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Using a Horizontal Kicker to Damp
Longitudinal Oscillations

David Sagan and Mike Billing

At �rst blush it might seem silly to try to damp longitudinal motion using a
horizontal kicker since a transverse kick does not immediately a�ect a particles energy
� � �E=E or its longitudinal position z. Yet a horizontal kicker can be used for
damping and it is relatively simple to explain how it works.

The �rst step is to understand how horizontal motion couples into the longitudinal.
Consider a particle with horizontal displacement x from the nominal orbit going
through a bend of bending radius r � 1=G. The di�erence dl in path length between
the nominal orbit and the actual path the particle takes over a distance ds = d�=r is
(Sands[1] Eq. (2.15))

dl = (r + x)d� � r d�

= xGds : (1)

Now consider the e�ect of a constant horizontal kick �x0 at s = 0. This shifts the
equilibrium orbit (Sands Eq. (2.92))

xc(s) =
�x0(0)

q
�x(0)�x(s)

2 sin ��x
cos(�x(s)� ��x) ; (2)

where �x is the tune, and �x(s) � �x mod 2��x is the phase advance modulo the tune.
Using Eq. (1) the change in path length �L of the new equilibrium orbit is

�L =
I
dsG(s)

�x0(0)
q
�x(0)�x(s)

2 sin ��x
cos(�x(s)� ��x) : (3)

Compare this with the formula for the dispersion � at s = 0 (Sands Eq. (3.6))

�(0) =

q
�x(0)

2 sin ��x

I
dsG(s)

q
�x(s) cos(�x(s)� ��x) : (4)

Combining Eqs. (3) and (4) gives the deceptively simple equation

�L = �x0(0) �(0) : (5)

In equilibrium the RF keeps the path length constant so the change in path length
given in Eq. (5) must be compensated by a change in energy � which gives a change
in path length of (Sands Eq. (3.10)):

�L� = �P LR � ; (6)
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Figure 1: Damping in phase space achieved by shifting the equilibrium point.

where LR is the ring circumference, and �P is the momentum compaction factor.
Setting �L+�L� = 0 gives for the equilibrium energy change[2]

�eq = �
�(0)�x0(0)

�P LR
: (7)

Now consider a particle oscillating in longitudinal phase space with oscillation
amplitude �amp = (�2+ z2)1=2 as shown in �gure 1. When the particle reaches point 1
of maximum � the kicker is turned on to shift the equilibrium point from the origin
to a point (0; �0) as shown in the �gure. For 1/2 a synchrotron cycle we let the
particle oscillate around this point until it reaches point 2. We now reverse the sign
of the kicker so that the equilibrium point shifts to (0;��0). After another 1/2 cycle
the particle has reached point 3. Thus, in 1 cycle, we have reduced the oscillation
amplitude by 4�0 so that the damping rate d per unit time is

d �
d�amp

dt
4�(0)

�P LRTs

�x0(0)

�amp

; (8)
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where Ts is the synchrotron period. This is the damping rate when the kicker has a
square wave output. When the kicker output is instead proportional to the oscillation
amplitude, as shown in appendix A, the factor of 4 in the numerator gets replaced by
a factor of �.

Note the fundamental di�erence here in how damping is achieved as opposed to,
say, the usual damping of transverse oscillations. With transverse oscillations you
apply a kick to directly change x0 and this kick is in phase with the x0 oscillations.
Here it is not � that is directly a�ected but �eq and one must wait for the synchrotron
motion to move the particle to a position closer to the origin. Also in this case the
shift in �eq is out-of-phase with the � oscillations.

The only problem with the above analysis is that if the kicker is suddenly turned
on then the transverse motion will only reach equilibrium in a time period large
compared with a synchrotron oscillation period. This being the case does it really
make sense to use Eq. (7)? To see why this is valid consider the following: After the
kicker is suddenly turned on the particle will oscillate about the new closed orbit:

x(s; n) = xc(s) +Ax sin(�x(s) + 2�n�x) ; (9)

where n is the turn number after the kicker is tuned on. The e�ect of the horizontal
motion given in Eq. (9) on the longitudinal can thus be broken down into 2 parts:
One part due changes in xc(s) has been analyzed above. The second part due to the
second term in Eq. (9) is due to the free oscillations at frequency �x. Since �x and �z
are not commensurate, that is, we cannot �nd small integers k, l, and m such that
k�x + l�z = m, the e�ect of the free oscillations upon the longitudinal motion will,
over many turns, average to zero. Thus, over many turns, Eq. (8) gives the correct
answer.

Appendix: Damping for a Proportional Kick

Let z be the complex representation of the position of a particle in longitudinal
phase space:

z � z + i� : (10)

The equation of motion of z is simply

_z = i!s(z� z0) ; (11)

where !s = 2�=Ts is the synchrotron frequency and z0 is the equilibrium position.
With z0 = 0 Eq. (11) is easily solved and is pure oscillatory as expected.

z = Aei!st : (12)

To �nd the e�ect of an non{zero z0 we assume that z0 is \small" and use �rst order
perturbation theory. If the amplitude varies as

jzj � e�d t : (13)
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Then from Eq. (11)

d =
1

2jzj2
djzj2

dt

=

*
i!s(zz�0 � z

�
z0)

2jzj2

+
; (14)

where h� � �i is an average over many cycles to average out short term uctuations and
� denotes the complex conjugate. Let z0 oscillate along the imaginary axis, out of
phase with z, and with an oscillation amplitude proportional to jzj:

z0 = �i�
z+ z

�

2
; (15)

where � is the proportionality factor. Since we are using �rst order perturbation
theory we use the zeroth order oscillation for z as given in Eq. (12). Using this with
Eq. (15) in Eq. (14) gives

d =
!s�

2
: (16)

This is equivalent to Eq. (8) with a factor of � replacing the factor of 4.
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