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Introduction

Phase III upgrade of CESR includes super conducting magnets without iron. The magnets are
built from super conducting wire loops wrapped on a pipe. Because of the high currents involved
in super conducting magnets, the distortion of the magnetic �elds at the rounded ends may not
be negligible and should be calculated. The gradual decrease in the magnetic �eld at the edges
causes higher order multipoles, and the parasitic magnetic �eld in the z direction at the edges might
cause coupling. In order to study these problems a 3-D numerical code was developed. The code
BST.c calculates the spatial magnetic �elds generated by a wire carrying current. In particular, it
calculates �elds of wire loops wrapped on a pipe. The arrangement and dimensions of the loops can
be easily modi�ed to create dipoles, quadruples, skew magnets etc.. It has been used to calculate
the magnetic �elds inside and outside the magnets. The higher order multipoles are obtained by a
Fourier transformation of the �eld. It calculates local �elds errors due to possible manufacturing
imperfections. It also calculates the particle trajectories inside the magnet in order to investigate
possible coupling between the horizontal and the vertical motion due to Bz at the ends. The e�ective
magnet length was calculated by numerical integration over the whole magnet.

1 Current Loops Characterization - Quadrupole

An example of the magnetic �elds of a quadrupole made out of four loops of wire ribbon is shown
in Figure 1. The ribbon loops are wrapped on the pipe touching each other and creating four poles.
(Current 
ows in opposite direction in each loop). The arcs of the loops in this example are circular.
The magnet is illustrated in cylindrical coordinates with the z axis along the center of the pipe.
When looking at the cross section Z � Z1 of a pipe with four loops winding for a quadrupole as
shown in Figure 2, there are four conducting sections, each of them is composed of two adjacent
loops with width d (30� in a quadrupole). Each one of the eight sections d is composed of nwire
wires. The current I in each wire is described by the following function:

I = (e1; e2; Ang[i]; sign[i]; Ic[i]) (1)

where i = 1; 2; 3; ::::8
The angle from the line � = 0 to the center of each one of the four loops is given by Ang[i]:

Ang[i] = f45; 45; 135; 135;225;225; 315; 315g (2)
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Figure 1: A Quadrupole magnet made out of four loops of wire ribbons

The location of the conductive wires in section i relative to Ang[i] is indicated by the vector sign[i] :

sign[i] = f�1; 1;�1; 1;�1; 1;�1; 1g (3)

where �1 indicates that the wires in the i section are below the center of the loop and +1 indicates
that the wires in section i are above the center of the loop.

The direction of the current 
ow in each section i is given by:

Ic[i] = f�1; 1; 1;�1;�1; 1; 1;�1g (4)

� is the angle measured from the center of the loop (at Ang[i=1]) to a wire in section i = 1

� =

(
e

2�a
� 360: along the stright conductor jzj � zm

e sin(arccos( z�zme ))
2�a � 360: along the arc jzj > zm

where zm is the length of half the straight section.
In the straight section jzj < zm, e is the part of the circumference from the loop center Ang[i=1]

to any conducting wire in section i = 1. e1 is the distance on the pipe circumference from the center
Ang[i=1] to the outermost wire in section i = 1 and e2 is the distance to the innermost wire in
section i = 1

e1 =
2:�a

8:
(5)

e2 = e1 � d: (6)

where a is the pipe radius.
�1 is the angle to the outermost wire in section i = 1.

�1 = �(e = e1) (7)

�2 is the angle to the innermost wire in sectioni = 1.

�2 = �(e = e2) (8)
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i Wire Locations Current
1 45� �1 � � < 45� �2 -I
2 45 + �2 � � < 45 + �1 I

3 135� �1 � � < 135� �2 I

4 135 + �2 � � < 135 + �1 -I
5 225� �1 � � < 225� �2 -I
6 225 + �2 � � < 225 + �1 I

7 315� �1 � � < 315� �2 I

8 315 + �2 � � < 315 + �1 -I

Table 1: Eight spatial location of the wires in a quadrupole

he angle, �, is measured in each (r � �) plane from � = 0: to a conductive wire in any section.

� = Ang[i] + � � sign[i] (9)

Its range of changes is summarized in Table 1 for jzj < zm.

2 Magnetic Field Calculations

The magnetic �eld at each spatial point (r; �obs; z) is calculated using Biot-Savart law:

B(r; �obs; z) =
�o
4�

Z
I� R̂

R2
dlw (10)

B is the magnetic �eld, dlw is an element of length along the wire, R is the distance from the
observation point (r; �obs; z) to dlw and it changes as we integrate along the loop. The integration
is done along each wire in all the sections i = 1; 2::8 along each half of a loop and the vectorial
contributions seen at (r; �obs; z) from all the sections are summed up. Each section i has its own
current sign Ic[i] and it extends from �(e + zm) to (e + zm) (in a circular ends), where jzj � zm
is the range of the straight section of the conductor. In order to calculate the Biot Savart integral
all vectors were expressed in cylindrical coordinates. Rr; R� and Rz are the projections of the unit
vector R̂ (in the direction of R) on the direction r, � and z correspondingly, see Appendix 1.

R̂ = Rr r̂ +R� �̂ +Rz ẑ: (11)

Along the the straight conductors of the magnet, for jzj � zm, the current I 
ows in the z direction
only. While at the ends, where the wires are curved, the current has also a component Il tangential
to the pipe surface. See Appendix 2. Il is further being projected on r and �.

I =

�
Iz ẑ along the stright conductor jzj � zm
Ir r̂ + Itheta�̂ + Iz ẑ along the arc jzj > zm

By substituting the vectors I, R̂ and R in Equation 8 and approximating the integration by sum-
mation, we can get the magnetic �eld components. In a quadrupole, for example, there are i = 8
sections of half loops as seen in the cross section of the magnet (Figure 2). Each of the sections i
has nwire wires covering a width d. Thus the wires are separated from each other by �e = d=nwire
which determine the summation increments of e.

Br =
8X

i=1

e1�dX
e=e1

zm+e1X
z=�(zm+e1)

�o
4�

Ic[i]
(I�Rz � IzR�) � dlw

R2
(12)
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B� =
8X

i=1

e1�dX
e=e1

zm+e1X
z=�(zm+e1)

�o
4�

Ic[i]
(IzRr � IrRz) � dlw

R2
(13)

Bz =
8X

i=1

e1�dX
e=e1

zm+e1X
z=�(zm+e1)

�o
4�

Ic[i]
(IrR� � I�Rr) � dlw

R2
(14)

If we numerically integrate in equal steps of �z along each wire in the magnet dlw = �z along the
straight conductor, while at the arc dlw is di�erent for each �z. . See Appendix 3.

The accuracy of the calculation at each observation point (r; �obs; z) is determined by the steps
size �z which can be made smaller at particular areas of interest. The magnetic �eld in any direction
is calculated by moving the observation point in this direction.

3 Conclusions

In order to check the results the numerically calculated �elds were plugged in the equations of 5�B
and 5�B. Both expressions were approaching zero. Some examples of �eld calculation inside and
outside of a quadrupole and a dipole with elliptical loop ends and equal perimeter in all layers can
be seen in CBN 96-09. Also calculated there are the �elds due to possible alignment errors.

4 Appendix 1

5 Calculation of the cylindrical projections of the vector R

R is the vector connecting a spot on the conducting wire with the observation point (r; �obs; z). see
Figure 3.

5.1 Projection of the Unit Vector R̂ on the Vector r

b2 = a2 + r2 � 2ar � cos(�obs � �) (15)

R =
b

cos
�
arctan

�
z�zobs

b

�� (16)

k2 = R2 + r2 � 2Rr � cos(q) (17)

Rr = cos(q) =
R2 + r2 � k2

2Rr
(18)

5.2 Projection of the Unit Vector R̂ on z

b2 = R2 + (z � zobs)
2 � 2R(z � zobs) � cos(w) (19)

Rz = cos(w) =
R2 + (z � zobs)2 � b2

2R(z � zobs)
(20)
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Figure 3: A slice of a pipe with a conducting wire
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5.3 Projection of Unit Vector R̂ on �

If we draw a line perpendicular to r from the observation point to the pipe circumference, see �gure 4,
then:


 = arccos
� r
a

�
(21)

g = tan
�
arccos

� r
a

��
(22)

ora = 2a sin

�
� � �� 


2:

�
(23)

y =
ora

cos
�
arctan

�
z�zobs
ora

�� (24)

R� is the projection of the unit vector R̂ on g.

R� =
R2 + g2 � y2

2gR
(25)

6 Appendix 2

7 Calculation of the Current Components in Cylindrical Coordi-

nates.

Along the straight lines of the quadrupole the current 
ows in the z direction. At the ends the wire
bends to create the loop. The current is no longer in the z direction. It can be decompose to Iz
and Il, where Il is the component of the current which is tangential to the pipe circumference at
the wire. (see Figure 5)

7.1 Projection of I on z and on the tangent to the pipe ,l.

e1 � e < e2

l = e � sin(�) = e � sin

�
arccos

�
z � zm

e

��
(26)

The z and l components of the current for a circular end loop are:

Iz = I � sin

�
arccos

�
z � zm

e

��
(27)

Il = I � cos

�
arccos

�
z � zm

e

��
(28)

This current need to be projected on r and �.

7.2 Projection of Il on r and �

Ilr = Il � sin(� � �) (29)

Il� = Il � cos(� ��) (30)
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8 Appendix 3

9 Calculation of dlw at the arcs

The numerical integration is done in steps of �z. Thus dlw equals �z in the straight part, but has
various length along the arcs. See Figure 6. For a circular end loop zm < jzj � zm + e

� = arccos

�
jzj � zm

e

�
(31)

For each step, �z, dlw in the arc is given by:

dlw =
2:�ej(�� �former)j

360:
(32)

Calculating dlw, starting from negative z, the initial value of �, �former , are zero. For the next step
�z the value of �former is set to the value of the last �

�former = � (33)

The absolute values were put to make the routine valid for the arcs on both sides of the loop. Note,
when the integration is done over the arc on the (z > 0) side, the initial value of �former should be
�=2 which is the last value stored on the left side calculations (z < 0:).
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