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Abstract

The program K _FIT has been modified to have the ability to extract the loca-
tions and strengths of isolated steering, quadrupole and skew quadrupole errors. The

mathematics behind the wave analysis is presented along with example analyses of
data.

1 Orbit Analysis

Given a steering error that is isolated, so that there are no other steering errors
near it, then it is possible to find the location and strength of the kick error by taking
an orbit measurement. This is shown schematically in figure 1. An isolated steering
error is at sg. On either side of the steering error the orbit z(s) must be a “free wave”
which can be written as

(s) \/ﬂ(s)[)\a sin ¢(s) + pa cos ¢(3)] s < Sk )

z(s) = .
\/ﬁ(s)[)\b sin ¢(s) + pp cos ¢(3)] s > g

Eq. (1) is linear in the unknowns A and p. Given regions “A” and “B” on either side

of si (cf. figure 1), A, and p, can be determined by a linear least squares fit to the

data from region A. Similarly, A, and p, are determined by a fit with the B region
data.

Once the coeflicients are determined we can “extend” the waves into the area
between the regions to find the kick. To simplify the analysis we choose a new
reference orbit z,.; by

Zref(5) = 1/B(s)[Aa sin (s) + pa cos ¢(s)] (2)
The offset £ = # — z,; from the new reference is then

s < 8k

. 0
z(s) = { B(5)[Asa sin @(s) + pra cos d(s)] s> sy ©)
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Figure 1: Schematic diagram of the analysis to find a steering error at s;. An orbit
measurement in regions A and B is fit to free waves and the fits are propagated into
the area between the regions. The possible kicker locations are where the waves cross
at s; and s

where
)‘ba = )\b — )\a s
Pba = Pb — Pa - (4)

Since #(s) must be continuous, the kick error must be at a place where the waves
intersect (cf. figure 1). Thus, from Eq. (3), the phase ¢, at the kick point is given by

tan g = — (5)

The solutions to Eq. (5) are a series of phases spaced m apart. If regions A and B
are close enough together then only 1 solution will land in—between and the correct
kicker phase can be determined unambiguously.

The kick magnitude Az’ is obtained from differentiating Eq. (3)

Br Az’ = Apy cOs P — ppa sin Py . (6)

Eq. (6) can be put in a more transparent form using Eq. (5)

ﬂk Am' = :l:Aba ) (7)



where

Aga = )‘za —I_ PZa ° (8)
For computations Eq. (6) is to be preferred since it gives the sign of the kick.

An example of an orbit analysis is shown in figure 2. The data to be analyzed is
a horizontal difference orbit which was obtained by Stu Peck by taking a orbit under
zero corrector conditions and then changing the horizontal tune by about —6kHz.
Plotted on the z—axis in figure 2 is the detector index. In order to be able to analyze
errors near L0 the data has been extended past L0 by adding 100 to the index. Thus,
for example, 32 and 132 both correspond to the 32W detector.

Shown in figure 2 are the residuals which are obtained by taking the difference
orbit and subtracting off the two fits for the A and B regions. At the bottom of the
figure is the results of the analysis. IX_Al and IX_A2 are the indices for the left and
right ends of region A. Similarly IX_ Bl and IX B2 delimit region B. The fits are
done using the subroutine SVDFIT from Numerical Recipes[3]. For both regions a
figure of merit for the goodness of the fit, o,/A, and o}/ A4;, is defined by the formula™®

AR 0

IV
A A ’

where the amplitudes 4, and A, for the regions are given by

A= a2 4p2. (10)

oy and o, are computed Using Eq. 15.4.12 from Numerical Recipes with the variances
0iq and oy of the individual data points in regions A and B are taken to be equal
to the variance between the data and the fit for that region (cf. Numerical Recipes
Eq. 15.1.6 and the discussion in section 15.2):

7! = - Y (z5(date) — zyils,) (11)

J

The relative uncertainty in the computed value of the kick is obtained from Eq. (7)
and Eq. (10)

OK \/)‘ga o-iba + pga o-gba

where o\, and o, are computed from Eq. (4):

2 2 2
Txba = Oxa T Txp s
2

O g = 0'[2)(1 + 0'[2)1) . (13)

*For compactness repeated a and b subscripts have been dropped.
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Figure 2: Wave analysis of a horizontal orbit difference



The uncertainty in ¢ is obtained from Eq. (5)

2 2 2 2
\/pba O \ba + )‘ba o-pba

14
0-(15 Aga I ( )

In order for the error in the calculation of the kick to be small one must have
‘%K, gs < 1. (15)

From the fits to the regions ¢.(s:) and v/B, Az” are computed as shown in figure 2.
Only one possible kick location between detectors 52 and 53 is found that is in-
between the A and B regions. Since some lattice tables only give half the ring
&ring — ¢k 1s also tabulated where ¢,,;,, is the tune.

The kick found by the analysis coincides with a maximum of the orbit. There are
other places on the graph where there appear to be kicks and these can be analyzed
in a similar manner. These also correspond to places where there is a maximum in
the orbit.

2 Beta Analysis

It is assumed that any quad errors are small and first order perturbation theory
is used to obtain 63 — The variation of B from the reference beta. Consider the
transfer matrix Ty, from some point s; to some point s,

T, = (T ) (16)

Mo oy

where mq; and m, are given by/[l]

= @ cos o sin
m1 = \/;( da1 + 4521) ;

myy = /P15 sin ¢a1 , (17)

and ¢2; is the phase advance from s; to s,.

Let point s; be a point just before an isolated quad error at s; of strength 8kl.
The transfer matrix from s; to a point s, someplace after the kick is

(mn + dmy; my, —|—5m12) _ (mn le) ( 1 0) (18)
Moy + dmgr  Mag + Mgy My Moy Skl 1)

where the m,; are the unperturbed matrix elements and the dm,; are the variations

due to the error. Note that a positive §k represents a defocusing error. The (1,1) and
(1,2) terms of Eq. (18) give

5m11 = 5’(5 l v,

5m12 =0. (19)



In general, 3, at s, can be written as|[1]
By = mflﬁl —2myymga; + m§2’)’1 . (20)

We take as the boundary condition that for s < s; the variation is 0. Thus 638, =
da; = 8y; = 0. Using this and Eq. (19) with the variation of Eq. (20) gives

6ﬂ2 = (2m11ﬂ1 - 2m12a1) 5klm12 . (21)

Using Eq. (17) in Eq. (21) gives the solution

- 0 s < 8k
560 = { o) sush s 2(9(s) — 9) 5 - o (22)
A free beta wave thus oscillates as 2¢(s) — at twice the frequency of an orbit
wave. The equations used to fit the A and B regions is thus
B(3)|Aa sin2¢(s) + pa cos2¢(s)| s < s
86(s) = | : | (23)
ﬂ(s)[)\b sin 2¢(s) + pp cos 2(;5(3)] s > g

As before, we go to a new reference so that so that the variation with respect to the
new reference, §(3(s), is zero for s < sy

~ 0 s < 8
88(s) = {B(S)I:)\ba sin 2¢(s) + ppa cOS 2(;5(3)] §> 5 0 (24)

with Ay, and pp, given by Egs. (4). Since &8 must be continuous ¢y, is given by

tan 2¢; = —iba , (25)
ba

The solutions to Eq. (25) are a series of phases spaced 7/2 apart. Comparing Eq. (22)
to Eq. (24) the strength of the quad error is given by

Br 0kl = Apy €082 — ppg sin 2¢
= tAp,, (26)

where Ay, is given by Eq. (8).
Since beta measurements are seldom done nowadays the beta wave analysis has
not been implemented in K_FIT.



3 Phase Analysis

The betatron phase ¢ is related to 8 by the standard equation

dp 1
- _ 2
is 3 (27)
Taking the variation of both sides gives
dé =
_¢ — ﬂ (28)
ds B?

Using Eqs. (27) and (28) with Eq. (22), and using the added boundary condition that
8¢(si) = 0 gives

5 B 0 § < 8
500 =1 B o)~ 6~ 1) 15

A free phase wave looks similar to a free beta wave but with an offset. The fit to the
A and B regions is thus

(29)

Aq sin 2¢(s) + pg cos24(s) + C, s < s

5¢(s) = { Ap sin 2¢(s) + py cos24(s) + Cp s > 55, S

Going to a new reference so that the variation §¢ with respect to the new reference
is zero for s < si gives

. 0 § < Sk
59(s) = {)\ba sin 2¢(s) + ppa cos2¢(s) + Cha 5> 81 (31

where Ay, and pp, are defined by Eqgs. (4) and
Coa =Co— C, . (32)
Comparing Eq. (29) with Eq. (31) the fit variables should obey the relationship
|Cha| = Aba , (33)

where Ay, is defined by Eq. (8). In actuality, the presence of multiple quadrupole
errors or errors in the measurement itself will make the fitted values not obey Eq. (33).
We can thus define a figure of merit x4 by

. ‘|Cba| - Aba (34)
x4 = |Cba|+Aba ‘
The condition necessary for the analysis to be valid is
xXa < 1. (35)
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Figure 3: (a) In theory 8¢(s) is continuous and has a continuous derivative. (b)
In practice the fits to the A and B regions will fail to intersect or intersect with a
discontinuous derivative. The best guess for the location of the kick is where the
derivatives match. [Note: For illustration purposes the A region fit is taken to be a
straight line.]

In theory, at s, (or any other point) é¢(s) is continuous and has a continuous
derivative as shown in figure 3(a). In actuality, because Eq. (33) is not exactly
satisfied, the fit will produce a situation as shown in figure 3(b) where the free waves
do not intersect or intersect with a discontinuous derivative. The best solution is to
choose for s; the point where the derivatives match as shown in figure 3(b). Using
this criterion with Eqgs. (29) and (31) gives for ¢

—Apg sgnClyg
sin 2¢ = 71)1451 b ,
cos 25 = %gnc”“ . (36)
ba
where
sgnClh, = { 1_1 gzz z g (37)



Egs. (36) has solutions spaced m apart. Comparing Eq. (29) with Eq. (31) gives two
equations for the magnitude of the kick

Brékl = —2C4, , (38)
and
Brbkl = 2(Apq sin 2¢p + ppa cos 2¢y) . (39)

Since Eq. (33) is not in general obeyed Egs. (38) and (39) will not give the same
answer. In K_FIT the average of the two is taken.

Figure 4 shows an example analysis of vertical phase data that was taken by Stu
Henderson et. al. because the tune was seen to aperiodically jump. To extend the
data past LO the formula

8¢(5 + sring) = 6¢(s) + 66(5ring) (40)

is used where 6¢(5s,in,) is the difference in tune between the data and the reference.
0./A, and oy/Ap are computed from Eq. (9). The relative uncertainty in the kick
ok /K is calculated in analogy from Eq. (12)

2 2 2 2 2 2
OK \/)‘ba o-Aba —I_ pba o-pba —I_ Cba o-Cba

K A sin 2¢; + Pba €08 2y — Chg

(41)

The uncertainty in ¢ is computed from Eq. (14).

A quadrupole error is readily apparent and the phase at the kick shows it to
be quadrupole Q31E. This was verified using the program QSTST. The tune jump
problem was solved by changing the controller card. Analysis of the the horizontal
phase data (not shown) also shows an error at Q31E as expected. Note that K_FIT
follows the convention that irregardless of the plane being analyzed, a positive §k
means the error horizontally focuses and vertically defocuses.

4 Coupling Analysis
The 4 x 4 transfer matrix for a thin skew quad error is[4]

Terr = ((11 ‘11) : (42)

1= (gq g) ’ (43)

with 6g being the strength of the error. To first order any 1-turn transfer matrix can
be written as (Sagan and Rubin[4] Eq. (33))

T_( A CB—AC)
~ \BC* - C*A B

where

(44)
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Figure 4: Wave analysis of vertical phase data
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We take the boundary condition to be C(s) = 0 for s < s,. Thus at a point s_ just
before the error the 1-turn matrix T;_ is

A o0
T = ( 0 B) (45)
The 1-turn matrix Ty, just after the error is then to first order

Tiy = Terr Ti- Te_rlr

_ A qB — Aq
B (—Bq +qA B ) (46)

Comparing Eq. (44) with Eq. (46) gives
Clors) = a. (a7)
Converting C to C (Cf. Bagley and Rubin[5]) gives

)= (g o) (48)

where 8¢ = (/8.8 q. If the error is due to a variation in strength then ég is given

by[4]
8q = —1/B(sk)By(sk) 6kl sin 26, , (49)

where 6, is the rotation angle of the quad with 6, = 0 being an upright (non-skew)
quad. Alternatively, if the error is due to a variation in rotation angle 66, then

8q = —2+/B:(sk)By(sk) kb, cos 26, . (50)

For s > s;, C(s) propagates as given by Sagan and Rubin[4] Eq. (22). The
solution is thus

. 0_ § < 8
Cls) = { 82[S (5 — ¢4(s) + 91(s0)) ~R(T+-(s)— 6-(s0))] s>e » OV
where S and R are the rotational and anti-rotational matrices
RO)=(_5vg oeg)
o= (050 =
and
¢-I— = ¢w + ¢y ’
D= p— ¢y . (53)
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The C free wave has components that propagate as the sum and difference of
the phases. The formula for the fit to the A and B regions for any of the C matrix
elements is thus

Tii(s) = Aaij 50 1 (8) + Pajij €08 G1(8) + Ya,ij sin ¢ (8) + (asj cos $_(s) s < s
Y Ab,ij Sin @y (8) + poij €08 @1(8) + Yij sin d_(s) + (pijcos p_(s) s> s¢

~ (54)

going to a new reference such that the normalized coupling C(s) with respect to the

new reference is zero for s < si givesJ[

~ . [0 5 < 8y
Cls) = { Aba S0 @1 (8) + Poa €08 D1 (8) + Yoo SIn P—(8) + Cpa COSP_(8) 8> i

with Ay, and pp, defined by Eqgs. (4) and

(55)

Yoa = To = Ya
Cba = Cb - Ca . (56)

The phase at the error is found by comparing Eq. (51) with Eq. (55)

—pPba,11 Aba,12 —Pba,22
tan Sp) = = = = : 57
¢+( k) )‘ba,ll Phba,12 )‘ba,22 ( )
and ¢ ¢
—Lba,11 Yba,12 —Lba,22
tan ¢o_(si) = = = = : 58
¢ ( k) Yba,11 Cba,12 Yba,22 ( )

The magnitude of the kick is given by

% = Apa,11 €0S @1 (Sk) — Pra,11 Sin P4 (k)
= Apa,12 SI0 @1 (8k) + pra,12 cos oy (sk) (59)
= —Apa,22 €08 @1 (8k) + Pra,22 sin oy (si)
and
oq .
0} = 7Yba,11 COS ¢—(3k) - Cba,n sin ¢—(5k)

= —Ypa,12 SN P_(5%) — Cpa,12 COS P_(5k) (60)
= Yba,22 €05 $_ (k) — Cpa,22 Sin P_ ()

[The 21 component is ignored since it cannot be measured at present.]

Comparing Eq. (51) with Eq. (55) we find the condition that

As,ba = AT,ba ) (6]‘)

tFor compactness ¢j indices are dropped from this equation and in equations below except where
necessary
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where

A2 E)‘ga—l_pza’

s,ba

A?‘,ba = 75& + CbZa . (62)

Similar to the phase analysis Eq. (61) will, in practice, not be obeyed exactly by the
fitted values. we can thus define a figure of merit x4 by

|As ba — AT‘ ba|
= —"—, 63
X As,ba + AT,ba ( )
We would like
xa < 1. (64)

however, even if condition (64) is violated, it is possible to do a good analysis. This is
true since the variation of ¢_(s) as a function of s is small compared to the variation
of ¢, (s). It is thus possible to do a poor job of fitting v and ¢ while doing a good job
of fitting A and p. Since A and p alone will give ¢, (s;) and g, this is good enough
to pinpoint the error.

Figures of merit for the fits, 05 4/As 4, Ora/Ara, 0sp/Asp, and 0,4/ A,p can also be

defined
o, _ \orto;
A, A, ’
T
A, A, ’

; (65)

with Asa, Asp, Ara and A,p being defined in an analogous manner to Eq. (62).
Finally, The relative uncertainty of the kick magnitude ox /K, and ok ,/K, is given
by

2 2 2 2
OK,s . \/)‘ba O \ba + pbao-pba

Ks As,ba ’
OK,r B \/71?& Ugba + CbZa O'Eba (66)
KT‘ B AT,ba ’
and the uncertainty in the phase at the kick is
\/pga o-iba + )‘ga o-gba
o =
ot As,ba ’
\/CbZa Ugba + 71?& O'Eba
Op— = . (67)
AT,ba
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Figure 5: Wave analysis of Cs.
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Figure 5 shows an analysis of C';, data taken by Dave Rubin and Sasha Temnykh.
The fit to the regions is good despite the large o0,,/A4,, which is due to a small
value for A,,. The kick is seen to be between detectors 63 and 64. The calulated
values for ¢,(sr) and ¢,(sk) are calculated from the calulated values of ¢ (sx) and
¢—(s) and Eqgs. (53). The best candidates for the source of the kick error is the
horizontal steering H36E or the bend B36E. the steering and bend are at a phase
¢-(H/B36E) = 44.347 and ¢,(H/B36E) = 38.258. H36E had a strength of -1419 CU
during the measurement. Because of possible problems with the calculation of v and
¢ the kick magnitude is given using Eq. (59).
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