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Three-dimensional magnetic field of a superconducting quadrupole with rectangular
coil blocks and constant-perimeter end windings

G. Dugan
Cornell University

In this note, I describe the use of the field calculation techniques outlined in CBN 96-5 to calculate the magnetic field of a quadrupole coil
wound with a "constant perimeter" constraint in the ends. The coil is composed of three coil blocks, which have a rectangular two-dimensional
cross section, as opposed to the cylindrical-sector shape associated with Rutherford cable. This note describes the details of the geometry needed to
apply the CBN 96-5 model to this case, and gives some results for a constant-perimeter coil very similar to that currently proposed for the CESR
Q1/Q2 quadrupole.

1. Rectangular Coil-block geometry

Figure 1 defines some quantities to be used to describe the rectangular coil cross section. The coil block is taken to be made from N flat
cables, each of thickness d and width T. A given flat cable is located by specifying its azimuthal angle α, inner radius R, and inclination angle β(α)
with respect to the x-axis. The cylindrical coordinates of an element of the cable at distance t  along the width (0<t<T) are

ρ(α, t)2 = R2 + t2 + 2RtCos[α − β(α)]

Tan[φ(α, t)] = RSin[α] + tSin[β(α)]
RCos[α] + tCos[β(α)]
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Fig. 1: Flat cable geometry

A complete cable block, made from N flat cables of width d each, has a width w=Nd. Fig. 2 shows a complete rectangular cable block, extending
from α0 to α1, with fixed inner radius R1. Generally the whole cable block has the same inclination angle β and inner radius R1; for generality,

however, I allow for β to vary with α. This allows the "rectangular" block to be wedge-shaped. If β varies with α, then of course the cable block

width w must also vary with t. In what follows below, we shall concentrate on the rectangular block case, where w and β are fixed for a given coil
block.
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Fig 2. Cable block geometry
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The start of the block is defined by R1, α0; The azimuthal angle of the end of the block is

α1 = β1 + Sin−1 Sin[α0 − β1] + wCos[β1 − β0 ]
R1







.

The block extends at α0 from point 1 to point 3, along the line shown; this is the distance T. At α1, the block extends from point 2 to point 4, also
a distance T. The points (1,2,3,4) in fig. 2 which define the cable block have cylindrical coordinates:

{ρ1,φ1} = {R1,α0};

{ρ2,φ2} = {R1,α1};

ρ3,φ3{ } = {R1
2 + T2 + 2R1TCos[α0 − β(α)],Tan−1[

R1Sin[α0 ] + TSin[β(α0 )]
R1Cos[α0 ] + TCos[β(α0 )]

]}

ρ4 ,φ4{ } = {R1
2 + T2 + 2R1TCos[α1 − β(α1)],Tan−1[

R1Sin[α1] + TSin[β(α1)]
R1Cos[α1] + TCos[β(α1)]

]}

As the variable t ranges from 0 to T, and α ranges from α0 to α1, we span the whole coil block, and can calculate the cylindrical coordinates ρ,φ at

each point from the above equations. Note that ρ3 and ρ4 are slightly different (typically by less than 1%)

2. Constant perimeter end constraints

Each flat cable must make a transition around the coil end in such a way as to keep the perimeter of the edges of the cable the same for all t
from t=0 to t=T.
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Fig. 3  Constant perimeter flat cable: l1 = l2.

Figure 3 shows a flat cable as it turns around the end of the magnet. The constant perimeter requirement is that the lengths l1 and l2 be equal.

z

s

∆(α )

s2 = s(α,T)s1 = s(α, t )

l1l2

ζ2

ζ1

z1 = f1s1 + ∆(α )

z2 = f 2s2

,t

Fig 4. Coil layout at fixed α
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In fig 4., the edges of the flat cable are shown in s=ρθ vs. z space. (θ=π/4−φ). The flat coil is located at azimuth α, with inclination β(α).  The
edge with perimeter l1 starts at t; the edge with perimeter l2 starts at T. The arc-length distances s1 and s2 are

s1 = s(α, t) = ρ(α, t)
π
4

− φ(α, t)





= R1
2 + t2 + 2R1tCos[α − β(α)]

π
4

− Tan−1 R1Sin[α] + tSin[β(α)]
R1Cos[α] + tCos[β(α)]

















s2 = s(α,T) = ρ(α,T)
π
4

− φ(α,T)





= R1
2 + T2 + 2R1TCos[α − β(α)]

π
4

− Tan−1 R1Sin[α] + TSin[β(α)]
R1Cos[α] + TCos[β(α)]

















On the surface of a cylinder, each end of the flat coil follows an ellipse as shown in fig. 4. The end at t=T starts at s2 and intersects the z-axis at
z2=f2s2. The end at t starts at s1, follows a straight line (on the cylindrical surface) a distance ∆(α,t), and then follows an ellipse, intersecting the z-

axis at z1=f1 s1+∆(α,t). The distance ∆(α,t) and the eccentricities of the ellipses f1,f2 are adjusted so as to make the perimeters (path lengths in

fig.4) l1 and l2 equal. In general, the curves can be parameterized using the angle ζ shown in the figure as

s1(ζ1) = s1Cos[ζ1]

z1(ζ1) = f1s1Sin[ζ1] + ∆(α, t)

s2 (ζ2 ) = s2Cos[ζ2 ]

z2 (ζ2 ) = f 2s2Sin[ζ2 ]

The differential path length is dl2 = ds2 + dz2  and

ds = −sSin[ζ]dζ
dz = fsCos[ζ]dζ

which makes the differential along the elliptical path

dl = s Sin2[ζ] + f 2Cos2[ζ]

The total path lengths shown in fig.4 are then

l1 = dl1∫ = ∆(α, t) + s1 Sin2[ζ] + f1
2Cos2[ζ]

0

π
2

∫ dζ

l2 = dl2∫ = s2 Sin2[ζ] + f 2
2Cos2[ζ]

0

π
2

∫ dζ

In terms of the complete elliptic integral

E(m) = 1 − mSin2[φ]
0

π
2

∫ dφ

g(m) = mE(m)
we obtain

l1 = ∆(α, t) + s1g(f1)

l2 = s2g(f 2 )

For a constant perimeter, we must have l1 = l2:
∆(α, t) + s1g(f1) = s2g(f 2 )

which specifies a relation between f1, f2, and ∆(α,t). We consider only cases in which f1=f2=f is independent of t; then

∆(α, t) = (s2 − s1)g(f ) = (s(α,T) − s(α, t))g(f )

With this form for ∆(α,t), we will have a constant perimeter for the flat coil. In general, the ellipticity parameter f will be a function of α. The form

of f(α) is fixed if we assume a "constant width" coil.
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Fig 5. Coil block edge at t=T

Fig. 5 shows the layout of a piece of the t=T edge of the coil block as it goes around the magnet end; the piece varies in α from α1 to α.
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Fig. 6: Coil end layout at fixed t=T

 Fig 6. shows the same layout, in the s-z surface. We have

s3 = s(α1,T)

s4 = s(α,T)
The z-distances are

z3 = f(α1)s3

z4 = f(α)s4

The coil block width is s4-s3. If this width is held constant as the coil block edge goes around the end of the magnet, then we must have

z4 − z3 = f(α)s4 − f(α1)s3 = s4 − s3

f(α) = 1 + s3(f(α1) − 1)
s4

= 1 + s(α1,T)(f − 1)
s(α,T)

in which we have set f(α1) = f. The quantity f is the ratio of the half-axis of the "upper ellipse" at α1 to the arc length s3:

f = Half − axis  of  upper  ellipse  of  cable  block
Arc  length  from  45o  to  cable  block  

= z3

s3

The constant-perimeter requirement then becomes

∆(α, t) = (s(α,T) − s(α, t))g(1 + s(α1,T)(f − 1)
s(α,T)

)

A cross-sectional cut of the coil block in a plane formed by the z-axis and a line at 45o in the x-y plane is shown in figure 7:
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Fig. 7: Inclination angles θ1,θ2

In general, the z-coordinate of an element of the block at (α,t) is given by

z(α, t) = ∆(α, t) + f(α)s(α, t)

In fig. 7, the edges of the coil block are given by

z1 = z(α0 ,0) = ∆(α0 ,0) + f(α0 )s(α0 ,0)

z2 = z(α1,0) = ∆(α1,0) + f(α1)s(α1,0)

z3 = z(α0 ,T) = ∆(α0 ,T) + f(α0 )s(α0 ,T) = f(α0 )s(α0 ,T)

z4 = z(α1,T) = ∆(α1,T) + f(α1)s(α1,T) = f(α1)s(α1,T)

The inclination angle of the coil block in this plane is given by

Tan[θ1] = ρ4 − ρ2

z4 − z2

= ρ4 − ρ2

f(α1)s(α1,T) − ∆(α1,0) − f(α1)s(α1,0)
= ρ4 − ρ2

f s(α1,T) − s(α1,0)( ) − ∆(α1,0)
Since

∆(α1,0) = (s(α1,T) − s(α1,0))g(f )
we have

Tan[θ1] = ρ4 − ρ2

f − g(f)( ) s(α1,T) − s(α1,0)( )
and

Tan[θ2 ] = ρ3 − ρ1

z3 − z1

= ρ3 − ρ1

f(α0 )s(α0 ,T) − ∆(α0 ,0) − f(α0 )s(α0 ,0)
= ρ3 − ρ1

f(α0 ) s(α0 ,T) − s(α0 ,0)( ) − ∆(α0 ,0)
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3. Implementation in the model described in CBN 96-5
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Fig 8: Division of coil block into segments

The model described in CBN 96-5 can calculate the field from coil blocks which are "wedge-shaped" in azimuthal cross-section, and
extend in azimuth from φ1 to φ2 ,and in radius from R1 to R2. Each such coil block has a straight section of length L, with ends composed of

straight extensions of length ∆L, and a "constant-width" coil end geometry with ellipse parameter f (for the inner edge of the ellipse). In order to

model the rectangular, constant perimeter coil block described above, we divide the rectangular block into M segments in t, of width δt=T/M,

where ti = (i-0.5)*T/M is the center of the segment, and i runs from 1 to M. The radial extent of each segment is from  ρ1i to ρ2i, where

ρ1i = R1
2 + (t i − δt

2
)2 + 2R1(ti − δt

2
)Cos[α0 − β[α0 ]]

ρ2i = R1
2 + (t i + δt

2
)2 + 2R1(ti + δt

2
)Cos[α0 − β[α0 ]]

The azimuthal extent of each segment is taken as running from φ1i  to φ21, where

φ1i = Tan−1 R1Sin[α0 ] + t iSin[β[α0 ]]
R1Cos[α0 ] + t iCos[β[α0 ]]











φ2i = Tan−1 R1Sin[α1] + t iSin[β[α1]]
R1Cos[α1] + t iCos[β[α1]]











We will use the model of CBN 96-5 for each of these segments, and then superimpose the results. To describe the constant-perimeter ends,
we use the ellipse parameter f; the constant-perimeter requirement is imposed by giving each segment a length extension

∆Li = ∆(α1, t i ) + ∆(α0 , t i )
2

+ z0

in which z0 is the overall shift of the whole coil block, if any. Because ∆(α,t) is only weakly dependent on α, the average indicated above
introduces little error.

Magnetic field and harmonics:

Let n be the index of the coil block (n runs from 1 to N), and let i be the index of the segment of the nth block (i runs from 1 to M(n)). The
azimuthal extent of this segment is from φ1i(n) to φ2i(n); the radial extent is from ρ1i(n) to ρ2i(n). The magnetic field due to this segment is

  
∆

r
Bi (n) = µ0

4π
∆NI( )i (n)

ρ2i (n) − ρ1i (n)

˜
r
I[ρ,φ,z + ∆Li (n)]φ1i (n),φ2i (n),f (n),L(n)

φs,i (n)

The field in harmonic form is given by
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∆

r
Bi (r;k)(n) = 4µ0

π
∆NI( )i (n)

ρ0i
2 (n)φs,i (n)

ρ0

rr
Vk (φ)

ρ
ρ0











2k −1+2r

σ i (n) •
r
δ(r,k,χ + ∆Li (n)

ρ0i (n)
)φ1i (n),φ2i (n),f (n),s(n)

in which

∆NI( )i (n) = NI(n)
M(n)

is the ratio of the number of amp-turns in block n to the number of segments, M(n), and

σ i (n) = Sin[φs,i (n)]Cos[2φ1i (n) + φs,i (n)]

We are assuming that the current is constant in each coil block. The total field for N coil blocks is then

  

r
Btot = µ0

4π
NI(n)
M(n)n=1

N

∑
˜
r
I[ρ,φ,z + ∆Li (n)]φ1i (n),φ2i (n),f (n),L(n)

ρ2i (n) − ρ1i (n)( )φs,i (n)i=1

M(n)

∑

and in harmonic expansion form,

  

r
Btot = 4µ0

π
ρ0

NI(n)
M(n)n=1

N

∑ σ i (n)
ρ0i

2 (n)φs,i (n)i=1

M(n)

∑
rr
Vk (φ)

ρ
ρ0











2k −1+ r

•
r
δ(r,k,χ + ∆Li (n)

ρ0i (n)
)φ1i (n),φ2i (n),f (n),s(n)

k,r
∑

In terms of the gradient G, we have

  

r
Btot = Gρ0

1
Q

NI(n)
M(n)n=1

N

∑ σ i (n)
ρ0i

2 (n)φs,i (n)i=1

M(n)

∑
rr
Vk (φ)

ρ
ρ0











2k −1+ r

•
r
δ(r,k,χ + ∆Li (n)

ρ0i (n)
)φ1i (n),φ2i (n),f (n),s(n)

k,r
∑

where the gradient is given by

G = 4µ0

π
Q = 4µ0

π
NI(n)
M(n)n=1

N

∑ σ i (n)
ρ0i

2 (n)φs,i (n)i=1

M(n)

∑
The integrated field in harmonic form is

  

r
Btot∫ dz = Gρ0

1
Q

NI(n)
M(n)n=1

N

∑ σ i (n)
ρ0i (n)φs,i (n)i=1

M(n)

∑
rr
Vk (φ)

ρ
ρ0











2k −1+ r

•
r
δ(r,k)φ1i (n),φ2i (n),f (n),s(n)

k,r
∑

The integrated harmonics are

Leff b2k = 1
Q

NI(n)
M(n)n=1

N

∑ σ i (n)
ρ0i (n)φs,i (n)i=1

M(n)

∑ 2δρ
tot,end (0,k) + δρ

tot,body (0,k)[ ]φ1i (n),φ2i (n),f (n),s(n)

b2k = 1
QLeff

NI(n)
M(n)n=1

N

∑ σ i (n)
ρ0i (n)φs,i (n)

ρ0

ρ0i (n)











2k −2

i=1

M(n)

∑ si (n)
Sin[2kφ2i (n)] − Sin[2kφ1i (n)]

2k
+ 2(−1)

k −1

2 Ii (n;k)










in which

Ii (n;k) = dδ
0

φs,i (n)

∫ (f(n)θ1i (n) + δ) dα
0

π
2

∫ Sin[2khi (n;α,δ)]Sin[α]

The effective length is

Leff = 1
Q

NI(n)
M(n)n=1

N

∑ σ i (n)
ρ0i (n)φs,i (n)i=1

M(n)

∑ si (n)
Sin[2φ2i (n)] − Sin[2φ1i (n)]

2
+ 2Ii (n;1)





4. Results for a Q1/Q2 candidate design

A three-block coil design is being considered for the CESR Q1/Q2 superconducting IR quadrupole being produced by TESLA Engineering
for Cornell. The basic geometrical parameters of the design are given in table 1. The common body length is 440 mm; the coil develops a field
gradient of 47.96 T/m, with 445.9 kAmp turns. The nominal TESLA design contains 364 turns, and so requires 1225 A to get this field gradient.
The effective length is 649.4 mm.
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Coil block # 1 2 3
R1 (mm) 92.05 92.05 92.05
T(mm) 38.68 38.68 38.68
w(mm) 22.1 14.7 11
NI(kAmp) 205.8 137.2 102.9

α0(rad) 0.0005 .262 .461

β(rad) 0.0 .2281 .5170

α1(rad) .242 .422 .581

ρ1 (mm) 92.05 92.05 92.05

ρ2 (mm) 92.05 92.05 92.05

ρ3 (mm) 130.73 130.715 130.687

ρ4 (mm) 129.934 130.216 130.675

φ1(rad) 0.0 .262 .461

φ2(rad) .242 .422 .581

φ3(rad) 0.0 .252 .478

φ4(rad) .171 .365 .562

f 1.186 1.184 1.263
z0 (mm) 29.24 9.87 4.33
Overall length(mm) 767 643 555.6

Table 1: Geometrical parameters

Table 2 gives the integrated harmonic content. The harmonics are all well within the specified tolerances.

Harmonic number (k) 1 3 5 7
b2k 10000 2.0 -.223 0.137

b̂2k
387 .0003 -.001 .001

Table 2: Harmonic content of the field (in units; 1 unit=10-4)

Finally, we list in table 3 the peak fields in the body and ends for each coil block. Comparing these numbers with the 2-coil design
described in CBN 96-5, we see that the peak fields in the ends have been reduced by 0.3 T, and the peak body fields are down by close to 0.5 T.
This is due in part to the use of three coils, rather than two as in the CBN 96-5 design, and also to the fact that a smaller inner coil radius has been
used.

Coil block # 1 2 3
End peak field (T) 3.11 4.19 5.41

ρ (mm) 108.1 108.3 108.2

φ (rad) .767 .771 .768

z(mm) -132 -80.4 -43.6
Body peak field (T) 4.45 3.85 5.04

ρ (mm) 92.1 104.1 104.8

φ (rad) .373 .397 .574

z(mm) 267 245 232

Table 3: Peak fields in the coils
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Table 4
Model design parameters

Descriptor ISR
quads

LEP
quads

FNAL
quads

RHIC
quads

LEP200
quads

CESR
Q1/Q2

Turns/pole 290 184 275 27 200 364
Wire area
(mm2)

6.4 6.4 4.2 11.9 5.8 6 . 3

a1 (mm) 115 90 75 65 80 9 2
a2(mm) 143 112 100 74 104 131
Re(mm) 200 ----- 153 90 ----- - - - - - -
I (amp) 1600 1600 905 5000 1900 1225
g(T/m) 43 38.2 48 50 60 4 8
J(amp/mm2) 250 250 215 420 327 195
B-peak(T) 5.9 4.2 4.1 3.95 5.7 5 . 8
B-iron (T) 2.56 ---- 1.45 2.4 ----- - - - -
length(m) .7 2 2.8 1.44 2 . 6
L(H) .27 .26 .88 .006 .3 . 3 0
W-stored
(kJ)

345 330 360 73 535 227

For a  more complete comparison of this design with other magnets, we present in tables 4 through 9 various magnet parameters for this
design and those of similar magnets, calculated as outlined in CBN 95-12. The peak field for this design (called "CESR Q1/Q2") includes the end
field enhancement, the effect of skew quadrupole winding (as in CBN 95-13), and the effect of the CLEO solenoid field (in the body only). Even
including all these effects, the design has margin in excess of 40%, because of the generous use of high-quality superconductor.

Table 5
Critical Temperatures, Fields and Current Densities

Quadrupole T0
oK

B0
T

Jc0
A/mm

2

Tb
oK

Bop=
Bpeak

T

Tc(Bop)
oK

Bc(Tb)
T

Jc(Bop,Tb)

A/mm2

ISR quads 4.2 5 1300 4.3 5.9 6.7 10.5 1038
LEP quads 4.2 5 1300 4.3 4.2 7.5 10.5 1452
CESR
Q1/Q2

4 . 5 5 2660 4 . 6 5 . 8 6 . 8 10 .04 2146

FNAL
quads

4.2 5 1300 4.6 4.2 7.5 10 1328

RHIC
quads

4.2 5.6 2300 4.6 3.9 7.6 10 2783

LEP 200
Quads

4.3 5 1400 4.3 5.7 6.8 10.5 1230
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Table 6
Current and temperature margins

Quadrupole Tbath
oK

Bpeak
T

Iop
A

Ic(Bop,Tb)
A/mm2

Iquench
A

margi
n
%

∆Τ
οK

ISR quads 4.3 5.9 1600 2460 1887 18 0.8
LEP quads 4.3 4.1 1600 3442 2365 47.8 1.7
CESR
Q1/Q2

4 . 6 5 . 8 1225 2709 1722 4 0 . 5 1 . 5

FNAL
quads

4.6 4.1 905 1992 1327 46 1.6

RHIC
quads

4.6 3.9 5000 11831 7690 53.8 1.7

LEP 200
quads

4.3 5.7 1900 2641 2182 15 0.7

Table 7
Cryostability parameters

Quadrupole Jop
(A/mm2)

P (mm) Gc(mwat
t/mm3)

α lmin (mm)

ISR quads 675 10.8 30 7.2 29
LEP quads 675 10.8 30 5.4 33
CESR Q1/Q2 682 9 . 9 7 1 6 4 . 5 5 3 8
FNAL quads 603 7 22 4.5 37
RHIC quads 1176 73.5 82 4.4 19
LEP 200
quads

884 8.9 51 13 23

Table 8
Quench parameters

Quadrupole vz (m/sec) ′tQ(sec) Τmax(oK ) Vmax(V)

ISR quads 8.5 .75 492 700
LEP quads 7.4 .62 339 803
CESR Q1/Q2 7 . 0 . 9 6 1 303 477
FNAL quads 6.8 .72 255 1328
RHIC quads 13 .23 381 152
LEP 200
quads

11 .42 450 1650

Table 9
Electromagnetic Forces

Quadrupole Azimuthal
force/length
(N/mm)
r=a1,  φ=φ1 .

Radial
force/length
(N/mm) r=a1,
φ=0

Azimuthal
pressure(N/m
m2) r=a1,
φ=φ1.

Radial
pressure
(N/mm2)
r=a1,  φ=0

ISR quads 8.5 7.2 3.5 3.0
LEP quads 6.0 4.8 2.5 2.0
CESR Q1/Q2 5 . 2 4 . 9 2 . 1 1 . 9 6
FNAL quads 3.3 2.9 1.4 1.2
LEP 200
quads

9.7 7.9 3.7 3.0
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ROXEI This Paper Diff:(This
Paper-ROXEI)

x y z Bx By Bz Bx By Bz ∆Bx ∆By ∆Bz
92.9 8.4 53.84 -.51 -4.21 0. -.50 -4.19 0. .01 .02 0
92.8 8.6 -68.1 -.50 -3.49 .23 -.64 -3.57 .20 −.14 −.08 −.03
69.5 63.5 -154 .11 -.07 1.85 .12 -.05 1.74 .01 .02 −.11
85.9 37.3 -15. -2.31 -3.89 .17 -2.27 -3.88 .16 .04 .01 −.01
81.9 45.1 -72.5 -2.29 -3.20 1.32 -2.3 -3.10 1.27 −.01 .1 −.05
84.6 50. -28.6 -3.89 -3.62 .37 -3.97 -3.68 .40 −.08 −.06 .03
78.1 64.7 -43.5 -3.75 -3.66 .73 -3.67 -3.58 .73 .08 −.08 0

5. Direct comparison with ROXEI program

Finally, for the Q1/Q2 design described above, we present in table 10 a direct comparison between the fields calculated by the techniques
described here and in CBN 96-5, and the fields calculated by the program ROXEI, which is being used by TESLA to design the quadrupoles. The
field points chosen are all inside the coil. ROXEI does a direct Biot-Savart integration over the exact geometry of the wire array, but omits the field
contribution from the strand which passes through the field point, so we might expect some small difference due to this. Other differences may be
due to approximations used in the model geometry.  In general, the results are seen to agree to typically better than 0.1 T.

Table10:
Comparison of ROXEI fields and fields calculated by the technique described in this paper


