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Abstract

The program K FIT has been modi�ed to have the ability to extract the loca-
tions and strengths of isolated steering, quadrupole and skew quadrupole errors. The
mathematics behind the wave analysis is presented along with example analyses of
data.

1 Orbit Analysis

Given a steering error that is isolated, so that there are no other steering errors
near it, then it is possible to �nd the location and strength of the kick error by taking
an orbit measurement. This is shown schematically in �gure 1. An isolated steering
error is at sk. On either side of the steering error the orbit x(s) must be a \free wave"
which can be written as

x(s) =

8<:
q
�(s)

h
�a sin �(s) + �a cos�(s)

i
s < skq

�(s)
h
�b sin �(s) + �b cos �(s)

i
s > sk

: (1)

Eq. (1) is linear in the unknowns � and �. Given regions \A" and \B" on either side
of sk (cf. �gure 1), �a and �a can be determined by a linear least squares �t to the
data from region A. Similarly, �b and �b are determined by a �t with the B region
data.

Once the coe�cients are determined we can \extend" the waves into the area
between the regions to �nd the kick. To simplify the analysis we choose a new
reference orbit xref by

xref(s) �
q
�(s)

h
�a sin �(s) + �a cos �(s)

i
(2)

The o�set ~x � x� xref from the new reference is then

~x(s) =

(
0 s < skq
�(s)

h
�ba sin �(s) + �ba cos �(s)

i
s > sk

: (3)
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Figure 1: Schematic diagram of the analysis to �nd a steering error at sk. An orbit
measurement in regions A and B is �t to free waves and the �ts are propagated into
the area between the regions. The possible kicker locations are where the waves cross
at sk and sk2

where

�ba � �b � �a ;

�ba � �b � �a : (4)

Since ~x(s) must be continuous, the kick error must be at a place where the waves
intersect (cf. �gure 1). Thus, from Eq. (3), the phase �k at the kick point is given by

tan �k = ��ba
�ba

; (5)

The solutions to Eq. (5) are a series of phases spaced � apart. If regions A and B
are close enough together then only 1 solution will land in{between and the correct
kicker phase can be determined unambiguously.

The kick magnitude �x0 is obtained from di�erentiating Eq. (3)q
�k�x

0 = �ba cos �k � �ba sin �k : (6)

Eq. (6) can be put in a more transparent form using Eq. (5)q
�k�x

0 = �Aba ; (7)
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where
A2

ba � �2ba + �2ba : (8)

For computations Eq. (6) is to be preferred since it gives the sign of the kick.

An example of an orbit analysis is shown in �gure 2. The data to be analyzed is
a horizontal di�erence orbit which was obtained by Stu Peck by taking a orbit under
zero corrector conditions and then changing the horizontal tune by about �6 kHz.
Plotted on the x{axis in �gure 2 is the detector index. In order to be able to analyze
errors near L0 the data has been extended past L0 by adding 100 to the index. Thus,
for example, 32 and 132 both correspond to the 32W detector.

Shown in �gure 2 are the residuals which are obtained by taking the di�erence
orbit and subtracting o� the two �ts for the A and B regions. At the bottom of the
�gure is the results of the analysis. IX A1 and IX A2 are the indices for the left and
right ends of region A. Similarly IX B1 and IX B2 delimit region B. The �ts are
done using the subroutine SVDFIT from Numerical Recipes[3]. For both regions a
�gure of merit for the goodness of the �t, �a=Aa and �b=Ab, is de�ned by the formula�

�

A
�
q
�2� + �2�

A
; (9)

where the amplitudes Aa and Ab for the regions are given by

A �
q
�2 + �2 : (10)

�� and �� are computed Using Eq. 15.4.12 from Numerical Recipes with the variances
�i;a and �i;b of the individual data points in regions A and B are taken to be equal
to the variance between the data and the �t for that region (cf. Numerical Recipes
Eq. 15.1.6 and the discussion in section 15.2):

�2i �
1

N

X
j

(xj(data)� xfit(sj))
2
: (11)

The relative uncertainty in the computed value of the kick is obtained from Eq. (7)
and Eq. (10)

�K
K

=

q
�2ba�

2
�ba + �2ba�

2
�ba

A2
ba

; (12)

where ��ba and ��ba are computed from Eq. (4):

�2�ba = �2�a + �2�b ;

�2�ba = �2�a + �2�b : (13)

�For compactness repeated a and b subscripts have been dropped.
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Figure 2: Wave analysis of a horizontal orbit di�erence
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The uncertainty in �k is obtained from Eq. (5)

�� =

q
�2ba�

2
�ba + �2ba�

2
�ba

A2
ba

; (14)

In order for the error in the calculation of the kick to be small one must have
�K
K

; �� � 1 : (15)

From the �ts to the regions �x(sk) and
p
�x�x00 are computed as shown in �gure 2.

Only one possible kick location between detectors 52 and 53 is found that is in{
between the A and B regions. Since some lattice tables only give half the ring
�ring � �k is also tabulated where �ring is the tune.

The kick found by the analysis coincides with a maximum of the orbit. There are
other places on the graph where there appear to be kicks and these can be analyzed
in a similar manner. These also correspond to places where there is a maximum in
the orbit.

2 Beta Analysis

It is assumed that any quad errors are small and �rst order perturbation theory
is used to obtain �� | The variation of � from the reference beta. Consider the
transfer matrix T21 from some point s1 to some point s2

T21 =
�
m11 m12

m21 m22

�
; (16)

where m11 and m12 are given by[1]

m11 =

s
�2
�1

�
cos �21 + �1 sin �21

�
;

m12 =
q
�1�2 sin �21 ; (17)

and �21 is the phase advance from s1 to s2.

Let point s1 be a point just before an isolated quad error at sk of strength �k l.
The transfer matrix from s1 to a point s2 someplace after the kick is�

m11 + �m11 m12 + �m12

m21 + �m21 m22 + �m22

�
=
�
m11 m12

m21 m22

� �
1 0
�k l 1

�
; (18)

where the mij are the unperturbed matrix elements and the �mij are the variations
due to the error. Note that a positive �k represents a defocusing error. The (1,1) and
(1,2) terms of Eq. (18) give

�m11 = �k lm12

�m12 = 0 : (19)
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In general, �2 at s2 can be written as[1]

�2 = m2

11
�1 � 2m11m12�1 +m2

12
1 : (20)

We take as the boundary condition that for s < sk the variation is 0. Thus ��1 =
��1 = �1 = 0. Using this and Eq. (19) with the variation of Eq. (20) gives

��2 = (2m11�1 � 2m12�1) �k lm12 : (21)

Using Eq. (17) in Eq. (21) gives the solution

��(s) =
�
0 s < sk
�(s)�k�k l sin 2(�(s)� �k) s > sk

: (22)

A free beta wave thus oscillates as 2�(s) | at twice the frequency of an orbit
wave. The equations used to �t the A and B regions is thus

��(s) =

8<:�(s)
h
�a sin 2�(s) + �a cos 2�(s)

i
s < sk

�(s)
h
�b sin 2�(s) + �b cos 2�(s)

i
s > sk

: (23)

As before, we go to a new reference so that so that the variation with respect to the
new reference, � e�(s), is zero for s < sk

� e�(s) = (
0 s < sk
�(s)

h
�ba sin 2�(s) + �ba cos 2�(s)

i
s > sk

; (24)

with �ba and �ba given by Eqs. (4). Since � e� must be continuous �k is given by

tan 2�k = ��ba
�ba

; (25)

The solutions to Eq. (25) are a series of phases spaced �=2 apart. Comparing Eq. (22)
to Eq. (24) the strength of the quad error is given by

�k �k l = �ba cos 2�k � �ba sin 2�k

= �Aba ; (26)

where Aba is given by Eq. (8).

Since beta measurements are seldom done nowadays the beta wave analysis has
not been implemented in K FIT.
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3 Phase Analysis

The betatron phase � is related to � by the standard equation

d�

ds
=

1

�
: (27)

Taking the variation of both sides gives

d��

ds
=
���
�2

: (28)

Using Eqs. (27) and (28) with Eq. (22), and using the added boundary condition that
��(sk) = 0 gives

��(s) =

(
0 s < sk
�k�k l
2 (cos 2(�(s)� �k)� 1) s > sk

: (29)

A free phase wave looks similar to a free beta wave but with an o�set. The �t to the
A and B regions is thus

��(s) =
�
�a sin 2�(s) + �a cos 2�(s) + Ca s < sk
�b sin 2�(s) + �b cos 2�(s) + Cb s > sk

: (30)

Going to a new reference so that the variation � ~� with respect to the new reference
is zero for s < sk gives

� ~�(s) =
�
0 s < sk
�ba sin 2�(s) + �ba cos 2�(s) + Cba s > sk

: (31)

where �ba and �ba are de�ned by Eqs. (4) and

Cba � Cb � Ca : (32)

Comparing Eq. (29) with Eq. (31) the �t variables should obey the relationship

jCbaj = Aba ; (33)

where Aba is de�ned by Eq. (8). In actuality, the presence of multiple quadrupole
errors or errors in the measurement itself will make the �tted values not obey Eq. (33).
We can thus de�ne a �gure of merit �A by

�A �
���jCbaj �Aba

���
jCbaj+Aba

: (34)

The condition necessary for the analysis to be valid is

�A � 1 : (35)
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Figure 3: (a) In theory ��(s) is continuous and has a continuous derivative. (b)
In practice the �ts to the A and B regions will fail to intersect or intersect with a
discontinuous derivative. The best guess for the location of the kick is where the
derivatives match. [Note: For illustration purposes the A region �t is taken to be a
straight line.]

In theory, at sk (or any other point) ��(s) is continuous and has a continuous
derivative as shown in �gure 3(a). In actuality, because Eq. (33) is not exactly
satis�ed, the �t will produce a situation as shown in �gure 3(b) where the free waves
do not intersect or intersect with a discontinuous derivative. The best solution is to
choose for sk the point where the derivatives match as shown in �gure 3(b). Using
this criterion with Eqs. (29) and (31) gives for �k

sin 2�k =
��ba sgnCba

Aba

;

cos 2�k =
��ba sgnCba

Aba

: (36)

where

sgnCba �
�
1 Cba > 0
�1 Cba < 0

(37)
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Eqs. (36) has solutions spaced � apart. Comparing Eq. (29) with Eq. (31) gives two
equations for the magnitude of the kick

�k�k l = �2Cba ; (38)

and
�k�k l = 2(�ba sin 2�k + �ba cos 2�k) : (39)

Since Eq. (33) is not in general obeyed Eqs. (38) and (39) will not give the same
answer. In K FIT the average of the two is taken.

Figure 4 shows an example analysis of vertical phase data that was taken by Stu
Henderson et. al. because the tune was seen to aperiodically jump. To extend the
data past L0 the formula

��(s+ sring) = ��(s) + ��(sring) (40)

is used where ��(sring) is the di�erence in tune between the data and the reference.
�a=Aa and �b=Ab are computed from Eq. (9). The relative uncertainty in the kick
�K=K is calculated in analogy from Eq. (12)

�K
K

=

q
�2ba�

2
�ba + �2ba�

2
�ba + C2

ba�
2
Cba

�ba sin 2�k + �ba cos 2�k � Cba

: (41)

The uncertainty in �k is computed from Eq. (14).

A quadrupole error is readily apparent and the phase at the kick shows it to
be quadrupole Q31E. This was veri�ed using the program QSTST. The tune jump
problem was solved by changing the controller card. Analysis of the the horizontal
phase data (not shown) also shows an error at Q31E as expected. Note that K FIT
follows the convention that irregardless of the plane being analyzed, a positive �k
means the error horizontally focuses and vertically defocuses.

4 Coupling Analysis

The 4 � 4 transfer matrix for a thin skew quad error is[4]

Terr =
�
1 q

q 1

�
; (42)

where

q =
�
0 0
�q 0

�
; (43)

with �q being the strength of the error. To �rst order any 1-turn transfer matrix can
be written as (Sagan and Rubin[4] Eq. (33))

T =
�

A CB�AC
BC+ �C+A B

�
(44)
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Figure 4: Wave analysis of vertical phase data
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We take the boundary condition to be C(s) = 0 for s < sk. Thus at a point sk� just
before the error the 1-turn matrix Tk� is

Tk� =
�
A 0

0 B

�
(45)

The 1-turn matrix Tk+ just after the error is then to �rst order

Tk+ = TerrTk�T
�1

err

=
�

A qB�Aq
�Bq+ qA B

�
(46)

Comparing Eq. (44) with Eq. (46) gives

C(sk+) = q : (47)

Converting C to C (Cf. Bagley and Rubin[5]) gives

C(sk+) =
�
0 0
��q 0

�
; (48)

where ��q =
q
�x�y q. If the error is due to a variation in strength then ��q is given

by[4]

��q = �
q
�x(sk)�y(sk) �k l sin 2�q ; (49)

where �q is the rotation angle of the quad with �q = 0 being an upright (non{skew)
quad. Alternatively, if the error is due to a variation in rotation angle ��q then

��q = �2
q
�x(sk)�y(sk) k��q cos 2�q : (50)

For s > sk, C(s) propagates as given by Sagan and Rubin[4] Eq. (22). The
solution is thus

C(s) =

(
0 s < sk
��q
2

h
S
�
�

2
� �+(s) + �+(sk)

�
�R

�
�

2
+ ��(s)� ��(sk)

�i
s > sk

; (51)

where S and R are the rotational and anti-rotational matrices

R(�) =
�

cos � sin �
� sin � cos �

�
;

S(�) �
�
cos � sin �
sin � � cos�

�
; (52)

and

�+ � �x + �y ;

�� � �x � �y : (53)
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The C free wave has components that propagate as the sum and di�erence of
the phases. The formula for the �t to the A and B regions for any of the C matrix
elements is thus

Cij(s) =

(
�a;ij sin �+(s) + �a;ij cos �+(s) + a;ij sin ��(s) + �a;ij cos��(s) s < sk
�b;ij sin �+(s) + �b;ij cos�+(s) + b;ij sin ��(s) + �b;ij cos ��(s) s > sk

(54)
going to a new reference such that the normalized coupling eC(s) with respect to the

new reference is zero for s < sk givesy

eC(s) = �
0 s < sk
�ba sin �+(s) + �ba cos�+(s) + ba sin ��(s) + �ba cos��(s) s > sk

(55)

with �ba and �ba de�ned by Eqs. (4) and

ba � b � a ;

�ba � �b � �a : (56)

The phase at the error is found by comparing Eq. (51) with Eq. (55)

tan �+(sk) =
��ba;11
�ba;11

=
�ba;12
�ba;12

=
��ba;22
�ba;22

(57)

and

tan ��(sk) =
��ba;11
ba;11

=
ba;12
�ba;12

=
��ba;22
ba;22

(58)

The magnitude of the kick is given by

��q

2
= �ba;11 cos �+(sk)� �ba;11 sin �+(sk)

= �ba;12 sin �+(sk) + �ba;12 cos�+(sk) (59)

= ��ba;22 cos �+(sk) + �ba;22 sin �+(sk)

and

��q

2
= ba;11 cos��(sk)� �ba;11 sin ��(sk)

= �ba;12 sin ��(sk)� �ba;12 cos ��(sk) (60)

= ba;22 cos��(sk)� �ba;22 sin ��(sk)

[The 21 component is ignored since it cannot be measured at present.]

Comparing Eq. (51) with Eq. (55) we �nd the condition that

As;ba = Ar;ba ; (61)

yFor compactness ij indices are dropped from this equation and in equations below except where

necessary
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where

A2

s;ba � �2ba + �2ba ;

A2

r;ba � 2ba + �2ba : (62)

Similar to the phase analysis Eq. (61) will, in practice, not be obeyed exactly by the
�tted values. we can thus de�ne a �gure of merit �A by

�A � jAs;ba �Ar;baj
As;ba +Ar;ba

; (63)

We would like
�A � 1 : (64)

however, even if condition (64) is violated, it is possible to do a good analysis. This is
true since the variation of ��(s) as a function of s is small compared to the variation
of �+(s). It is thus possible to do a poor job of �tting  and � while doing a good job
of �tting � and �. Since � and � alone will give �+(sk) and ��q, this is good enough
to pinpoint the error.

Figures of merit for the �ts, �s;a=As;a, �r;a=Ar;a, �s;b=As;b, and �r;b=Ar;b can also be
de�ned

�s
As

�
q
�2� + �2�

As

;

�r
Ar

�
q
�2 + �2�

Ar

;

; (65)

with As;a, As;b, Ar;a and Ar;b being de�ned in an analogous manner to Eq. (62).
Finally, The relative uncertainty of the kick magnitude �K;s=Ks and �K;r=Kr is given
by

�K;s

Ks

=

q
�2ba�

2
�ba + �2ba�

2
�ba

As;ba

;

�K;r

Kr

=

q
2ba�

2
ba + �2ba�

2
�ba

Ar;ba

; (66)

and the uncertainty in the phase at the kick is

��+ =

q
�2ba�

2
�ba + �2ba�

2
�ba

As;ba

;

��� =

q
�2ba�

2
ba + 2ba�

2
�ba

Ar;ba

: (67)
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         C h i _ A :    0 . 0 6 4
K i c k    S i g _ K s / K s :    0 . 0 9 2     S i g _ K r / K r :    0 . 1 0 7
K i c k     S i g _ p h i + :    0 . 0 9 2      S i g _ p h i - :    0 . 1 0 9

A f t e r  D e t #       k i c k    p h i _ +    p h i _ -    p h i _ x    p h i _ y
         6 3     0 . 0 2 3 5   8 2 . 7 0 7    6 . 5 2 7   4 4 . 6 1 7   3 8 . 0 9 0

Figure 5: Wave analysis of C12.
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Figure 5 shows an analysis of C12 data taken by Dave Rubin and Sasha Temnykh.
The �t to the regions is good despite the large �r;a=Ar;a which is due to a small
value for Ar;a. The kick is seen to be between detectors 63 and 64. The calulated
values for �x(sk) and �y(sk) are calculated from the calulated values of �+(sk) and
��(sk) and Eqs. (53). The best candidates for the source of the kick error is the
horizontal steering H36E or the bend B36E. the steering and bend are at a phase
�x(H=B36E) = 44:347 and �y(H=B36E) = 38:258. H36E had a strength of -1419 CU
during the measurement. Because of possible problems with the calculation of  and
� the kick magnitude is given using Eq. (59).
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