatron

y The bunch length oscillation in this model is unphysical.
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Figure 1.1: Approximation of a bunch by two super-particles.

oscillation amplitudes are predominantly equal/opposite in sign. (Because electrical beam

pickups sense only centroid displacement, which vanishes in �-mode, the �-mode will

also be said to be \invisible".) Whether the wake force causes betatron growth or decay

depends delicately on the phase deviation from these equal or equal-but-opposite amplitude

situations. Since \chromatic" (momentum) dependence is the leading cause of such phase

shifts, the lattice chromaticity Q0
x = dQx=(dp=p) acquires a special importance. Assuming

dp=p
e:g:
= 0:0006 and Q0

x
e:g:
= 1 the maximum betatron phase deviation accumulating between

head and tail particle in one betatron cycle is 2��Qx=Qx = 2�(Q0
x2dp=p)=Qx = 0:8�10�3.

Since this phase deviation continues to accumulate for one quarter cycle of synchrotron

oscillation (about 0:25Qx=Qs
typ
= 50 betatron cycles) there is an extreme phase deviation,

symbolized by �, of about 0.038 radians.y

For ordinary electron rings (operated \above transition") stability of the �-mode re-

quires positive Q0
x. In that case, according to the simple model being described, the

y These estimates are appropriate for an electron machine, in particular CESR. For a proton machine the
accumulated phase advance tends to be more than an order of magnitude greater which tends to invalidate
the present two particle model. This issue will studied in more detail in a later section where experimental
results are interpreted.
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�-mode should be unstable. Experimentally it is found that the former prediction is cor-

rect, but the latter is false|at least for a range of somewhat positive values of Q0
x there is

no evidence of instability or pro�le distortion that would accompany �-mode instability.

This unexpected stability has been ascribed to \Landau damping" or \decoherence" of

the �-mode, a form of damping that is ine�ective in the �-mode. Since decoherence is a

multi-particle e�ect, it can obviously not be represented by our two particle model. We

will concentrate on the � modes; unlike �-modes they are externally visible because they

have centroid motion.

For su�ciently strong wake �elds a qualitatively di�erent phenomenon known as the

\fast head-tail e�ect" sets in; the damage in
icted on the tail particle during the half-period

while it is in the tail is too great to be stabilized by the longitudinal oscillation.2 This

phenomenon is well described by the same two particle model we are using. To calculate its

onset it is necessary to account also for the tune shifts caused by the wake �elds. At beam

currents for which these tune shifts cause two eigenfrequencies to become equal, certain

denominators appearing in the response function vanish, re
ecting resonance and particle

loss. With the formulation complicated by the inclusion of coupling, the fast head-tail

description is somewhat more complicated but not particularly di�cult and not essentially

di�erent from the uncoupled case. We do not discuss it in this paper.

In this essentially theoretical paper, extending the two particle model to include cou-

pled motion, a few qualitatively striking observed phenomena, some already mentioned,

will be considered and referred to by the following labels:

(i) The growth rates of the \visible modes", to be labeled 1 and 2, are observed

to be di�erent even though their betatron motions seem to be symmetrically

related, plane polarized at � 45 degrees, when viewed at a symmetry point of

the lattice.

(ii) With chromaticities adjusted to make modes 1 and 2 stable, the \invisible

modes", 3 and 4, though predicted to be unstable, seem to be harmless.

(iii) \Chromaticity sharing" is observed to occur. That is, in su�ciently coupled

lattices, when one chromaticity is decreased and the other increased more or

less equally, the betatron damping of visible modes tends to be unchanged.
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(iv) The damping of the visible modes is much enhanced by the presence of strongly

unequal horizontal and vertical chromaticities.

(v) With horizontal and vertical chromaticities strongly unequal but adjusted to

keep one mode barely stable the other visible mode acquires damping as much

as �fty times greater than the natural synchrotron radiation induced damping.

(vi) In spite of the fact that (proportional to current) head-tail anti-damping has

to be comparable with natural synchrotron damping at quite low currents to

account for observed instability there when the chromaticity is (even slightly)

negative, the damping rate depends only weakly on beam current when the

chromaticity is positive.

This paper emphasizes item (iii), showing it to be understandable as a natural gener-

alization of the two particle head-tail model, and item (iv) which is due to decoherence

accompanying the spread of particle momenta. We continue to accept the explanation

of item (ii) as being accounted for by Landau damping, even arguing that Hamiltonian

requirements cause some of this damping to be inherited by the otherwise-more-weakly-

damped visible modes. This is used to account for item (vi). This leaves item (i) which,

though it doesn't violate known laws, is not persuasively explained here, even heuristically.

Also item (v) remains mysterious and capable only of phenomenological description.

The main theoretical result of this paper, which can be said to contain most of the

other results as worked-out special cases, is the \near-symplectic" perturbation series

of Eq. (9:36). The main results needed for the description of experimental results are

Eqs. (5:15), (6:6), (12:11), and (14:24). All formulas intended for comparing with obser-

vations are enclosed in boxes for emphasis.

In proton accelerators, the bunches are typically long enough to have large chromatic

betatron phase shifts along the bunch, which tends to ameliorate the wake �eld induced

instability. This \wake �eld washout" due to destructive interference is enhanced in the

large, unbalanced chromaticity region studied here, but the e�ect is shown to be too weak

to account for observations with electron beams at CESR.

If an undamped oscillation mode is coupled to a strongly damped mode it seems that it

should acquire some damping as a result. This e�ect, to be called \sympathetic damping",
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is analysed here, taking advantage of the near-Hamiltonian nature of the oscillations.y The

damping rates acquired by the visible modes 1 and 2 from the Landau damping rate ��

(known only empirically) of modes 3 and 4 is calculated. This e�ect, though weak at low

intensity, is strongly current dependent. It is used here to account for e�ect (vi).

Damping will be quanti�ed by a quantity � with the sign chosen so that it is a \growth

rate"; � > 0 implies growth. This will remain true even if � is refered to as a \damping

rate".

2. Two particle model, (\unperturbed")

The equation governing x motion of particle 1 is�
d2

dt2
+ �2

�
x1 +

��

2
y1 + �wx� x2 = Rx1; (2:1)

where Qx = �=(2�)
e:g:
= 10:77 is the horizontal tune of the ring, S � �=(2�)

e:g:
= 0:04 is

the strength of vertical to horizontal cross-plane coupling, expressed as a minimum tune

separation, �
e:g:
= 0:02A is the single bunch current magnitude, and �wx� is the \e�ective",

\common mode" horizontal focusing strength acting on particle 1 due to the wake �eld

from particle 2. (The factor � has been arti�cially included only for later convenience.)

By implicitly de�ning � to stand for the magnitude of the current the same form applies

to either electrons or positrons. The polarity of the most na�{ve, pure electric image, no

magnetic image, wake force would be attractive toward the closer wall and hence defo-

cusing; in that case, as de�ned, wx and wy would be negative. The wake force will be

discussed further below. The �rst term of (2:1) yields the dominant betatron motion, the

remaining terms on the left hand side (though essentially perturbative themselves) will be

regarded as being included in the \unperturbed" system. (The purpose of this \device" is

to remove degeneracy in lowest order.) It is assumed the ring is run \close to the coupling

resonance", meaning that the nominal vertical tune Qy is also �=(2�) but that the actual

tunes will be split by an amount roughly equal to S. Other perturbative terms, to be

explained later, are included in Rx1.

y For an RF resonator sympathetic damping often causes large reduction of the \loaded Q".
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There are similar equations for y1, x2, and y2. De�ning matrices

P = �

0B@ � �=2 wx � 0
�=2 � 0 wy �
wx � 0 � �=2
0 wy � �=2 �

1CA ; X =

0B@x1
y1
x2
y2

1CA ; R =

0B@Rx1
Ry1
Rx2
Ry2

1CA ; (2:2)

the equations of motion are �
I
d2

dt2
+P

�
X = R (2:3)

Using

E =

0B@ e1
e2
e3
e4

1CA ; X = GE; E = G�1X; Rg = G�1R; (2:4)

these equations can be transformed to�
I
d2

dt2
+Pg

�
E = Rg; (2:5)

where G is to be chosen so that

Pg = G�1PG = diag
�
�21; �

2
2; �

2
3; �

2
4;
�
: (2:6)

The diagonal elements are \eigenmode" frequencies-squared.

A new set of unperturbed basis vectors E01 � E�;�, E02 � E�;��, E03 � E�;�, and

E04 � E�;��, with indices corresponding to horizontal and vertical respectivel, can be

de�ned by

E01 =
1

2

0B@
1
1
1
1

1CA ; E02 =
1

2

0B@
1
�1
1
�1

1CA ; E03 =
1

2

0B@
1
1
�1
�1

1CA ; E04 =
1

2

0B@
1
�1
�1
1

1CA
0

(2:7)

where the elements are x1, y1, x2, y2 components. In terms of these vectors, X is given by

X = e01E01 + e02E02 + e03E03 + e04E04: (2:8)

For these to correspond to Eqs. (2:4), the transformation matrix G0 and its inverse are

G0 = (E01 E02 E03 E04 )

G�1
0 = G0 =

1

2

0B@ 1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

1CA :
(2:9)
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As a consequence of the choice of basis vectors

G�1
0 = G0 = GT

0 : (2:10)

As the unperturbed system has been de�ned, its eigenvectors E1, E2, E3, and E4, are close

but not identical to the basis vectors just introduced, and Pg is given by

Pg = � diag (�+ �=2 + �w; �� �=2 + �w; �+ �=2� �w; �� �=2� �w) (2:11)

where

w � wx + wy

2
; �w � wx � wy

2
: (2:12)
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Figure 2.1: Labeling of the eigenmodes with schematic representation of
dependence of eigenvalues on \beam current" �. To break the degeneracy
the unperturbed system is taken at slightly positive �.

Even �xing the order of the eigenvectors and requiring � > 0, Eq. (2:6) does not

determine G uniquely; two satisfactory choices are

G =G0 +�G = G0 +
��w

�

�0B@ 0 0 �1 1
�1 �1 0 0
0 0 1 �1
�1 �1 0 0

1CA ;

0B@ 1 �1 �1 1
0 0 0 0
1 �1 1 �1
0 0 0 0

1CA�;

G�1 =G0 +�GI = G0 +
��w

�

�0B@
1 0 1 0
�1 0 �1 0
0 1 0 �1
0 1 0 �1

1CA ;

0B@
0 �1 0 �1
0 �1 0 �1
0 1 0 �1
0 1 0 �1

1CA�
;

(2:13)
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and there are two others. Here, and throughout, terms of order �2 are neglected. The alter-

natives distinguish only among terms linear in �. The ambiguity will not a�ect subsequent

calculations since the current-dependent terms of (2:13) will turn out to be unimportant.

In any case,

G0�GI = ��GG0; (2:14)

From now on all results will assume the choices listed second in Eq. (2:13) have been

chosen.

There are numerous perturbing e�ects. Some are \linear" (meaning linear in X) so

they can be treated by matrices like P. For example, a perturbing term RCH that is due

to chromaticity, can be written as

RCH = �PCHX; (2:15)

and then a corresponding transformed matrix by

PCH;g = G�1PCHG: (2:16)

One wake �eld force component will be treated similarly, but other terms are \constant"

(independent of X) or nonlinear. Expanding R into these terms, Eq. (2:5) becomes�
I
d2

dt2
+Pg

�
E = �

�
PCH;g +PW1;g

�
E+RW2;g; (2:17)

where

PW1;g = G�1PW1G; RW2;g = G�1RW2: (2:18)

Recall that terms on the right hand side of Eq. (2:17), though time-dependent, are \small".

However, one (inhomogeneous) term, RW2;g, has the special property of not vanishing in

the small amplitude limit, though it vanishes in the small � limit. This term will therefore

be regarded as also belonging to the unperturbed model; this will be explained shortly.

Spelling out Eqs. (2:4) explicitly,0B@ e1
e2
e3
e4

1CA =
1

2

0B@x1 + y1 + x2 + y2
x1 � y1 + x2 � y2
x1 + y1 � x2 � y2
x1 � y1 � x2 + y2

1CA+
��w

�

�0B@ x1 + x2
�x1 � x2
y1 � y2
y1 � y2

1CA ;

0B@�y1 � y2
�y1 � y2
y1 � y2
y1 � y2

1CA� (2:19)
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where the second terms need to be retained only when evaluating terms otherwise inde-

pendent of �. Similarly0B@x1
y1
x2
y2

1CA =
1

2

0B@ e1 + e2 + e3 + e4
e1 � e2 + e3 � e4
e1 + e2 � e3 � e4
e1 � e2 � e3 + e4

1CA+
��w

�

�0B@�e3 + e4
�e1 � e2
e3 � e4
�e1 � e2

1CA ;

0B@ e1 � e2 � e3 + e4
0

e1 � e2 + e3 � e4
0

1CA�:
(2:20)

The leading approximations to certain sums of variables will be useful;

x1 + x2 = e1 + e2; x1 � x2 = e3 + e4;

y1 + y2 = e1 � e2; y1 � y2 = e3 � e4;

x1 + y1 = e1 + e3; x1 � y1 = e2 + e4;

x2 + y2 = e1 � e3; x2 � y2 = e2 � e4

(2:21)

3. Chromatic terms

To describe the e�ect of lattice chromaticitiesy the contributions to R are

RCH
x1 = (D + d) sin�st x1

RCH
y1 = (D � d) sin�st y1

RCH
x2 = � (D + d) sin�st x2

RCH
y2 = � (D � d) sin�st y2

(3:1)

where chromaticities are described by

D + d = 4��Q0
x (dp=p)typ ; D � d = 4��Q0

y (dp=p)typ ;

D = 2��
�
Q0
x +Q0

y

�
(dp=p)typ ; d = 2��

�
Q0
x �Q0

y

�
(dp=p)typ ;

(3:2)

except for a scale factor, D and d are just sums and di�erences of the two chromaticities.

Combining them this way simpli�es certain intermediate formulas. With �p1=p given by

Eq. (1:1), Eqs. (3:1) come from the equations of free betatron motion as parametrically

altered by energy oscillation; e.g.

d2x1
dt2

+
�
2�Qx � 2�Q0

x (dp=p)typ sin�st
�2

x1

�
�
d2

dt2
+ �2

�
x1 � 4��Q0

x (dp=p)typ sin�st x1 = 0:

(3:3)

y The chromatic terms derived in this section are the only terms requiring the second terms in Eqs. (2:19)
and (2:20).
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Choosing the second alternative in Eq. (2:13), the matrix PCH;g is given by

PCH;g = �

0BBBB@
0 0 D � D��w

�=2 d+ D��w
�=2

0 0 d� D��w
�=2 D + D��w

�=2

D + D��w
�=2 d� D��w

�=2 0 0

d+ D��w
�=2 D � D��w

�=2 0 0

1CCCCA sin�st: (3:4)

The perturbation vector, expressed in terms of the eigencoordinates, is

RCH;g =

0B@D e3 + d e4
d e3 +D e4
D e1 + d e2
d e1 +D e2

1CA sin�st+
��wD

�=2

0B@�e3 + e4
�e3 + e4
e1 � e2
e1 � e2

1CA sin�st: (3:5)

Only the �rst term here is expected to be important; this can be con�rmed once values of

D and �w are known.

4. Wake forces

We next include wake terms;y

RW
x1 = � � �wx

2�
cos�st (x2 + � sin�st) ;

RW
y1 = � � �wy

2�
cos�st y2;

RW
x2 =

� �wx

2�
cos�st (x1 � � sin�st) ;

RW
y2 =

� �wy

2�
cos�st y1;

(4:1)

where for brevity a factor (dp=p)typ has been subsumed into the de�nition of \dispersion"

�, which is assumed to be purely horizontal. The coe�cients of the terms proportional

to dispersion � are very small compared to 1, but they are comparible in magnitude with

the other transverse displacements and the importance of these terms may be ampli�ed

synchro-betatron resonance.

Eqs. (4:1) describe the \di�erential" wake-�eld e�ect. As shown in Fig. 4.1 the wake

modulation would have a square-toothed sawtooth shape for a step function wake, but it

has been smoothed by retaining only the �rst term in a Fourier series expansion. Though

our head and tail particles are treated as points in the model, the fact that the true charge

y Part of the \wake �eld" force cancels a term arti�cially included in the \unperturbed equation" (2:3).
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Figure 4.1: The factor modulating the wake force can be separated into a
common-mode and a di�erential part. Less-rapid-than step-function wake
variation tends to smooth the modulation factor.

distributions are spread out longitudinally as well as the detailed longitudinal dependence

of the wake �eld will cause unknown multiplicative factors in this smoothing; these are

assumed to be subsumed into the de�nitions of wx and wy, which are expected to be

comparable in magnitude, but not necessarily equal. The strengths of the wake �elds

also have to be altered to account for momentum spread. This reduction factor can be

estimated with semi-quantitative accuracy but, since our head and tail particles have

de�nite momenta at any time, this reduction factor has to be incorporated in ad hoc

fashion. Because of it there will be a spreads of head-tail betatron phase deviations of half-

widths ��x;y, that can be estimated as being equal to the previously introduced maximum

head-tail phase deviations, ��x;y � �x;y.
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For �� << 1 this spread has negligible e�ect and for �� >> 1, if our calculation

were averaged over this phase, the wake would be e�ectively \washed out" by destructive

interference. The function interpolating between these extremes should resemble a \single

slit di�raction pattern" which we represent empirically by expressing the wake �elds as

wx = wx0e
� 1
2

�
Q0x
Q0
x0

�2
; wy = wy0e

� 1
2

�
Q0y

Q0
y0

�2

: (4:2)

To be consistent with previous estimates Q0
0x � Q0

0y � 60. Even after these semi-empirical

factors have been incorporated the di�erential wake-�eld term averages to zero by de�nition

since the average e�ect has already been included in the unperturbed system as the �nal

term on the right hand side of Eq. (2:1).

Dropping terms quadratic in �, the matrix PW1;g de�ned in Eq. (2:17) is given by

PW1;g =
��

2�

0B@ 0 0 �w ��w
0 0 ��w �w
w �w 0 0
�w w 0 0

1CA cos�st; (4:3)

and the perturbation vector RW;g is

RW1;g +RW2;g =
��

2�

0B@ w e3 +�w e4
�w e3 + w e4
�w e1 ��w e2
��w e1 � w e2

1CA cos�st� ��wx�

2�

0B@ 1
1
0
0

1CA sin 2�st (4:4)

As mentioned above, the term RW2;g will be regarded as belonging to the unperturbed

model. When substituted into Eq. (2:5), this term causes response in the �rst two modes;

e1 = ���wx�

4�

sin 2�st

� (2�s)
2 + �21

� eW sin 2�st; e2 = ���wx�

4�

sin 2�st

� (2�s)
2 + �22

� eW sin 2�st:

(4:5)

In principle, because of the di�erent denominators, the amplitudes are di�erent but, bar-

ring chance synchro-betatron resonance, the di�erence will be minor and we ignore it|

especially since this term will eventually be judged unimportant. This motion will be

superimposed on each of the \pure" eigenmotions so the force RW2;g will not otherwise be

counted as contributing to the perturbation.
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5. Iterative solution of the equations

We consider the eigenmodes one by one, starting with the �rst. Its unperturbed, or

\zero'th order", time dependence, of amplitude a, is

e1 = a cos�1t+ eW sin 2�st; e2 = eW sin 2�st; e3 = e4 = 0: (5:1)

This \steady-state" solution exhibits no damping or growth only because no terms causing

them have been incorporated in the model. By substituting this solution into Eq. (3:5) an

approximate time variation of the perturbation Rg is obtained.

Using the trigonometric identities:

2 cosA cosB = cos (A+ B) + cos (A� B) ;

2 sinA sinB = � cos (A+ B) + cos (A�B) ;

2 cosA sinB = sin (A+ B)� sin (A� B) ;

2 sinA cosB = sin (A+ B) + sin (A� B) ;

(5:2)

the mode 1 perturbations are

R
(1);g
1 = R

(1);g
2 = 0

R
(1);g
3 =

�
aD

2
+
aD��w

�

�
(sin (�1t+ �st)� sin (�1t� �st))

+
(D + d) eW

2
(� cos 3�st+ cos�st)

� a��w

4�
(cos (�1t+ �st) + cos (�1t� �st)) ;

R
(1);g
4 =

�
ad

2
+
aD��w

�

�
(sin (�1t+ �st)� sin (�1t� �st))

+
(D + d) eW

2
(� cos 3�st+ cos�st)

� a���w

4�
(cos (�1t+ �st) + cos (�1t� �st)) :

(5:3)

These terms act like sinuisoidal \external drive" terms, to be substituted into Eq. (2:5)

which, when solved, yields a \�rst" or \next" approximation to the motion. We are looking
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for the \steady-state" response, which is

e
(1)
1 = a cos�1t+ eW sin 2�st;

e
(1)
2 = eW sin 2�st;

e
(1)
3 =

�
aD

2
+
aD�w

�

� 
sin (�1t+ �st)

� (�1 + �s)
2 + �23

� sin (�1t� �st)

� (�1 � �s)
2 + �23

!

+
(D + d) eW

2

 
� cos 3�st

� (3�s)
2 + �23

+
cos�st

� (�s)
2 + �23

!

� a��w

4�

 
cos (�1t+ �st)

� (�1 + �s)
2 + �23

+
cos (�1t� �st)

� (�1 � �s)
2 + �23

!
;

e
(1)
4 =

�
ad

2
+
aD�w

�

� 
sin (�1t+ �st)

� (�1 + �s)
2 + �24

� sin (�1t� �st)

� (�1 � �s)
2 + �24

!

+
(D + d) eW

2

 
� cos 3�st

� (3�s)
2 + �24

+
cos�st

� (�s)
2 + �24

!

� a���w

4�

 
cos (�1t+ �st)

� (�1 + �s)
2 + �24

+
cos (�1t� �st)

� (�1 � �s)
2 + �24

!
:

(5:4)

Obtaining this response is slightly subtle since, with no damping present, transient solu-

tions (that depend on initial conditions) remain comparable inde�nitely with the driven,

steady state, terms. In practice the transients would decay due to inevitable damping.

One analytic procedure to accomplish this is to solve the equations by Laplace transform

and, before inverse transformation, to discard poles not due to (5:3). Alternatively, since

there is no damping and the equations are linear, drive and response are in phase and

to get the response it is only necessary to divide the terms of Eq. (5:3) by appropriate

denominator factors. Those are the only frequencies present in the response. Furthermore,

since Rg1 has no fundamental component, the fundamental is unperturbed in this order of

approximation; that is, its frequency is unshifted and its growth rate continues to vanish.

In this approximation the only mode 2 response is at the doubled synchrotron frequency

and there is mode 3 and mode 4 response at frequencies �1 � �s.

To better approximate the fundamental it is necessary to perform another iteration,

�rst substituting Eqs. (5:4) into Eq. (3:5). This time, not only is Rg
1 non-zero, it has a part

oscillating at frequency �1. (One of the sidebands of a sideband-of-the-fundamental is the
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fundamental itself.) Before continuing with mode 1 analysis we digress into the nature of

the next iteration.

The equation of motion is this approximation is

d2e1
dt2

+ �21e1 = 
1 sin�1t � F (t) ; (5:5)

where, later, F (t) could stand for any time-dependent force. If we think of e1 = a cos�1t

as the displacement of a unity-mass point particle executing simple harmonic motion (un-

perturbed) because of the (restoring) force ��21e1, its total energy is 1
2 _e

2
e+

1
2�

2
1e

2
1 =

1
2�

2
1a

2.

According to Eq. (5:5) the mass is also subject to an external force 
1 sin�1t which does

work and hence changes the total energy by an amount

�E =

Z 2�=�1

0
(
1 sin�1t) (�a�1 sin�1t) dt = ��
1a (5:6)

during one betatron cycle. On the other hand, if a multiplicative amplitude decay factor

e�1t is to represent it, this same change in energy during one betatron cycle is given by

�E =

�
1

2
�21a

2

�
(�1)

�
2�

�1

�
= 2��1�1a

2: (5:7)

It follows that

�1 = � 1

2a�1

1 = � 1

2a�1

1

�

Z 2�

0
F
�
t0
�
sin
�
�1t

0
�
d
�
�1t

0
�
: (5:8)

This result will be used in a form such that the integral averages away all terms except

those proportional to sin�1t.

Returning to mode 1 analysis, the only term contributing to the growth rate of mode 1

is the �rst term of Eq. (3:5), and only selected terms of e3 and e4, copied here from

Eq. (5:4), contribute;

R
(1);g
1 = (D e3 + d e4) sin�st;

D e
(1)
3 sin�st = � ��

2�

Dw

2

 
cos (�1t+ �st)

� (�1 + �s)
2 + �23

+
cos (�1t� �st)

� (�1 � �s)
2 + �23

!
a sin�st;

d e
(1)
4 sin�st = � ��

2�

d�w

2

 
cos (�1t+ �st)

� (�1 + �s)
2 + �24

+
cos (�1t� �st)

� (�1 � �s)
2 + �24

!
a sin�st:

(5:9)

With A = (�1+�s)t and sinB = sin�st, the only one of Eqs. (5:2) yielding time dependence

sin�1t is the third; that was the basis for retaining only the terms shown in Eq. (5:9). Note,
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furthermore, that even these terms average to zero except for their di�erent denominator

factors. (e.g. h(cos(�1t+�st)+cos(�1t��st)) sin�sti = 2hcos�1t cos�st sin�sti = 0.) For

manipulating expressions like (5:9), the following identity is useful:

fij � f (�i;��ij) � �1
� (�i + �s)

2 + �2j
+

1

� (�i � �s)
2 + �2j

=
�4�i�s�

�2i � �2j + �s2
�2
� (2�i�s)

2
=

��i�s
(��ij + �s2=2)

2 � (�i�s)
2
;

(5:10)

the quantity �ij = (�2i � �3j )=2 can be related to \line half-separations" that can be read

o� from Fig. 2.1, as illustrated by the following examples (that assume � << 1):

f13 =
��1�s

(��w + �s2=2)
2 � (�1�s)

2

�<<�s� 1

�

1

�s
;

f14 =
��1�s

(��=2 + ��w + �s2=2)
2 � (�1�s)

2

�<<�s� 1

�

 
1

�s
+

(�=2)2

�s2 � (�=2)2

!
;

f23 =
��2�s

(���=2 + ��w + �s2=2)
2 � (�2�s)

2

�<<�s� 1

�

 
1

�s
+

(�=2)2

�s2 � (�=2)2

!
;

f24 =
��2�s

(��w + �s2=2)
2 � (�2�s)

2

�<<�s� 1

�

1

�s
:

(5:11)

and similarly for other possibilities. Note that the �nal (crude) approximations are not

indicative of resonance; the approximation fails to be valid well before the denominator

can vanish and certainly therefore before the true resonance at �s = �. The small additive

corrections to f13 and f14 are only retained since below, in Eq. (5:8), they cause minor

deviation from exact \chromaticity sharing". Note that

fij = �fji: (5:12)

Continuing to simplify Eq. (5:9), we obtain for small �,

R
(1);g
1

e�
= � ��

2�

1

4
(Dwf13 + d�wf14) a sin�1t; (5:13)

where \e�" means terms that will not eventually contribute have been dropped. Using

Eq. (5:8), �1, which we now call the \head-tail growth rate" �HT , is given by

�HT =
1

8�

��

2�
(Dwf13 + d�wf14) (5:14)
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Substitution from Eq. (4:1) yields the main result ,

�HT = �
8�s

(dpp )typ(Q
0

xwx +Q0

ywy +
(Q0x�Q0y)(wx�wy)

2
(�=2)2

�s2�(�=2)2
):

(5:15)

The terms dropped from the right hand side of Eq. (5:9) would not have contributed to

�HT . The term proportional to cos�1t would have canceled in the averaging occuring

in integral (5:9). This term \shifts the tune", an e�ect we will look at in section (7).

The other dropped terms oscillate at \synchrotron side-band" frequencies. Extending the

averaging time in Eq. (5:9) to the synchrotron period these terms also average to zero.

Note also that the terms proportional to eW do not contribute, which is the same result as

is obtained if they are (incorrectly, it seems to me) treated purely as perturbative terms.

The last term of Eq. (5:14) diverges as �=2 ! �s which is presumably unphysical.

This is discussed further in section (8). For almost all the data that has been taken this

distinction is somewhat academic since �=2 << �s and wx � wy.

Analysis of mode 2 is very similar to that for mode 1 and the resulting growth rate is

the same. We proceed then to mode 3.

6. Head-tail damping of �-modes

Later, in �tting to measured damping rates, a phenomenological contribution due

to Landau damped will be added fo them, but the �-modes are also subject to head-tail

damping or anti-damping. The formula will turn out to be dominated by the same terms as

are �1 and �2 but, since that may not be obvious, small terms will be retained temporarily.

In zero'th approximation,

e1 = eW sin 2�st; e2 = eW sin 2�st; e3 = a cos�3t; e4 = 0; (6:1)

and the perturbation terms are:

R(3);g =

0B@ Da cos�3t
da cos�3t

(D + d) eW sin 2�st
(D + d) eW sin 2�st

1CA sin�st+
��wD

�=2

0B@�a cos�3t
�a cos�3t

0
0

1CA sin�st; (6:2)
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RW;g =
��

2�

0B@ wa cos�3t
�wa cos�3t

� (w +�w) sin 2�st
� (�w + w) sin 2�st

1CA cos�st: (6:3)

Fourier expanding the third components, no term proportional to sin�3t is found so there

is no contribution to the damping in this approximation. As in (5:9), the response to these

terms will be substituted into

R
(3);g
3 = (De1 + d e2) sin�st; (6:4)

where some terms linear in e1 and e2, presumably small compared to the �rst term, have

been dropped.

D e
(3)
1 sin�st

e�
=

Da��w

4�

 
cos (�3t+ �st)

� (�3 + �s)
2 + �21

+
cos (�3t� �st)

� (�3 � �s)
2 + �21

!
sin�st;

d e
(3)
2 sin�st

e�
=

d a���w

4�

 
cos (�3t+ �st)

� (�3 + �s)
2 + �22

+
cos (�3t� �st)

� (�3 � �s)
2 + �22

!
sin�st:

(6:5)

At this point it can be seen that no contributions to damping depending on either � survive

and, except for sign, the growth rate is the same as for the previous modes;

��;HT = ���;HT: (6:6)

7. Tune variation at zero current

We distill from Eq. (5:4) only the leading \drive terms" needed to obtain mode 1 and

mode 2 response in the next approximation;

De
(1)
3 sin�st =

aD2

2

 
sin (�1t+ �st)

� (�1 + �s)
2 + �23

� sin (�1t� �st)

� (�1 � �s)
2 + �23

!
sin�st

e�
=

D2

4
g13e

(0)
1 ;

de
(1)
4 sin�st =

ad2

2

 
sin (�1t+ �st)

� (�1 + �s)
2 + �24

� sin (�1t� �st)

� (�1 � �s)
2 + �24

!
sin�st

e�
=

d2

4
g14e

(0)
1 ;

de
(2)
3 sin�st =

ad2

2

 
sin (�2t+ �st)

� (�2 + �s)
2 + �23

� sin (�2t� �st)

� (�2 � �s)
2 + �23

!
sin�st

e�
=

d2

4
g23e

(0)
2 ;

De
(2)
4 sin�st =

aD2

2

 
sin (�2t+ �st)

� (�2 + �s)
2 + �24

� sin (�2t� �st)

� (�2 � �s)
2 + �24

!
sin�st

e�
=

D2

4
g24e

(0)
2 ;

(7:1)
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where, like the quantities fij de�ned in Eq. (5:10),

gij � 1

� (�i + �s)
2 + �2j

+
1

� (�i � �s)
2 + �2j

= 2
�2j � �2i � �s

2�
�2j � �2i � �s2

�2
� 4�2i�s

2

�<<�s� 1

2�2
;

(7:2)

where the approximation assumes j�j << 0 and � << �s. Having selected terms oscillating

at the natural frequencies, the perturbing terms have been written in terms of amplitudes

expressed in lower approximation. Similar expressions could be written giving the mode 1

and mode 2 components that accompany nominally pure mode 3 and mode 4 eigenmotions.

The e�ect of these terms is to shift the tunes; the diagonal elements of matrix Pg become

P g
11 = � (�+�=2 + �w)� D2

8�
g13 � d2

8�
g14;

P g
22 = � (�� �=2 + �w)� d2

8�
g23 � D2

8�
g24;

P g
33 = � (�+�=2� �w)� D2

8�
g31 � d2

8�
g32;

P g
44 = � (�� �=2� �w)� d2

8�
g41 � D2

8�
g42:

(7:3)

These frequency shifts depend quadratically both on the chromaticities and on (dp=p)typ.

According to Eq. (7:2) all the frequency shifts are approximately the same and hence are

unimportant. In any case it would be inconsistent to use these to infer dependence of tune

on amplitude of synchrotron oscillation, since the parameter � was implicitly introduced

as being independent of �̂. This is discussed further in section (13).
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8. Reformulation in Hamiltonian terms

Of the qualitative observations listed in section (1), so far we have only succeeded in

accounting for e�ect (iii) chromaticity sharing. Items (i,ii,iv,v) have not been accounted

for. We have however alluded to a mysterious \Landau damping" of �-modes, to be

symbolized by (a negative, current dependent quantity) ��(�). We will show later that

under certain conditions decoherence can also cause an appreciable rate (negative quantity)

��;dec. These are inherently multi-particle e�ects, but we wish to include their description

into the otherwise-quantitative 2-particle picture. The purpose is to include all e�ects in a

semi-empirical model whose parameters can be determined by matching to observations.

It is not entirely obvious how to input empirical damping terms consistently into a the-

ory in which some damping is being calculated as output. This is especially true because of

\sympathetic damping" in which an otherwise weakly-damped mode acquires damping by

virtue of being coupled to a strongly-damped mode. Another complication is the �s � �

resonance. To address these problems, in order to take advantage of sophisticated mathe-

matical procedures analysing near-linear, near-Hamiltonian systems with time-varying but

periodic coe�cients, we re-formulate the problem in Hamiltonian form, in preparation for

the perturbative treatment of the following section.

The equation of free motion Eq. (2:5), now expressed in eigencoordinates, is�
I
d2

dt2
+Qs;1 d

dt
+P0 +Ps;1 +Pa;1

�
E = 0; (8:1)

where

P0 =

0B@�21 0 0 0
0 �22 0 0
0 0 �23 0
0 0 0 �24

1CA ; (8:2)

Ps;1 =

0B@ 0 0 D d
0 0 d D
D d 0 0
d D 0 0

1CA ei�st � e�i�st

2i
�
�
0 Ds
Ds 0

�
; (8:3)

Pa;1 =
��

2�

0B@ 0 0 �w ��w
0 0 ��w �w
w �w 0 0
�w w 0 0

1CA ei�st + e�i�st

2
�
�

0 �Wc
Wc 0

�
; (8:4)
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where s and c are abbreviations for sin�st and cos�st, where the superscripts s and a

di�erentiate symmetric and anti-symmetric matrices, where 1 indicates a term one \order

of smallness" less than a term with superscript 0, and where the superscripts g have now

been dropped even though the equation is expressed in eigencoordinates. For algebraic

convenience the time-varying factors sin�st and cos�st will eventually be expanded in

complex exponential form and the perturbation matrices have been abreviated to take

advantage of their zero elements. Only the leading chromatic terms from Eq. (3:4) and

wake terms from Eq. (4:3) have been retained. The remaining term in Eq. (8:1) is

Q1 = 2diag (��s = 0; ��s = 0; ��; ��) (8:5)

which contains the empirically-added damping.

All the terms in Eq. (8:1) except Pa;1 and Q1 are derivable from a Hamiltonian, the

sum of \kinetic" plus \potential" plus \coupling" energies, namely

H (z) =
1

2

X
i

p2i +
1

2

X
i

�2i e
2
i +D (e1e3 + e2e4) + d (e1e4 + e2e3) ; (8:6)

where all particle \masses" are 1, and e � (e1; e2; e3; e4)
T , and

p = _e; and z =

�
e
p

�
: (8:7)

In these terms the 8 unperturbed equations of motion, now written in �rst-order or Hamil-

tonian, matrix form, are

dz

dt
= Cz; where C =

�
0 I

�P0 0

�
: (8:8)

They can be also be written

C = eJ�1H0; where eJ � �0 �1
1 0

�
; and H0 �

�
P0 0
0 I

�
: (8:9)

C will be referred to as the \unperturbed Hamiltonian matrix" even though the term

might seem to refer more naturally to H0.

It can be seen that symmetric perturbations added to P0, such as Ps;1, leave the system

Hamiltonian, while anti-symmetric contributions such as Pa;1 do not and, because of that,

may lead to damping or anti-damping. It is possible for \velocity-dependent potential"
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terms to be Hamiltonian as well, but only if their matrix Q is anti-symmetric. Since Q1

de�ned in Eq. (8:5) is symmetric it causes \resistive" damping.

So far all quantities appearing in the equations are real. But there are well-known for-

malisms, such as the impedance description of AC circuits in which the coe�cients of linear

equations can be complex. In that description damping is re
ected by the \frequencies"

�i acquiring imaginary parts. The present discussion can be generalized to encompass this

possibility by altering what has so far been taken as the requirement that the Hamiltonian

matrix be symmetric, to the requirement that it be Hermitean, which correctly treats terms

of both P and Q type. Even though this possibility of introducing complex coe�cients

will not be exploited here, complex quantities will inevitably intrude when eigenvalues and

eigenvectors are sought. In anticipation of this we de�ne the \scalar product" of vectors

x and y byy

(x;y) �
X
i

y�i xi � y�Tx � yyx; (8:10)

where � indicates complex conjugation, T indicates matrix transposition, and y indicates
\Hermitean conjugation. With the Hermitean conjugate of a matrix A being de�ned

similarly, we have

Ay � A�T ; and (Ax;y) =
�
x;Ayy

�
: (8:11)

After this digression into notation we return to the perturbed equations of motion

(replacing z by x);

dx

dt
= (C+B)x; where B =

�
0 0

�Ps;1 �Pa;1 �Q1

�
; (8:12)

B will be referred to as the \perturbation matrix". These equations can be said to be \near-

Hamiltonian" as the non-Hamiltonian terms have superscript 1, indicating smallness.

For solving Hamiltonian linear equations with periodic coe�cients such as Eq. (8:1)

there is a formalism due to Floquet and Lyapunov|the traditional �-function formalism

is the best-known example of this in accelerator physics. For near-Hamiltonian systems

there is a perturbation theory described by Yakubovich and Starzhinski3, which we now

describe.

y The unconventional ordering of the symbols in the de�nition of scalar product is the result of following
notation used by Yakubovich and Starzhinski3 so that formulas can be copied unchanged from that source.
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They begin with eigenvectors of the matrix C which therefore satisfy

Cc =

�
0 I

�P0 0

��
a
b

�
= �

�
a
b

�
= �c: (8:13)

These require b = �a and0B@�21 0 0 0
0 �22 0 0
0 0 �23 0
0 0 0 �24

1CA
0B@ a1
a2
a3
a4

1CA = ��2
0B@ a1
a2
a3
a4

1CA : (8:14)

As a result, the eigenvalues are

��1 = �i�1; ��2 = �i�2; ��3 = �i�3; ��4 = �i�4;
�1 = i�1; �2 = i�2; �3 = i�3; �4 = i�4;

(8:15)

and the corresponding eigenvectors are

c�1 =

�
a1

�i�1a1
�
; c�2 =

�
a2

�i�2a2
�
; c�3 =

�
a3

�i�3a3
�
; c�4 =

�
a4

�i�4a4
�
; (8:16)

where

a1 =
1p
2�1

0B@ 1
0
0
0

1CA ; a2 =
1p
2�2

0B@ 0
1
0
0

1CA ; a3 =
1p
2�3

0B@ 0
0
1
0

1CA ; a4 =
1p
2�4

0B@ 0
0
0
1

1CA : (8:17)

The normalizing coe�cients will be justi�ed shortly. Later it will be useful to express these

also as

aj =

 
a
(u)
j

a
(l)
j

!
: (8:18)

It is also necessary to introduce the \adjoint" equation

Cyd�i = ���id�i; (8:19)

its eigenvectors are

d�h =

�
�hah
�iah

�
; (8:20)

where the labeling is such that cj and dh vectors satisfy mutual orthogonality relations

(cj ;dh) = d
y
hcj = �jh: (8:21)
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As the coe�cients have been chosen, the normalizing symplectic formsy


jh � i
�eJcj; ch� = i

��
0 �I
I 0

��
aj

�i�jaj
�
;

�
ah

�i�hah
��

(8:22)

satisfy


jh = ��jh =
(�1 for j = h < 0
1 for j = h > 0
0 for j 6= h

: (8:23)

Here and in formulas to follow, the upper of the � or � signs is to go with positive values

of indices such as j or h.

This perturbation theory will be reminiscent of the perturbation theory of quantum

mechanics. A mnemonic device is to think of an index such as j as standing for \principle

quantum number" jjj of a state and m = sign(j) as its \magnetic quantum number".

To take advantage of the periodicity of B , the standard \Floquet procedure" is to

seek solutions of Eq. (8:12) in the form

z (t) = e�tu (t) ; where u (t+ T ) = u (t) ; (8:24)

and the period T is given by T = 2�=�s.

A \characteristic exponent" � of the equation dz=dt = Cz (which is the unperturbed

equation) is de�ned to be a complex number for which a T -periodic function u(t) can be

found with the property that e�tu(t) is a solution. Since the function

z (t) = e�tc�i = e�i�itc�i; (8:25)

satis�es dz=dt = Cz, and because the requirement concerns only periodicity, all constants

of the form

� = �+
2�i

T
m; m = 0;�1;�2; : : : : (8:26)

are also valid characteristic exponents.

It can happen that two or more of the unperturbed mode tunes ��j are related as

in Eq. (8:26) for some value of the integer m. Verbally this would be expressed by the

y In more modern discussions of symplectic geometry, for example p. 219, Arnold, Mathematical Methods

of Classical Mechanics, eigenbasis vectors are self-orthogonal. The di�erence here is due to the complex
conjugation in de�nition (8:10). Arnold de�nes the symplectic form without the complex conjugation, with
the result that eigenbasis vectors are \orthogonal" to themselves and all other basis vectors except their
\companion" vector having complex conjugate eigenvalue. e.g. c+1 and c�1 are companions in this sense.
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statement that there is a \sum resonance" or a \di�erence resonance", meaning that an

integral multiple of frequency �s matches a sum or di�erence of the normal mode tunes.

When this happens it leads to algebraic degeneracy. (Had the cross plane coupling � and

the common mode wake�eld not been included in the de�nition of the unperturbed model,

we would now be facing an eight-fold degeneracy of this sort.) The following analysis can

be adapted to the degenerate situation, but it become much more complicated|rather

than ending up with explicit formulas for the damping rates one obtains a (much simpler)

eigenvalue problem.

9. Nonresonant perturbation theory

For now we exclude the possibility of resonance and assume there are no integer values

of m for which two di�erent normal mode tunes are related as in Eq. (8:26). Using

perturbation theory we seek the normal mode of the perturbed equation dx=dt = (C+B)x

that is \close to" a particular, non-degenerate, unperturbed, normal mode which, without

loss of generality, can be assigned label 1;

x = e�0tc1; (9:1)

the symbol for its characteristic exponent is �0t to indicate \zero'th" approximation.y The

substitution

x = e�0ty (9:2)

transforms Eq. (8:9) to \homogeneous" equation

dy

dt
� (C� �01)y = 0; (9:3)

which is satis�ed by the time-independent vector

y0 (t) = c1: (9:4)

y If it really is the �rst mode that is being analysed then �0 = i�1 or, since it will be convenient to
have symbol �1 stand for the perturbed tune of mode 1 and �1;0 its unperturbed value, then �0 � i�1;0.
The notation in this section would probably be made clearer and more consistent by replacing �0 by i�1;0
throughout.
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The equation \adjoint" to Eq. (9:3),

dz

dt
+
�
Cy � ��01

�
z = 0; (9:5)

is satis�ed by

z0 (t) = d1; (9:6)

de�ned in Eq. (8:20). Consider the \inhomogeneous" equation

dy

dt
� (C� �01)y = u (t) : (9:7)

Though u(t) as it appears in (9:7) is time dependent, it is assumed to be T -periodic and in

practice it will be a (short) Fourier sum of terms. For reasons to be explained immediately,

we introduce the \time-averaged scalar product" of any two functions u(t) and v(t),

((u;v)) � 1

T

Z T

0
(u (t) ;v (t)) dt: (9:8)

This form of averaging will �gure prominently in the sequel. (This may cause the un-

justi�ed impression that the procedure is only heuristic, but in fact it is rigorous for the

sinuisoidal perturbations that enter. As with all transform methods, the strategy here is

to replace di�erential equations by algebraic equations, and the purpose of time-averaging

is to extract Fourier coe�cients. For linear functions this yields exact coe�cients, for

nonlinear functions it extracts \leading" terms in a Fourier series that may or may not

converge.) Two complications inevitably arise in seeking a periodic solution y(t) of an

inhomogeneous equation such as Eq. (9:7):

(i) A periodic solution of (9:7) exists if and only if u(t) is \orthogonal" to solution

d1 of adjoint Eq. (9:3);

((u;d1)) = 0: (9:9)

We must therefore require that u satisfy (9:9).

(ii) Adding any solution y(1)(t) of (9:3) to some solution y(0)(t) of (9:7) yields

another solution of (9:7). To obtain a unique solution requires the speci�cation

of as many extra conditions as there are independent solutions of (9:3). To

make the solution of Eq. (9:7) unique we choose to take

y = y(0) �
��
y(0);d1

��
c1; (9:10)
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which, because of normalization (8:21), is equivalent to requiring

((y;d1)) = 0: (9:11)

If a function u(t) is a tentative candidate for appearing on the right hand side of Eq. (9:7),

but does not satisfy Eq. (9:9), it can be replaced by Pu(t) where u has been \operated

on" by an operator P, de�ned by

Pu (t) = u (t)� ((c1;d1)) c1; (9:12)

which can therefore be written

P = 1� c1 (( �;d1)) : (9:13)

This causes P to have the property that

Pc1 = 0: (9:14)

If u is time-independent then ((u;d1)) = (u;d1) and

Pu = (1� c1 ( �;d1))u =

0BBBBBBBBB@

1
2 0 0 0 i

2�1;0
0 0 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

�i�1;0
2 0 0 0 1

2 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1CCCCCCCCCA
u: (9:15)

When operating on a function u that time-averages to zero, P = 1. Returning to Eq. (9:7),

to assure that the inhomogeneous term appearing on the right hand side satis�es Eq. (9:9),

we write that term as Pu where u can therefore be arbitrary;

dy

dt
� (C� �01)y = Pu (t) : (9:16)

The solution to this equation, made unique by condition (9:11), can be said to be the result

of \operating on" Pu(t) with some linear operator S; that is

y (t) = SPu (t) : (9:17)
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By de�nition then, the operator S satis�es

((SPu;d1)) = 0; (9:18)

for arbitrary u.y{ A tentative, arbitrary solution y0 of Eq. (9:16) can be made unique by

applying Eq. (9:10);

SPu = y0 � ((y0;d1)) c1: (9:20)

We now seek the coe�cient � (close to �0) in a solution to Eq. (8:12) of the form

x = e�ty; where y (t+ T ) = y (t) : (9:21)

Substitution into (8:12) yields

dy

dt
� (C� �01)y = [(�0 � �)1+B]y: (9:22)

As stated above, this can only be valid if the right hand side satis�es

(([(�0 � �)1+B]y;d1)) = 0: (9:23)

As a result, it is legitimate to replace Eq. (9:22) by

dy

dt
� (C� �01)y = P [(�0 � �)1+B]y: (9:24)

The function y(t) may or may not satisfy condition (9:11), but in any case there is a related

function

y(0) = y � � c1; (9:25)

that satis�es both Eq. (9:24) and condition (9:11). By the de�nition of S this function is

also given by

y(0) = SP [(�0 � �)1+B]y: (9:26)

y Were it valid to assume dy
dt

= 


y for some constant matrix or linear operator 


 then S could be written
as

S = (


�C+ �01)
�1 (9:19)

plus an appropriate solution of the homogeneous equation. In practice it will typically not be possible to
write S in closed form; rather it will be necessary to evaluate SPu(t) for each particular value of u(t) that
arises. To avoid unde�ned expressions S must always be \preceeded" by P , as in SP .
{ In the earlier treatment (section (5)) the need for operator P was avoided by interpreting \secular"

terms as sources of tune shifts, as in section (7). The special condition (9:11) on S was satis�ed, below
Eq. (5:4), by keeping only \driven" terms, thereby (arti�cially) suppressing transient terms. This simpler
procedure was possible because velocity-proportional terms and complex exponentials had not yet entered.
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In other words, y can be written as

y = SP [(�0 � �)1+B]y + � c1 (9:27)

and hence as

y (t) = (1� SP [(�0 � �)1+B])�1 � c1: (9:28)

By construction this solution y(t) satis�es Eq. (9:23) which, assuming � 6= 0, therefore

implies ��
[(�0 � �)1+B] (1� SP [(�0 � �)1+B])�1 c1;d1

��
� �11 = 0; (9:29)

The vanishing of this \matrix element" �11 yields an implicit formula for the eigenvalue �

being sought.

To proceed further it is necessary to take advantage of the smallness of B, sorting terms

by \orders of smallness" equal to the number of factors of B. Introducing the temporary

abbreviations

Q = (�0 � �)1+B; and N = SPQ; (9:30)

both being quantities of \�rst order of smallness" the middle factor in Eq. (9:29) can be

transformed using

(1�N )�1 = 1+N (1�N )�1 ; (9:31)

to yield

�11 = ((Qc1;d1)) +
��
QN (1�N )�1 c1;d1

��
; (9:32)

where the second term is of \second order of smallness". In the second term, because of

Eq. (9:17), it is legitimate to keep only the B part of the factor Q��
QN (1�N )�1 c1;d1

��
=
��
BN (1�N )�1 c1;d1

��
=
��
B (1�N )�1Nc1;d1

��
;

(9:33)

where the latter step is allowed becauseN commutes with (1�N )�1. Further simpli�cation

results from using

Nc1 = SPBc1; (9:34)

which follows from Eq. (9:14). Collecting results we have

�11 = (�0 � �) ((c1;d1)) + ((Bc1;d1)) +
��
B (1� SP [(�0 � �)1+B])�1 SPBc1;d1

��
:

(9:35)
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This is a big improvement over Eq. (9:29) since it yields an explicit expansion for � in

ascending powers of B;

� = �0 + ((Bc1;d1)) + ((BSPBc1;d1)) + ((BSP[(�0 � �)1+B]SPBc1;d1)) + � � � ;
(9:36)

where the factor (�0 � �) in the last term has to be approximated by �((Bc1;d1)). This
is the master formula on which everything else is based.

Throughout this discussion, though it has not been indicated explicitly, the factor B

has been allowed to be time dependent. But the leading correction term, ((Bc1;d1)),

because it is �rst order in B, averages to zero for all but the time-independent part of B.

In the higher order terms it is possible for the products of time-varying factors to have

non-zero average values. Though Eq. (9:36) is pleasingly compact, there is still a great

deal of work to do to evaluate the higher order terms, mainly because the operator S has

been de�ned only implicitly (by Eqs. (9:7), (9:9), and (9:10)).

Since the perturbing terms are periodic it is possible to Fourier-expand them in complex

exponentials;

Ps;1
jh =

X
m

P
s;1(m)
jh eim�st; Pa;1

jh =
X
m

P
a;1(m)
jh eim�st; Q1

jh =
X
m

Q
1(m)
jh eim�st: (9:37)

In our case the P-elements are non-vanishing only for m = �1 and the Q-elements are

non-vanishing only for m = 0.

10. Pure damping

Purely damped motion, with no coupling between modes, though elementary, provides

practice in evaluating the matrix elements of Eq. (9:36). Consider a weakly-damped, one-

dimensional oscillator with equation of motion

d2e

dt2
+ 2��s

de

dt
+ �20e = 0: (10:1)

Free motion of this oscillator is known to be described by the real part of

e (t) = e

�
���s+i

p
�2
0
��2�s

�
t

(10:2)
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The \complex frequency" is

� = i
q
�20 � �2�s � ��s � i�0 � ��s � i

�2�s
2�0

+ � � � : (10:3)

To describe this system by the previous formalism, treating the damping perturbatively,

de�ne

C =

�
0 1
��20 0

�
; B =

�
0 0
0 �2��s

�
; c1 =

�
a1

i�0a1

�
; d1 =

�
�0a1
ia1

�
; a1 =

r
1

2�0
:

(10:4)

(Temporariy these are 2�2 matrices and 2 component vectors.) The only time-independent

perturbing term among Eqs. (9:37),Q1, corresponds to pure damping. Its �rst order matrix

elements are

�sjh = (Bcj ;dh) =
�
�ha

y
h �iayh

��
0 0
0 �Q1

��
aj

i�jaj

�
= ��jayhQ1aj : (10:5)

With Q1 = 2diag(��; 0; 0; 0)

�11 = ���; (10:6)

and Eq. (9:36) reduces

� = i�1;0 � ��; (10:7)

that agrees to a �rst approximation with Eq. (10:3).

Proceeding to the next approximation, the operator P is obtained by striking all but

rows and columns 1 and 5 from Eq. (9:15). Then

PBc1 =
� 1

2
i

2�0
�i�0
2

1
2

��
0 0
0 �2��

��
a1

i�0a1

�
=

�
1

�i�0
�
��a1: (10:8)

The result of operating on this vector with S is de�ned operationally by Eq. (9:17);

(C� i�01)

�
e
p

�
=

��i�0 1
��20 �i�0

��
e
p

�
=

��1
i�0

�
��a1: (10:9)

The attempt to solve this equation by inverting C � i�01 fails because its determinant

vanishes, but solving the upper equation directly yields�
0

���a1
�
+

�
1
i�0

�
e (10:10)

as a vector satisfying Eq. (10:9) for any value of e. The second term is proportional to c1

(as, according to the general theory, it must be.) Finally, condition (9:11),

0 = (y;d1) = (�0a1 �ia1 )
��

0
���a1

�
+

�
1
i�0

�
y1

�
(10:11)
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�xes e = � i��a1
2�0

and

SPBc1 = � ��
2�0

�
ia1
�0a1

�
: (10:12)

Finally we evaluate

(BSPBc1;d1) = � (�0a1 �ia1 )
�
0 0
0 �2��

�
��
2�0

�
ia1
�0a1

�
= � i�2�

2�0
; (10:13)

which, when substituted into Eq. (9:36) agrees with Eq. (10:3).

11. Pure head-tail oscillation

As observed previously, their is no �rst order contribution to Eq. (9:36) from the P1

perturbation terms de�ned in Eqs. (8:3) and (8:4). Supppressing the Q perturbation for

the time being, the second order matrix elements due to P1 are

((BSPBcj ;dh)) = ((BSBcj ;dh)) =
�� �

0 0
�P1 0

�
S
�

0 0
�P1 0

�
cj ;dh

��
; (11:1)

here the factor P has been set to 1 because it operates on a quantity that averages to zero.

By its de�nition in Eq. (9:16) the factor S
�

0 0
�P1 0

�
c1 is a solution to the equation

dy

dt
� (C� i�1;01)y =

�
0 0

�P1 0

�
c1 = u (t) ; (11:2)

or �� d
dt + i�1;0

�
1 �1

P0
�
d
dt + i�1;0

�
1

�
y = u (t) : (11:3)

Seeking a solution with time variation ei�t this becomes�
(i�+ i�1;0)1 �1

P0 (i�+ i�1;0)1

�
y = u (t) : (11:4)

Taking advantage of the fact that this matrix is block-by-block diagonal by multiplying by

the matrix shown on the right in the next equation yields�� (�+ �1;0)
2 1+P0 0

0 � (�+ �1;0)
2 1+P0

�
y =

�
(i�+ i�1;0)1 1

�P0 (i�+ i�1;0)1

�
u (t) :

(11:5)
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The quantity � is not simple here, since it depends on the time dependence of the vector

being operated on, but it can be otherwise be treated as an ordinary parameter. De�ne

T1� = � (�+ �1;0)
2 1+P0

= � diag(�2 + 2�1;0�; �2 + 2�1;0�+ ��;

�2 + 2�1;0�� 2��w; �2 + 2�1;0�+ ��� 2��w)

(11:6)

Also we will use the abbreviation and partitioning

T1�I � (T1�)�1 �
 
T (u)
1�I 0

0 T (l)
1�I

!
: (11:7)

Continuing with (11:5)

y = Su (t) =
� T1�I (i�+ i�1;0) T1�I

�T1�IP0 T1�I (i�+ i�1;0)

�
u (t) ; (11:8)

which serves to de�ne S. (It should perhaps be symbolized by S1� since it depends on the

particular eigenvalue being evaluated and on �, which in our case will be ��s or 0.) We

have then

BSPB =

�
0 0

�P1 0

�� T1�I (i�+ i�1;0) T1�I
�T1�IP0 T1�I (i�+ i�1;0)

��
0 0

�P1 0

�
=

�
0 0

P1T1�IP1 0

�
:

(11:9)

Then we have

P1T1�IP1 =

�
0 Ds�Wc

Ds +Wc 0

� T (u)
1�I 0

0 T (l)
1�I

!�
0 Ds�Wc

Ds +Wc 0

�

=

 
(Ds�Wc) T (l)

1�I (Ds +Wc) 0

0 (Ds�Wc) T (u)
1�I (Ds +Wc)

! (11:10)

The elements of this matrix have to be time-averaged; for example��
(Ds�Wc) T (l)

1�I (Ds +Wc)
��

=
1

2

��
(Ds�Wc)

�
T (l)
+;I (�iD +W) ei�st + T (l)

�;I (iD +W) e�i�st
���

=
1

4
(iD �W)T (l)

+;I (�iD +W) +
1

4
(�iD �W) T (l)

�;I (iD +W)

=
1

4

�
D
�
T (l)
+;I + T (l)

�;I

�
D +W

�
T (l)
+;I + T (l)

�;I

�
W
�

+
i

4

�
D
�
T (l)
+;I � T (l)

�;I

�
W +W

�
T (l)
+;I � T (l)

�;I

�
D
�
:

(11:11)
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The real part is given by

1

4

�
D d
d D

�� T3+;I + T3�;I 0
0 T4+;I + T4�;I

��
D d
d D

�
+ similar for W: (11:12)

The diagonal elements have appeared before in Eq. (7:2). Substituting from there the 1,1

element is
1

4

�
g13D

2 + g14d
2
�
+ similar for W; (11:13)

The imaginary part of Eq. (11:11), using the constants fij from Eq. (5:10), is

���

2�

i

4

��
D d
d D

��
f13 0
0 f14

��
w �w
�w w

�
+

�
w �w
�w w

��
f13 0
0 f14

��
D d
d D

��
:

(11:14)

Its 11 element is

���

2�

i

2
(f13Dw + f14d�w) : (11:15)

Collecting results we have

((BSPBc1;d1)) =
���

�1;0a
y
1 �iay1

��
0 0

P1T1�IP1 0

��
a1

i�1;0a1

���
= � i

��
a
y
1P

1T1�IP1a1

��
=
�i
2�

��
(Ds�Wc) T (l)

1�I (Ds +Wc)
��

11

(11:16)

For example, the � = 0 imaginary part of this is given by

=((BSPBc1;d1)) �=0
=

�1
8�

�
g13D

2 + g14d
2
�
: (11:17)

When substituted into Eq. (9:36) this agrees with Eq. (7:3). The overall real part is

<((BSPBc1;d1)) = 1

4�

��

2�
(f13Dw + f14d�w) ; (11:18)

which (except for a factor of 2) agrees with Eq. (5:14).
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12. Sympathetic damping

Suppose that, in lowest approximation, one mode is damped but a second is not. If

there is coupling between modes there is the possibility, in a next approximation, that

the second mode will acquire some damping due to its interaction with the �rst. This

phenomenon will be called \sympathetic damping". The need to analyse this phenomenon

provided the main motivation for developing the Hamiltonian formalism of the previous

several sections. Sympathetic damping may in
uence the head-tail strongly because, in

lowest approximation, the �-modes are thought to be strongly Landau damped (growth

rate ��) while the �-modes are not.

It is usually easiest to calculate sympathetic damping indirectly, using energy conser-

vation. But here, since the longitudinal motion (treated here as inexorable) is a potential

source of energy, conservation of energy is not necessarily applicable and the e�ect will be

calculated directly.

Since we have no reliable calculation or measurement of �� it will have to be regarded

as another parameter to be determined empirically by �tting to the data. Here we are

primarily concerned with the small chromaticity region where �� � 0. According to our

current understanding of the e�ect of decoherence, �� becomes appreciable in the region

of highly-unbalanced chromaticities, which suggests that sympathetic damping plays a

relatively much smaller roll there. For simplicity, continuing to specialize to mode 1, we

take �� = 0 as the mode 1 unperturbed growth rate and seek its �rst non-vanishing

contribution proportional to �� which is the unperturbed growth rate of modes 3 and 4.

Because Q1 is independent of time and both of the P1 perturbations are sinuisoidally

varying, the �rst contribution to sympathetic damping is the last term of Eq. (9:36),

((BSP [(�0 � �)1+B]SPBc1;d1)) = ((BSPBSPBc1;d1)) : (12:1)

Here, following the recipe mentioned below Eq. (9:36), the factor �0�� has been obtained

from the �-mode damping rate �� using Eq. (10:6). Since we are assuming �� = 0, the

�rst term in Eq. (12:1) has been dropped.

With the remaining term being cubic in the perturbation B, one can take the time-

independent Q1 as one of the factors, and take one of e�i�st for the Ps;1 and the other for
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Pa;1, to end up with a non-zero, time-independent matrix element. Since both Ps;1 and

Pa;1 are block o�-diagonal, individually they \toggle" modes 1 and 2 to modes 3 and 4

or vice versa, but acting twice they mix modes 1 and 2 between themselves and modes 3

and 4 between themselves. Since the extra factor Q1 does not mix states at all, the overall

matrix element (12:1) can therefore be expected to be non-vanishing (barring accidental

cancellation.) Unfortunately the matrix element is complicated and there are numerous

possible ordering of the factors. To take advantage of calculations of the previous sections

Eq. (12:1) can be factorized as

BSPBSPB = (BSB) �SPB0
�
+B

�SB0
�
(SB) + �B0SP� (BSB) ; (12:2)

where now B contains both of the P1 perturbations and B0 contains the Q1 perturbation;

the factor P has been retained only when it operates on a quantity with time-independent

part. These terms will be evaluated one-by-one, specializing to operand c1 in cases where

P has had to be retained.

(BSB) (SPB0c1) =

�
0 0

P1T1�IP
1 0

��
�

��
2�1;0

��
ia1

�1;0a1

�
= �

i��
2�1;0

�
0

P1T1�IP
1a1

�
= 0

B (SB0) (SB) =

�
0 0

�P1 0

��
T1�I (i�+ i�1;0) T1�I

�T1�IP
0 T1�I (i�+ i�1;0)

��
0 0

0 �Q1

�
�
T1�I (i�+ i�1;0) T1�I

�T1�IP
0 T1�I (i�+ i�1;0)

��
0 0

�P1 0

�

=

�
0 0

�P1T1�IQ
1T1�I (i�+ i�1;0)P

1 0

�

(B0SP) (BSB) c1 =

�
0 0

0 �Q1

��
T1�I (i�+ i�1;0) T1�I

�T1�IP
0 T1�I (i�+ i�1;0)

�
P

�
0 0

P1T1�IP
1 0

�
c1

(12:3)

The �rst term vanishes because of our assumption �� = 0. Had this approximation not

been made the result would be

��
BSPBSPB0c1;d1

��
=
�i��
2�

��
�iay1P1T1�IP1a1

��
=
�i��
2�

((BSPBc1;d1)) : (12:4)

Here the extremely small factor �i��
2� multiplies the eigenvalue shift calculated in the

previous order of approximation in Eq. (11:16). This term is therefore entirely negligible

whether or not �� is negligible.
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The third contribution to Eq. (12:2) includes the following factor, which \starts" with

a factor BSPB already calculated in Eq. (11:9);

�
B0SP� (BSPBc1) � �
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which can be seen to vanish since all operators preceeding Q1 (reading from right to

left) feed nothing from lower to upper components, and Q1 annihilates upper elements.

(Inclusion of the factor P does not alter this.)

The second (and only non-vanishing) term of Eq. (12:2) yields

��
BSPB0SPBc1;d1

�� � ��
��
a
y
1P

1T1�IQ1T1�IP1a1

��
= �2���

��
a
y
1

�
0 Ds�Wc

Ds +Wc 0

��
0 0
0 T (l)2

1�I

��
0 Ds�Wc

Ds +Wc 0

�
a1

��
= �2���

��
a
y
1

�
(Ds�Wc) T (l)2

1�I (Ds +Wc) 0
0 0

�
a1

��
= ���

��
(Ds�Wc) T (l)2

1�I (Ds +Wc)
��

11
(12:6)

where j�j << j�1;0j has been assumed. This expression resembles the matrix element

appearing in Eq. (11:16). But now the elements of T (l)2
1�I will be approximated by 1=(2��s)

2.
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where the current � is referred to a current �SR de�ned to be the current for which, with

Q0
x + Q0

y = 1, the wake �eld anti-damping just cancels �SR
typ
= 10�4. In principle �SR is

measurable, but in practice it should perhaps be regarded as an adjustable parameter. In

the factor multiplying ��(�), the second term vanishes for � = 0 and, barring unrealistically

large chromaticities, the �rst term is small compared to 1. Though �� could plausibly be

10 or 100 times greater than �SR the zero current damping from this source still is probably

negligible. The factorQ02
x+Q

02
x can perhaps change this but in the high chromaticity regime

the sympathetic damping is probably still negligibly small in comparison to the damping

that the � mode itself acquires due to decoherence. To complicate matters further, the

�-mode growth rate ��(�) is itself strongly current dependent, because of space charge or

wake �eld forces.

For � >> �SR the second term of Eq. (12:7) dominates the �rst. Since the (roughly

equal) factors wx and wy are entirely phenomenological, they must be estimated by �tting

to measured damping rates using Eq. (5:14);
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If we accept this estimate, and simply drop the �rst term of Eq. (12:7), the resulting

\sympathetic damping rate" is

��;symp =
��
BSPB0SPBc1;d1

�� � �� (�)� 0:56� 10�2
�

�

�SR

�2

(12:10)

Apart from the head-tail damping rate �HT itself, this is likely to be the strongest source

of current dependence of visible modes. Of course this formula can have only a restricted

range of validity. For su�ciently large � presumably ��;symp ! �� with both being approx-

imately half the value of �� in the absence of coupling. We therefore replace Eq. (12:10)

by

��;symp �
1
2��(�)(1� e�1:12�10

�2�2=�2SR);
(12:11)

the only basis for this form is that it \plausibly" interpolates between weak damping and

strong damping extremes.
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13. Computer simulation

Using the accelerator modeling program TEAPOT some of the phenomena that enter

into chromaticity sharing have been simulated. Simulation has the potential advantage

of exhibiting behavior that is too complicated to be described by idealized models, for

example because of conspiracy of more than one complicating e�ect, and the complemen-

tary disadvantages of possibly masking simple causes and of too-faithfully mirroring the

obscurity so characteristic of storage rings.
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Figure 13.1: Dependence of visible eigentunes (fractional) on �p=p as de-
termined by TEAPOT analysis of the actual CESR lattice used for machine
studies of chromaticity sharing. The straight lined show what the variation
would be with no coupling.

Dependence of eigentunes on momentum deviation is shown in Fig. 13.1. The cross-

plane coupling causes the lines to \repel" and hence not cross. It must be realized that

these are the tunes exhibited by a constant-momentum particle executing betatron oscil-

lations about the closed orbit appropriate for its momentum|they have nothing simple

to say about the betatron motion of a particle executing longitudinal oscillations. The

tunes at a particular abscissa in Fig. 13.1 can be measured operationally by setting the
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central momentum (the RF frequency actually) and then spectral analysing a beam po-

sition monitor signal. In the computer simulation the same thing is done. In particular,

the particle's momentum is not altered by RF cavities present in the lattice because its

longitudinal phase is such that it su�ers no net longitudinal impulse. The tunes are ex-

tracted as eigenvalues of the once-around, on-momentum transfer matrix or, with excellent

agreement, by FFT of turn-by-turn data.
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Figure 13.2: Average transverse tunes exhibited by a single particle exe-
cuting longitudinal oscillations. Data for unbalanced chromaticities Q0

x and
Q0
y are shown in this plot, balanced in the next.

A more relevant single particle calculation is to follow a single particle which is oscillat-

ing longitudinally after being launched o�-momentum. To obtain the tunes it is necessary

to �nd the line centers of the relevant lines in the spectrum obtained by applying FFT to

the turn-by-turn data. Tunes obtained this way, for various chromaticity combinations,

are plotted versus the peak longitudinal momentum o�set (which is proportional to the

square root of the longitudinal Courant-Snyder invariant) in Fig. 13.2 and Fig. 13.3. The

�rst �gure shows unbalanced chromaticities, the second, balanced.
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A rough parameterization of the data in these two graphs is
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The term shown in parenthesis with question mark is poorly determined and (for all but

the highest momenta) probably negligible but, being asymmetric between upper and lower

modes, it could contribute to di�erences in their behavior. By itself this data does not

demand the quadratic dependence, (Q0
x � Q0

y)
2. If anything a higher power is suggested.

When it comes to �tting our observations in a later section, since it will turn out that a

(Q0
x �Q0

y)
3 dependence �ts our data better, we will shamelessly accept adopt it.
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plotted each turn. The chromaticities are highly unbalanced: Q0

x = +5,
Q0
y = �20. The \apparent damping rate" inferred using the straight line

is (700=0:39� 106)�1 = 560 s�1.

The second terms are normally dominant. Note that their signs are such that they

cause the tunes to pull toward each other as �̂ increases. Raphael Littauer has explained

why this is to be expected and why the pulling should be proportional to (Q0
x � Q0

y)
2.

Brie
y, copying from his note4, the argument proceeds as follows. Assume the lattice is

perfectly decoupled with Qx = Qy before a single skew quadrupole is powered to a strength

causing minimum tune split S � �=(2�). To simplify the argument assume the skew quad

is located at an equal-� waist and describe the motion at its center. With the skew quad

still o�, because of the equal tunes, any perpendicular axes can serve as normal mode axes.

But the best choice is to de�ne the two normal modes as being \plane-polarized" along the

�45 degree diagonals. This is because, as the skew quad is turned on, a particle passing

through the quad in say the +45-degree plane su�ers a de
ection leaving it in the same
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plane and, the x and y phase advances due to the rest of the lattice being equal, after a

complete turn, the particle returns in the same plane. As a result the normal mode axes,

no longer arbitrary, lie along these �45 degree diagonals. The reason the tunes are split

is that the skew quad, as is always true for an erect quadrupole (which the skew quad is

relative to the normal mode axes) shifts the two tunes in opposite directions. Using the

standard tune shift formula, the mode tune split S and the skew quadrupole strength qs

are related by

S=2 =
�=2

2�
=

qs�

4�
; (13:2)

which is the maximum tune shift that a quad of strength qs can cause. If the lattice chro-

maticities are the same in both planes the presence of longitudinal oscillations has no e�ect

on this picture since after passage around the rest of the ring even an o�-momentum parti-

cle executing normal-mode oscillation returns in the same plane. But if the chromaticities

are unequal the normal mode oscillation \wobbles" about the diagonal axis. This wobbling

has to reduce the minimum tune split since the value given by Eq. (13:2) is maximal. The

importance of this e�ect is quanti�ed by the di�erence between accumulated horizontal and

vertical phase advances during one quarter synchrotron oscillation period, a quantity much

like the parameter � introduced in section (1), but now proportional the di�erence Q0
x�Q0

y

(and no longer doubled to account for head-tail phase di�erence). Taking Q0
x � Q0

y = 30

and other quantities as in section (1), the result is ��max = 0:57 and cos(��max) = 0:84.

At a guess, < cos(��) >� 0:92 is the factor by which S is reduced. With S = 0:04, its

reduction is therefore estimated to be 0:04� 0:08 = 0:0032 at �̂ = 0:0006. This agrees well

with Fig. 13.2, which both corroborates the discussion so far and suggests that Littauer's

simple picture accounts for most of the dependence on �̂.

The tune dependence �Q(�̂) has an important e�ect on the damping rates being

analysed because of decoherence but it is too small to in
uence signi�cantly any of the other

phenomena under consideration. �Q(�̂) could be calculated by the perturbative method

of section 9, but with � having been taken as constant, independent of �̂ this dependence

is not included in the equations as they are written. But this is on no consequence since

the e�ect has been reliably estimated and, as mentioned the e�ect is otherwise negligible.
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14. Analytic treatment of decoherence

Betatron (x; p) phase space is shown in Fig. 14.1. The scales have been adjusted so

that (linearized) motion in phase space is along circles centered on the origin, with phase

advance per turn �0.
y Assuming the particle distribution is Gaussian and isotropic,z

it can be expressed either as PR(R) or as Px(x)Pp(p), depending on whether polar or

cartesian coordinates are employed in phase space. The particles are also distributed with

distribution P�̂(�̂) in �̂ which is the maximum value (as the particle oscillates longitudinally)

of its fractional momentum deviation �p=p. The distributions are given by

Px (x) =
1p
2��x

e
� x2

2�2x ; Pp (p) =
1p
2��x

e
� p2

2�2x ;

Px;y (x; y) = Px (x)Py (y) =
PR (R)

2�R
; and hence

PR (R) =
R

�2x
e
� R2

2�2x :

(14:1)

This distribution can also be expressed as a joint probability distribution PR;�(R;�) =

PR(R)=(2�). A \kick" �p is administered to every particle in the beam at i = 0 and hence

also to the beam centroid. In this section the subsequent motion of the centroid position

is to be studied.

Motion of a particle initially at point P is shown in Fig. 14.1. If every particle ad-

vances at rate �0 the centroid does the same and its radius remains constant. But, in

general, since �(R;�; �) depends on the location of P as well as on �, the particle motions

\decoherere" causing the centroid amplitude to \damp". There may or may not be a

subsequent recoherence. The predominant decoherence/recoherence occurs through each

cycle of synchrotron oscillation due to �'s dependence on �. In the present discussion,

since we will be concerned with times long compared to the synchrotron period, we will

average over the longitudinal motion, leaving any surviving tune dependence expressable

by the dependency �(�̂).

y For brevity, the phase advance per tune � will often be referred to as the \tune" even though, technically,
that name should be reserved for �=(2�).
z The dimension of p is length.
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Figure 14.1: Evolution with turn number i of a point P in betatron phase
space, as viewed from a frame rotating at nominal phase advance per turn
�0. The trigonometry of this �gure only makes sense for �p << R, which
is assumed.

We assume the decoherence is due entirely to the \shearing" motion along circles of

di�erent radius in phase space and di�erent values of �̂, thereby neglecting the fact that,

because of nonlinearity at large R, the phase space curves, even while remaining regular

become distorted (though not chaotic).

For points close to the origin and having small �̂ the shear is negligible and the dis-

tribution rotates undistorted, as if it were rigid. To take advantage of this, Fig. 14.1 is a

snapshot (of the i'th turn) from a frame of reference rotating at rate �0. The e�ect of kick

�p is to change the initial phase space location of point P to (approximately)

R0 = R+�R = R+�p sin�0; �0 = �+�� = �+
�p cos�0

R
: (14:2)

After the kick, its tune is �0+��(R
0; �̂), and its positions on subsequent turns are indicated

by short arrows in Fig. 14.1. After i turns its coordinates are0@xi

�
�p;R;�; �̂

�
pi

�
�p;R;�; �̂

�1A = R0 cos�� i

�
cos�0

sin�0

�
+R0 sin�� i

�� sin�0

cos�0

�
: (14:3)
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The centroid coordinates are given then by

�
xi (�p)
pi (�p)

�
=

Z 1

0
dR

Z 2�

0
d�

Z 1

0
d�̂

0@xi

�
�p;R;�; �̂

�
pi

�
�p;R;�; �̂

�
1APR;� (R;�)P�̂

�
�̂
�
: (14:4)

These formulas are impractical for calculation because of the complicated dependence of

�0 on position P. Since the trigonometry of Fig. 14.1 breaks down near the origin, we

assume

�p << R: (14:5)

p
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∆
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Figure 14.2: On the left the betatron phase space distribution is visualized
as a sum of distributions, uniform over disks of radii successively increasing
in steps of �p. This permits deviations from the unkicked distribution
to be represented by positive and negative distributions uniform over the
\lunes" shown on the right.

In spite of assumption (14:5), it is not legitimate to approximate �0 by �; if this

approximation is made, Eqs. (14:3) and (14:4) give a seriously incorrect answer even for

�� = 0 and i = 0. This failure is at least partly due to the extravagance of following the

evolution of every particle, not taking advantage of the strong tendency for cancellation

in pairs of particles symmetric about the origin. To take advantage of this cancellation we

follow instead the evolution of deviations from the unperturbed distributions as shown in

Fig. 14.2. (For the time being we suppress indications of � dependency from the formulas,

since they will be easily restored later.) Since volumes in the plot on the left correspond to

probabilities, the units along the vertical axis are length�2 and the total \volume" is 1. On
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the one hand, the volume can be visualized as nested \collars" of inner radius R��p=2,

wall thickness �p, and \height" Px(0)Pp(R). On the other hand, it can be visualized as a

pile of stacked disks of radius R+�p=2, with

disk \thickness" = Px (0)

�
�dPp (p)

dp

�
p=R

�p =
R

2��4x
e
� R2

2�2x�p =
PR (R)�p

2��2x
: (14:6)

Having units of length�2, this is appropriate as a joint di�erential probability distribution

in the (x; p) plane.

When the beam is displaced by �p along the p axis most of the probability in any

particular one of the stacked disks, for example the one with radius R, can be regarded

as unchanged; the entire change can be ascribed to an increase in probability density in

the positive-p \lune" shown on the right in Fig. 14.2 and a corresponding reduction in the

negative-p lune. (Though the latter probability density is negative the total probability

density in the region remains positive.) Since the entire deviation in this region comes

from this particular disk and is accounted for by these lunes, and the subsequent shearing

motion respects ring boundaries, it is su�cient to work out the subsequent evolution on

a ring-by-ring basis. From these distributions the ring centroids will then be found and

�nally the overall centroid location.

Toward this end the lune (two dimensional) density can be squashed into an angular

(one dimensional) distribution. Furthermore the negative lune can be dropped, compen-

sating by doubling the positive-lune probability. With the area of one lune being 2R�p,

the deviation probability it represents is 4R(�p)2PR(R)=(2��
2
x). Letting PdevR dR stand

for the deviation probability in range dR we have

PdevR (R) =
2�p

��2x
RPR (R) ; (14:7)

which is independent of i. When distributed in x, the just-kicked deviation probabil-

ity PdevR (R)dR is uniform. Therefore, when distributed in �, which is related to x by

x = R cos�, the distribution is proportional to dx=d� = R sin�. We therefore de�ne a

(normalized) angular probability distribution

P�;0 (�) =

(
0 for � < 0
(1=2) sin� for 0 < � < �
0 for � < �

; (14:8)
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which is a universal initial angular distribution, independent of R. Then the joint proba-

bility distribution PdevR;� (de�ned so that PdevR;� dRd� stands for the deviation probability

in range dRd�) can be factorized

PdevR;� (R;�; i) = PdevR (R)P� (�; R; i) : (14:9)

Initially it is given by

PdevR;� (R;�; i = 0) = PdevR (R)P� (�; R; i = 0) =
�p

��2x
RPR (R) sin�: (14:10)

Except for the eventual integration overR, all that is required is to evaluate P�(�; R; i) as it

evolves away from P�;0(�)|a one dimensional calculation. Furthermore the R dependence

allowed for notationally by the second argument of P�(�; R; i), will be present only if the

betatron motion is nonlinear.

The centroid coordinates are obtained as the averages of x = R cos� and p = R sin�

weighted by PdevR;� (R;�; i);�
xi (�p)
pi (�p)

�
=

Z 1

0
RPdevR (R) dR

Z
d� P� (�; R; i)

�
cos�
sin�

�
: (14:11)

Here the limits of the � integration are not indicated. They can safely be set to �1 and

+1 since, for �nite i, the integrand vanishes exactly outside a �nite range. At i = 0 the

non-vanishing range is from 0 to � and for other values of i the range needs to be extended

only by ��maxi where ��max is the maximum possible tune deviation from nominal.

To check for consistency, let us calculate the i = 0 centroid location;

p0 (�p) =

Z 1

0
dR

Z �

0
d� PdevR;� (R;�; i = 0)R sin� = �p

4

�

Z �

0

sin2�

2
d� = �p; (14:12)

as expected.

The only dependence on i in Eq. (14:11) is introduced via

�i = �0 +��
�
R; �̂

�
i; (14:13)

which, for a particle with initial phase �0, gives its phase after i turns. Again we observe

that if ��(R; �̂) is constant, independent of R and �̂, its only e�ect is to cause the entire

distribution to rotate rigidly at a tune shifted by �� from the unperturbed tune �0. Since,
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in that case, its e�ect could have been included in �0, we may as well assume that ��(R; �̂)

has no part independent of R and �̂;

��
�
R; �̂

�
= r1R+ r2R

2 + � � �+ d1�̂ + d2�̂
2 + � � � : (14:14)

After i turns the distribution originally given by P�;0, having precessed through angle

��(R; �̂) i, becomes P�;i(�; R; �̂) = (1=2) sin(����(R; �̂) i); (and zero outside the central

lobe.) This along with Eq. (14:11) are exact in the small kick limit where approximation

(14:5) is valid, and they are simple enough for easy and accurate numerical evaluation,

but because of various other uncertainties, great precision is rarely justi�ed. This makes it

seem sensible to approximate the angular distribution in a way that will simplify subsequent

calculations. Also we take the opportunity to introduce a more convenient angle � in terms

of which the starting distribution is symmetric about � = 0;

� = �� �

2
: (14:15)

The approximate form to be used is

P�;i

�
�; R; �̂

�
� 1p

2���t
e
�
(����(R;�̂) i)

2

2�2
�t : (14:16)

This form eliminates the need for the multiple cases of Eq. (14:8) and permits an in�nite

� integration range. The quantity ��t is simply a dimensionless number (an angle in

radians) chosen to make the approximation in Eq. (14:15) as accurate as possible. The

value ��t = (2�)�1=6 = 0:736 would match the quadratic variation at � = �=2, but we

choose instead

e�
�fit
2 =

�

4
; or ��t = 0:695; (14:17)

which causes Eq. (14:12) to be satis�ed, thereby avoiding a (small but inelegant) error in

the just-kicked centroid location. Substituting Eq. (14:16) into Eq. (14:11) yields0@xi

�
�p; �̂

�
pi
�
�p; �̂

�
1A = �p

Z 1

0
dR

2

��4x
R3e

� R2

2�2x

Z 1

�1
d�

1p
2���t

e
�
(����(R;�̂) i)

2

2�2
�t

�� sin�
cos�

�

= �p
2

��4x

1p
2���t

Z 1

0
dRR3e

� R2

2�2x

�� sin�� i
cos�� i

�Z 1

�1
d� cos� e

� �
2

2�2
�t

= �p
1

2�4x

Z 1

0
dRR3e

� R2

2�2x

0@� sin��
�
R; �̂

�
i

cos��
�
R; �̂

�
i

1A
(14:18)
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where the dependence on �̂ has again been acknowledged. This formula, with ��(R; �̂)

expressed, for example, as in Eq. (14:14), is the main formula describing the e�ect of

decoherence due to R-dependent tune caused by nonlinear betatron motion. For small i

evaluating the integral numerically should be easy. For large i the method of stationary

phase may be applicable.5

Since there has been no averaging over �̂ as yet, Eq. (14:18) should also be valid with

�̂ replaced by �. The major e�ect of this would be evident in Fig. 14.1 where the phasor

amplitudes would vary sinuisoidally because of chromaticity and synchrotron oscillation.

Whatever shearing this causes is exactly undone over a complete cycle, causing periodic

decoherence/recoherence each period of synchrotron oscillation. By performing these cal-

culations it would be possible to compare to a formula due to Bob Meller6 but that has not

been done. The feature distinguishing the present calculation from his is that he assumed

no systematic dependence of tune on �̂. It is not easy to compare formulas here with that

paper since the order of integation is di�erent and he does not make the approximation

Eq. (14:16), (which should cause only small numerical di�erences.)

The calculations have assumed motion in only one transverse plane; it would be possible

for the horizontal and vertical decoherence rates to di�er. The essential feature though

is not the distinction between the two planes but the distinction between two normal

mode motions. In this paper, where coupled motion is of the essence, we assme the same

calculations are valid when applied mode by mode.

We continue, but now keeping just the term ��(R; �̂) = d1�̂ (which permits the R

integration to be performed) and assume that �̂ is distributed according to

P
�̂

�
�̂
�
=

�̂

�2�
e
� �̂2

2�2
� ; (14:19)

and average over �̂ to obtainy

pi (�p)

�p
=

1

�2�

Z 1

0
d�̂ �̂ e

� �̂2

2�2
� cos d1�̂ i

= 1� (d1��i)
2 +

1

3
(d1��i)

4 � 1

7:5:3
(d1��i)

6 +
1

9:7:5:3
(d1��i)

8 + � � � ;
(14:20)

y Formula (14:20) is poorly convergent and can only be used for values of the argument less than 2 or so.
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and

xi (�p)

�p
= � 1

�2�

Z 1

0
d�̂ �̂ e

� �̂2

2�2
� sin d1�̂ i = �

r
�

2
(d1��i) e

�
(d1��i)

2

2 : (14:21)

Perhaps the most nearly observable quantity is the \decoherence factor"

Fi (d1��) =

s�
xi (�p)

�p

�2
+

�
xi (�p)

�p

�2
: (14:22)
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Figure 14.3: Time evolution of (fractional) centroid position x=�p, slope

p=�p, and
p
x2 + p2=�p after initial de
ection �p, viewed in a frame of

reference rotating at the small amplitude tune, as given by Eqs. (14:20)-
(14:22). An exponentially decaying function 1:2e�0:38d1��i is also shown for
comparison.

These functions are plotted in Fig. 14.3. As has been explained previously, the quanti-

ties xi and pi tend to vary slowly because they refer to a frame of reference rotating at the

small amplitude tune �0. The corresponding invariant amplitude

q
xi

2
+ pi

2
is presumably

even more slowly varying, but when it is viewed in a stationary frame it rotates rapidly

and is interpreted as the betatron oscillation of the centroid. Furthermore, its magnitudes

in stationary and rotating frames are the same. That was the basis for the statement made

above that the \decoherence factor" Fi is the theoretical quantity that can most easily be
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correlated with experimental observations.y From Fig. 14.3 it can be seen that the time

evolution of xi and pi are very di�erent, the latter falls o� in more or less Gaussian fashion

while the former rises, then falls. Though neither of these behaviors seems deserving of the

name \damping", the function Fi falls o� more nearly as the decaying exponential that is

normally associated with damping. To illustrate this point a pure exponential decay curve

that crudely matches Fi is also shown in Fig. 14.3.

When damping rates are measured experimentally the observed response is not a pure

exponential decay. Rather, an initial transient (that is hard to interpret and may be

instrumental in nature) is followed by a curve well �t by a pure exponential. A recipe for

measuring clean \relative" dependence of damping rate on the various parameters has been

to select the range over which the log plot is most linear as the signal falls by 1=e|normally

from about 0.8 to about 0.3 of the just-kicked signal. This is not very di�erent from the

range over which the exponential described in the previous paragraph gives a tolerable

�t to the theoretical response curve. Considering the only-semi-quantitave \absolute"

accuracy of the measurements and the lack of accuracy with which the various parameters

in
uencing the phenomenon are known, we therefore judge the exponential �t described in

the previous paragraph as a reasonable representation of theory for comparison with data.

Accepting the numerical factor 0:38 from the exponential �t just described, these

considerations can be distilled down to a simple prescription for predicting the \damping

rate" ��;dec with which the centroid will be observed to damp after the beam has been

pinged. Let us assume that, by particle tracking in the lattice under consideration (CESR

in our case) the betatron tune shift from nominal, for a particle with invariant longitudinal

invariant equal to the r.m.s. value �̂ = ��
e:g:
= 0:6� 10�3 has the value �Q(��). For one of

the CESR lattices on which these e�ects were investigated �Q(��) = �1:5� 10�3, where

the sign ambiguity occurs because the tune shifts of the two visible modes are equal and

opposite. This sign di�erence has no e�ect on the predicted decoherence (unless there are

previously neglected tune shifts having the same sign for both modes.) Assuming the tune

shift dependence to be linear, this �xes the d1 coe�cient in Eq. (14:14) so that

d1 =
2��Q (��)

��
: (14:23)

y Though more detailed information about the beam is measurable in principle, we are mainly concerned
with signals from the beam position monitors; they contain only information about the centroid.
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Then the centroid amplitude is proportional to e���;dect = e�0:38�2��j�Q(��)ji, with time t

and turn number i being related by t = i=f0 where f0
e:g:
= 0:39� 106Hz. Then we obtain

��;dec = 2:39j�Q(��)jf0 � (Q0

x �Q0

y)
2 (14:24)

where the dominant expected dependence on chromaticities has been inferred from

section 13. For an extreme situation in which Q0
x = 10, Q0

y = �20, ��;dec e:g:
= 1400s�1. For

other situations the empirical formulas (13:1) can be used to estimate j�Q(��)j. When

the parameters appropriate to Fig. 13.4 are used, the predicted damping rate is 1160 s�1.

This is approximately twice that inferred from the multiparticle simulation. Considering

all the uncertainties, this is probably as good agreement as can be hoped for.

15. Damping rate formulas collected

Various sources of damping have been identi�ed and estimated. Not even mentioned so

far, because it is small and reliably known, is the synchrotron-radiation induced growth rate

(a negative quantity) �SR. Unlike decoherence, which only causes the centroid amplitude

to decay, without a�ecting individual particles, �SR is a true dissipative (or incoherent)

damping rate to which every particle is subject. For CESR �SR = �38 s�1 = 1:0�10�4 per
turn.

Since this paper deals only with the \decay" of externally detectable beam signals that

depend only on centroid variables, we do not distinguish between coherent and incoherent

damping rates. The conjectured \Landau damping" of (unobservable) �-modes is symbol-

ized by ��;LD. We have little theoretical guidance considering ��;LD and it is not directly

measureable. We can only hope to infer its value indirectly. To account for its ability,

independent of current, to stabilize the �-mode in spite of the head-tail destabilization,

it is plausible to suppose that ��;LD is proportional to current, and it will be written

� �0LD. This is consistent with ascribing the damping to space charge forces. The damping

rate of (observable) �-modes due to decoherence will be expressed by ��;dec, presumably

independent of current. In the only-semi-quantitative description we are attempting, we

regard ��;dec as reasonably well-known, for example from Eq. (14:24) with �Q given by
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Eq. (13:1).y It will be regarded as appropriate to build all these damping rates into the

unperturbed model as coe�cients of velocity-proportional terms.

Combining all growth rates discussed so far, the growth rates of the two �-modes and

one of the �-modes can be expressed as

��;1 = �SR + �HT + ��;dec + ��;symp;

��;2 = �SR + �HT +��+ ��;dec + ��;symp;

�� = �SR � �HT + ��;LD:

(15:1)

It has unfortunately been necessary to treat the two �-modes separately because it is

found experimentally that their damping rates are di�erent. At present the source of this

di�erence is unknown. In our leading approximation they are equal but, with their tunes

split appreciably (by S = �=2�) di�erent distances to nearby resonances permits these

rates to be di�erent. We add the term �� to allow for this di�erence, hoping it to be

constant, independent of the other parameters. Formulas for these quantities are given in

Eqs. (5:15), (6:6), (12:11) and (14:24). Copying from there, introducing �tting parameters

A, B, and C, and assuming that ��;LD depends linearly on � yields

�HT = � A

0@Q0
x
wx

wy
+Q0

y +

�
Q0
x �Q0

y

� �
wx
wy
� 1
�

2

(�=2)2

�s2 � (�=2)2

1A ;

��;dec = B
�
Q0
x �Q0

y

�2
;

��;symp = � C
�
1� e�0:0112 �

2=�2SR
�
:

(15:2)

The ratio wx=wy and the coe�cient B are not entirely free since the former is probably

approximately 1 (in one �t it is 0.53) and the latter is calculable to within a factor of

perhaps 2, but we treat them as free nevertheless. A, proportional to the wake �eld, and

C, the Landau damping coe�cient, are completely empirical, as are �� and �SR. The

measurable mode 1 damping rate, then, is

��;1 = �SR + B(Q0
x �Q0

y)
2 + �[A(Q0

x
wx
wy

+Q0
y) + C(1� e�0:0112 �

2=�2SR)]:

(15:3)

y It should not be considered signi�cant that our notation appears to distinguish betweem Landau damping
and decoherence. The physics of these phenomena are certainly similar and, for all we know, identical. In
our notation \dec" means \calculable", and \LD" means \purely phenomenological".
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The last term of �HT has been dropped as being too small to justify its complicated

appearance.

In the small chromaticity region, Q0
x � Q0

y � 0, the chromaticities enter predominantly

in the combination Q0
xwx + Q0

y wy; this can be said to characterize the phenomenon of

\chromaticity sharing". In the large chromaticity region the chromaticities enter primarily

through ��;dec, in the combination (Q0
x � Q0

y)
2. Absent a better name, this could be

called the \chromaticity dominated" region. Another mechanism by which the rates can

acquire nonlinear dependence on Q0
x and Q0

y is through \wake-�eld washout" as described

by Eqs. (4:2), but this e�ect was found to be negligible.

16. Comparison of observations with the model

16.1. Sample data

Results from some of our observations of this phenomenon are plotted in Fig. 16.1 which

shows, in the Q0
x, Q

0
y plane, measured contours of equal damping rate of the less stable (in

fact barely stable) mode, for two di�erent values of beam current �. The straight line in

Fig. 16.1 is tangent to the contours at their point closest to Q0
x = Q0

y = 0. From the slope

one infers wx=wy = 0:54. The damping rates of the more stable mode at the same values

of Q0
x and Q0

y are plotted in Fig. 16.2.

16.2. Matching the semi-empirical formula to observations

Theoretical contours to be compared with the observations at CESR are shown in

Fig. 16.3, Fig. 16.4, and Fig. 16.5. Though the closest �tting contour of Fig. 16.3 quali-

tatively resembles the measured 4mA contour of Fig. 16.1, it lacks the near-straight-line

segment in the low chromaticity region. When decoherence was discussed in an earlier

section it was acknowledged that the simulation data was consistent with a higher than

quadratic dependence on jQ0
X � Q0

yj. In Fig. 16.4 a jQ0
X � Q0

yj3 dependence is tried, us-

ing the parameters shown in the caption. Since the best �t contour is in much better

agreement with the data, we accept the cubic dependence.
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17. Conclusions

In spite of its considerable complexity, Eq. (15:3) is still not general enough to match

the other mode data of Fig. 16.2. The natural way to get such extremely strong damping

is via the decoherence term BjQ0
x � Q0

yj3 and we have no basis for expecting that to

be strongly di�erent between the �-modes. The extreme current dependence visible in

Fig. 16.2 can only be due to the last term of Eq. (15:3), which is however also the same

for both �-modes. The data suggests that either the head-tail damping or the decoherence

(or both) are strongly di�erent for the two visible modes. The only-marginal stability at

high current (20mA) suggests that the wake �eld anti-damping is beginning to overcome

the decoherence damping.

Returning to the data of Fig. 16.1, the good agreement between experiment and theory

persuasively supports the validity of chromaticity sharing (because of the straight line

segments) and decoherence (because of the \rolling over" of the curves.) The support for

\sympathetic damping" is far more conjectural; it is based on �tting the observed current

dependence in the low chromaticity region, which could be fortuitous, given that the semi-

empirical formula has so many free parameters. Nevertheless, it is scarcely revolutionary

to suggest that a weakly damped system beomes more strongly damped when coupled to

a strongly damped system. In the present context the implication is that for su�ciently

large currents (� > �SR � 10mA) the e�ective intermixing of modes causes amelioration of

the head-tail e�ect because of the superposition of opposite-sign rates of individual modes.

Perhaps the most striking feature of the data is the extremely strong decoherence

damping that can develop with strong chromaticities. This has the potential for improv-

ing operations by stabilizing coherent resonances. (Incoherent resonances are of course

una�ected.) Concerning the exploitation of this in round beam operations, it remains

to be seen whether the decoherence is even nearly as strong in the M�obius lattice as it

is in the resonant-coupled lattice analysed in this paper|in the resonant-coupled lattice

the decoherence is dominated by the nonlinear tune dependence forced by the near-equal

tunes, an e�ect probably absent in the M�obius lattice. On the other hand, the M�obius

lattice may tolerate extremely high chromaticities.



63

18. References

1. M. Sands, SLAC-TN-69-8, C. Pellegrini, Nuovo Cim. 64A, 477 (1969).

2. R. Talman, NIM, 193, 423 (1982), R.D. Kohaupt, DESY 80/22 and DESY M-80/19,

(1980).

3. V.A. Yakubovich and V.M. Starzhinskii, Linear Di�erential Equations With Periodic

Coe�cients, Halsted Press, John Wiley and Sons, 1975.

4. R. Littauer, Chromaticity in a Coupled Lattice, CON97-06, June, 1997.

5. Leonard Mandel and Emil Wolf, Optical Coherence and Quantum Optics, Cambridge,

1995, p. 128.

6. R. Meller, A. Chao, J. Peterson, S. Peggs, and M. Furman, Decoherence of Kicked

Beams, SSC-N-360 (1987).



i

Table of Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Two particle model, (\unperturbed") . . . . . . . . . . . . . . . . . . . . 6

3. Chromatic terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Wake forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5. Iterative solution of the equations . . . . . . . . . . . . . . . . . . . . . . 14

6. Head-tail damping of �-modes . . . . . . . . . . . . . . . . . . . . . . . . 18

7. Tune variation at zero current . . . . . . . . . . . . . . . . . . . . . . . . 19

8. Reformulation in Hamiltonian terms . . . . . . . . . . . . . . . . . . . . 21

9. Nonresonant perturbation theory . . . . . . . . . . . . . . . . . . . . . . 26

10. Pure damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11. Pure head-tail oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12. Sympathetic damping . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

13. Computer simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

14. Analytic treatment of decoherence . . . . . . . . . . . . . . . . . . . . . 45

15. Damping rate formulas collected . . . . . . . . . . . . . . . . . . . . . . 54

16. Comparison of observations with the model . . . . . . . . . . . . . . . . 56

16.1. Sample data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

16.2. Matching the semi-empirical formula to observations . . . . . . . . . 56

17. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

18. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63


