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Three-dimensional magnetic field of a superconducting iron-free quadrupole;
application to the CESR Phase III IR quadrupoles

G. Dugan
Cornell University

1. Introduction

The required quality of the magnetic field in the superconducting magnets planned for the CESR Phase III IR region is relatively demanding (integrated harmonics <5 units). Since the magnets
are "short" (650 mm effective length) but large in aperture (approximately 100 mm radius), we can expect significant end effects. Hence it will be important to understand and control well the sources of
errors in the ends. Moreover, the ends are also the location in which the peak field may occur, which can determine the ultimate quench limit of the magnet. Thus, a calculation of the full three-
dimensional magnetic field of the magnets (including realistic ends) will be quite useful in the design stage. A complete evaluation of the field will also be useful in determining its effects on nearby
objects in the relatively congested IR area. Since the magnets are iron-free, the field may be determined directly from the current distribution.

The approach to be taken to determine the magnetic field is the following. We want to know the harmonic structure of the field near the quadrupole axis for purposes of beam dynamics, so we
would like to do the calculation in a form which leads easily to a harmonic expansion. However, we also want to know the value of the field at its maximum (within the coil), to estimate the quench
performance of the magnet. This will require considering a coil package with a finite thickness in the radial direction. The field within the coil cannot be obtained easily from a harmonic expansion.

For these reasons, we take two different approaches to calculating the magnetic field. We start with a current distribution confined to a sheet, described in part 2 below. To obtain a general
expression for the field everywhere for a current sheet, we proceed as described in part 3 , and perform a direct integration over the current density to get the vector potential, and then the field. To
obtain a harmonic expansion for the current sheet, we use an expansion in cylindrical harmonics for 1/r in the vector potential integral, and obtain harmonic expansions for the potential and field, as
described in part 4 below. Then, in part 5, we integrate the results of part 3 over a distribution of current sheets to obtain an expression for the field from a finite thickness coil package. Finally, in part
6, we consider the superposition of several coil blocks, each of the general form shown below, which begins to approximate the situation for a realistic magnet. In part 7, we apply these results to a
specific coil configuration which is an example design for the Q1/Q2 CESR Phase III IR magnet.

2. Current Distribution

The basic model for a single coil sheet (one-quarter of the quadrupole) is shown in figure 1.
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As an approximation to a flat array of wires, the current is taken to flow as a continuous surface current sheet which is divided into 4 regions. One region carries current purely in the z-direction,
and extends from z=0 to z=L. In this region, the sheet is curved to conform to a surface of constant cylindrical radius ρ=R, and extends from φ=π/2-φ2 to π/2-φ1.  The current returns symmetrically in

another similar region extending from φ=φ1 to φ2 (the shell angle of the coil is φs =φ2-φ1). The current densities in these sheets are

 
  

r
K = ±k̂

I
Rφs

The regions of the current sheet at the ends are more complicated. Fig 2 shows a detail of the (far: Z>L) end region. In fig 3a and 3b, the coil geometry is laid out in (ζ,θ) coordinates, with the coil,

which follows the surface of the cylinder of radius ρ=R, laid out flat.
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Fig. 2: Coil end geometry (far end)
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Fig. 3(a)-Far end-left side Fig. 3(b)-Near end-right side

In the (ζ-θ) surface,  the layout of the coils is described in general by an elliptical relation between ζ and θ:

θ2

(θ1 + δ)2 + ζ2

R2 (fθ1 + δ)2 = 1

in which the parameter δ varies from 0 (corresponding to the inner edge of the coils) to δ=φs (shell angle, corresponding to the outer edge of the coils). This model has a "constant width" coil: the coil

width is maintained constant in the (ζ-θ) surface, and δ varies from 0 to φs , for all α. The aspect ratio of the ellipse will vary with δ. The model can be adapted to a non-constant width coil, by allowing

the range of variation of δ  to vary with α from 0 to δmax (α). In this case, we replace φs with δmax (α) .The choice f=1 corresponds to  a "circular" end. In terms of the ellipse parametric angle α, we
have

ζ = R(fθ1 + δ)Cos[α]

θ = (θ1 + δ)Sin[α]

  For the "far" end of the coil (z>L: fig. 3(a)), the relation between (ζ-θ) and (z,φ) is
ζ = z − L,   z = L + (fθ1 + δ)RCos(α)

θ = π
4

− φ,  φ = π
4

− (θ1 + δ)Sin(α)

For the "near" end (z<0), the relation is
ζ = −z,  z = −(fθ1 + δ)RCos(α)

θ = φ − π
4

,  φ = π
4

+ (θ1 + δ)Sin(α)

In both cases, θ1 = π
4

− φ2 . The current density is assumed to be due to an array of wires which lie along lines of constant δ The current density flows along the direction of the vector T shown in figs

3(a) and 3(b). A current density of this form, which satisfies the requirement of current conservation (  
r
∇ •

r
K = 0 ) is shown in Appendix 4 to be given by



4 May  23,1996 7:17 PM

  

r
K(α,δ) = I

Rφs

1
Cos[α](1 + r[δ]Tan2[α])

{θ̂ − ζ̂r[δ]Tan[α]}

in which

r[δ] = fθ1 + δ
θ1 + δ

For one complete end of a coil (one-quarter of the quadrupole end), the variable α runs from π/2 to -π/2, and δ varies from 0 to φs. At the "far end", the region of 0<α<π/2 corresponds to 0<φ<π/4, and

we have θ̂ = −φ̂,   ζ̂ = k̂ . At the "near" end,   
r
K  changes sign since θ̂ = φ̂,   ζ̂ = −k̂ , and the region -π/2<α<0 corresponds to 0<φ<π/4. Note that although the above form for the current density has zero

divergence, as required from current conservation, but it does not have zero curl. This is because the model requires the current density to flow in the direction of the wires, which would correspond to a
conducting sheet with a conductivity which varies over its surface.

3. Magnetic field of a current sheet by direct integration

The vector potential at a general field point    
r
r =(ρ,φ,z), is

  

r
A(

r
r) = µ0

4π

r
K( ′

r
r )da

r
r − ′

r
r∫

in which

  

r
r = ρρ̂ + zk̂

′
r
r = ′ρ ˆ ′ρ + ′z k̂

x

y

zda

r'

r

P
r-r'

z'
z

ρ' ρ

Expanding gives

  
r
r − ′

r
r = ρρ̂ − ′ρ ˆ ′ρ + (z − ′z )k̂

  

(
r
r − ′

r
r )2 = (ρρ̂ − ′ρ ˆ ′ρ ) • (ρρ̂ − ′ρ ˆ ′ρ ) + (z − ′z )2

= ρ2 + ′ρ 2 − 2ρ ′ρ ˆ ′ρ • ρ̂ + (z − ′z )2

= ρ2 + ′ρ 2 − 2ρ ′ρ Cos(φ − ′φ ) + (z − ′z )2

  

r
A(

r
r) = µ0R

4π
d ′z d ′φ

r
K( ′φ , ′z )

ρ2 + R2 − 2ρRCos(φ − ′φ ) + (z − ′z )2∫

The vector potential exhibits the following symmetries, which come from the symmetry of the quadrupole current   
r
K :
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Az (ρ,
π
2

− φ,z) = −Az (ρ,φ,z)

Aρ(ρ,
π
2

− φ,z) = −Aρ(ρ,φ,z)

Aφ (ρ,
π
2

− φ,z) = Aφ (ρ,φ,z)

The details of the evaluation of the above integral for the vector potential is given in  Appendix 1(a). Once the vector potential is determined, the fields are obtained by taking the curl:

Br (ρ,φ,z) = 1
ρ

∂Az

∂φ
−

∂Aφ

∂z

Bφ (ρ,φ,z) =
∂Aρ

∂z
− ∂Az

∂ρ

Bz (ρ,φ,z) = 1
ρ

∂(ρAφ )

∂ρ
−

∂Aρ

∂φ










 Using the vector potential symmetries, the field symmetries are

Bρ(ρ,
π
2

− φ,z) = Bρ(ρ,φ,z)

Bφ (ρ,
π
2

− φ,z) = −Bφ (ρ,φ,z)

Bz (ρ,
π
2

− φ,z) = Bz (ρ,φ,z)

The details of the evaluation of the fields is given in  Appendix 1(b). The fields from the uniform current distributions at 0<z<L are called "body fields"; those from the ends are called "end fields".
The end fields from the "far" end  (z>L) and the "near" end (z<0) are related:

Bnear end,ρ(ρ,φ,L − z) = Bfar end,ρ(ρ,φ,z)

Bnear end,φ (ρ,φ,L − z) = Bfar end,φ (ρ,φ,z)

Bnear end,z (ρ,φ,L − z) = −Bfar end,z (ρ,φ,z)

Hence we will only give expressions for the "near end" fields. We introduce the scaled variables

η = ρ
R

  χ = z
R

  s = L
R

The body fields, from Appendix 1(b), are

Bbody,ρ(η,φ,χ) = µ0I
4πRφs

Ibody,ρ(η,φ,χ)    Bbody,φ (η,φ,χ) = − µ0I
4πRφs

Ibody,φ (η,φ,χ)

The end fields, from Appendix 1(b), are

Bnear  end,z (η,φ,χ) = µ0I
4πRφs

I1,near (η,φ,χ) − η Cos[φ − π
4

]I2,near (η,φ,χ) − Sin[φ − π
4

]I3,near (η,φ,χ)











Bnear  end,φ (η,φ,χ) = µ0I
4πRφs

−ηI6,near (η,φ,χ) + Cos[φ − π
4

]I5,near (η,φ,χ) − Sin[φ − π
4

]I4,near (η,φ,χ)
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Bnear  end,ρ(η,φ,χ) = µ0I
4πRφs

Cos[φ − π
4

]I4,near (η,φ,χ) + Sin[φ − π
4

]I5,near (η,φ,χ)





The integrals are derived in Appendix 1(b) and are:

Ibody,ρ(η,φ,χ) = µ0I
4πRφs

d ′φ
φ1

φ2

∫

Sin(φ − ′φ )
1 + η2 − 2ηCos(φ − ′φ )

χ
1 + η2 + χ2 − 2ηCos(φ − ′φ )

+ s − χ
1 + η2 + (χ − s)2 − 2ηCos(φ − ′φ )











+ Cos(φ + ′φ )
1 + η2 − 2ηSin(φ + ′φ )

χ
1 + η2 + χ2 − 2ηSin(φ + ′φ )

+ s − χ
1 + η2 + (χ − s)2 − 2ηSin(φ + ′φ )































Ibody,φ (η,φ,χ) = − µ0I
4πRφs

d ′φ
φ1

φ2

∫

η − Cos(φ − ′φ )
1 + η2 − 2ηCos(φ − ′φ )

χ
1 + η2 + χ2 − 2ηCos(φ − ′φ )

+ s − χ
1 + η2 + (χ − s)2 − 2ηCos(φ − ′φ )











− η − Sin(φ + ′φ )
1 + η2 − 2ηSin(φ + ′φ )

χ
1 + η2 + χ2 − 2ηSin(φ + ′φ )

+ s − χ
1 + η2 + (χ − s)2 − 2ηSin(φ + ′φ )































I1,near (η,φ,χ) = (θ1 + δ)dδ
0

φs

∫ dα
0

π
2

∫ ′gnear + (η,φ,χ,δ,α) + ′gnear − (η,φ,χ,δ,α)( )

I2,near (η,φ,χ) = (θ1 + δ)dδ
0

φs

∫ dα
0

π
2

∫ Cos(h(α,δ))Cos[α] ′gnear + (η,φ,χ,δ,α) + ′gnear − (η,φ,χ,δ,α)( )

I3,near (η,φ,χ) = (θ1 + δ)dδ
0

φs

∫ dα
0

π
2

∫ Sin(h(α,δ))Cos[α] ′gnear + (η,φ,χ,δ,α) − ′gnear − (η,φ,χ,δ,α)( )

I4,near (η,φ,χ) = dδ
0

φs

∫ dα
0

π
2

∫ Cos[α] (fθ1 + δ)Sin(h(α,δ))Tan[α] + (θ1 + δ)(χ + (fθ1 + δ)Cos[α])Cos(h(α,δ))[ ] ′gnear + (η,φ,χ,δ,α) + ′gnear − (η,φ,χ,δ,α)( )

I5,near (η,φ,χ) = dδ
0

φs

∫ dα
0

π
2

∫ Cos[α] (fθ1 + δ)Cos(h(α,δ))Tan[α] − (θ1 + δ)(χ + (fθ1 + δ)Cos[α])Sin(h(α,δ))[ ] ′gnear + (η,φ,χ,δ,α) − ′gnear − (η,φ,χ,δ,α)( )

in which

′gnear ± (η,φ,χ,,δ,α) = 1

η2 + 1 − 2ηCos(φ − π
4

± h(α,δ)) + (χ + (fθ1 + δ)Cos[α])2

3

and
h(α,δ) = (θ1 + δ)Sin[α]

The integrals depend on the detailed geometry of the coil ends. Note that the above results are only for the fields from one quadrant of the quadrupole.

4. Magnetic field of a current sheet by harmonic expansion

We return to the expression for the vector potential
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r
A(

r
r) = µ0

4π

r
K( ′

r
r )da

r
r − ′

r
r∫

and use the following expansion:

  

1
r
r − ′

r
r

= dkExp[im(φ − ′φ )]Exp[−k(z> − z< )]Jm (kρ)
0

∞

∫
m=−∞

∞

∑ Jm (k ′ρ )

This form is an explicit expansion of 1/r in cylindrical harmonics. One substitutes this into the expression for the vector potential, and the integral over k gives Legendre Q-functions. These may be
power-series expanded to obtain a  power series for each harmonic of the vector potential. A significant simplification in the harmonic structure results when one adds the potentials from all four
quadrants of the quadrupole. The details are given in Appendix 3(a). One then takes the curl to get a series expansion for the field. The symmetries given above for the field require that the most general
harmonic expansion have the following form (for a field from a perfectly symmetric arrangement of four quadrupole coils):

Bρ(ρ,φ,z) = bρ,k (ρ,z)Sin[2kφ]
k =1,3,5,..

∞

∑ ;  Bφ (ρ,φ,z) = aφ,k (ρ,z)Cos[2kφ]
k =1,3,5,..

∞

∑ ; Bz (ρ,φ,z) = bz,k (ρ,z)Sin[2kφ]
k =1,3,5,..

∞

∑

The results, derived in Appendix 3(b), are the following. The body fields for the complete quadrupole are

  

r
Bbody (ρ,φ,z) = Gρ0

ρ
ρ0











2k −1

k  odd
∑

rr
Vk (φ) • ρ

ρ0











r r
δbody (r,k,χ)

r =0
∑

in which the azimuthal dependence is described by the matrix

  

rr
Vk (φ) =

Sin(2kφ) 0 0

0 Cos(2kφ) 0

0 0 Sin(2kφ)












the field gradient is

G = 4µ0ISin[φs ]Cos[2φ1 + φs ]
πφsR

2

and ρ0 is the reference radius. The components of the harmonic coefficient vector are shown in Appendix 3(b) to be

δφ
body (r,k,χ) = ρ0

R






2k −2+2r 2(k + r)(−1)r Sin[kφs ]Cos[k(2φ1 + φs )]
22k + r Sin[φs ]Cos[2φ1 + φs ]k

(4k − 1 + 2r + 2j)!!
(2k + j)!(r − j)! j!2 j

j=0

r

∑ (−1)j (s − χ)2 F1(
1
2

,2k + r + j + 1
2

;
3
2

;−(s − χ)2 ) + χ2F1(
1
2

,2k + r + j + 1
2

;
3
2

;−χ2 )





δρ
body (r,k,χ) = ρ0

R






2k −2+2r 2(−1)r Sin[kφs ]Cos[k(2φ1 + φs )]
22k + r Sin[φs ]Cos[2φ1 + φs ]

(4k − 1 + 2r + 2j)!!
(2k + j)!(r − j)! j!2 j

j=0

r

∑ (−1)j (s − χ)2 F1(
1
2

,2k + r + j + 1
2

;
3
2

;−(s − χ)2 ) + χ2F1(
1
2

,2k + r + j + 1
2

;
3
2

;−χ2 )





δz
body (r,k,χ) = 0

in which 2 F1 is a hypergeometric function.

For the ends, we have

  

r
Bends (ρ,φ,z) = Gρ0

ρ
ρ0











2k −1

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r r
δends (r,k,χ)

r =0
∑

in which the components of the harmonic coefficient vector are

δρ
near end (r,k,χ) = (−1)

k −1

2
+ r

22k + r +1Sin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −2+2r

′δρ
near end ( j, r, k,χ)

j=0

r

∑
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′δρ
near end ( j, r, k,χ) = (4k − 1 + 2r + 2j)!!

(2k + j)!(r − j)! j!2 j (−1)j dδ
0

φs

∫ dα
0

π
2

∫ Cos[2kh(α,δ)]Cos[α]
1

1 + χ + (fθ1 + δ)Cos[α]( )2













4k +2r +2 j+1

4k(fθ1 + δ)Tan[α]Tan[2kh(α,δ)] + 2(θ1 + δ) χ + (fθ1 + δ)Cos[α]( ) 2k + j − (4k + 1 + 2r + 2j)(r − j)
2(2k + j + 1)

1

1 + χ + (fθ1 + δ)Cos[α]( )2

























δφ
near end (r,k,χ) = (−1)

k −1

2
+ r

22k + r +1Sin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −2+2r

′δφ
near end ( j, r, k,χ)

j=0

r

∑

′δφ
near end ( j, r, k,χ) = (4k − 1 + 2r + 2j)!!

(2k + j)!(r − j)! j!2 j (−1)j dδ
0

φs

∫ dα
0

π
2

∫ Cos[2kh(α,δ)]Cos[α]
1

1 + χ + (fθ1 + δ)Cos[α]( )2













4k +2r +2 j+1

(4k + 4r)(fθ1 + δ)Tan[α]Tan[2kh(α,δ)] + 2(θ1 + δ) χ + (fθ1 + δ)Cos[α]( ) 2k + j + (4k + 1 + 2r + 2j)(r − j)
2(2k + j + 1)

1

1 + χ + (fθ1 + δ)Cos[α]( )2

























δz
near end (r,k,χ) = (−1)

k −1

2
+ r

22k + r +1Sin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −3+2r

′δz
near end ( j, r, k,χ)

j=1

r

∑

′δz
near end ( j, r, k,χ) = (4k − 1 + 2r + 2j)!!

(2k + j)!(r − j)! j!2 j (−1)j dδ(θ1 + δ)
0

φs

∫ dα
0

π
2

∫ Cos[2kh(α,δ)]Cos[α]

1

1 + χ + (fθ1 + δ)Cos[α]( )2













4k +2r +2 j−1

4r(2k + j)
(4k + 2r + 2j − 1)

− 2(r − j)(2k + r)
(2k + j + 1)

1

(1 + χ + (fθ1 + δ)Cos[α]( )2
)













  

The above results give the full dependence of the field on ρ,φ, and z; however, often we are only interested in the harmonics of the integrated field. Expressions are given in Appendix 3(b) for integrals
of the harmonics over a limited region of the magnet. For the integrals over the whole magnet, we have

  

r
Bbody

int (ρ,φ) = dz
−∞

∞

∫
r
Bbody (ρ,φ,z) = RGρ0

ρ
ρ0











2k −1

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r r
δ body,tot (r, k)

r =0
∑

r
Bends

int (ρ,φ) = dz
−∞

∞

∫
r
Bend (ρ,φ,z) = RGρ0

ρ
ρ0











2k −1

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r

(
r
δ far  end,tot (r, k) +

r
δ near  end,tot (r, k))

r =0
∑

r
Btotal

int (ρ,φ) =
r
Bbody

int (ρ,φ) +
r
Bends

int (ρ,φ)

in which the integrated harmonics, from Appendix 3(b), are

δφ
body,tot (r, k) = δ r,0s

ρ0

R






2k −2 Sin[kφs ]Cos[k(2φ1 + φs )]
Sin[φs ]Cos[2φ1 + φs ]k

= δρ
body,tot (r, k)

δφ
near end,tot (r, k) = δ r,0

(−1)
k −1

2

Sin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −2

dδ
0

φs

∫ (fθ1 + δ) dα
0

π
2

∫ Sin[2kh(α,δ)]Sin[α] = δρ
near end,tot (r, k)
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δz
near end,tot (r, k) = δ r,1

(−1)
k −1

2

Sin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −1

dδ(θ1 + δ)
0

φs

∫ dα
0

π
2

∫ Cos[2kh(α,δ)]Cos[α]

Note that since

δρ,φ
near end (r,k,χ) = δρ,φ

far end (r,k,s − χ)  ;δz
near end (r,k,χ) = −δz

far end (r,k,s − χ)  

the integrated harmonics for the ρ and φ components from the two ends add, but cancel for the z component. The z-component may still be important if the beam optics are such that the beam couples to
it differently at the two ends of the magnet.

The standard 2D representation of the integrated field in terms of error harmonics is

Bρ
int (ρ,φ) = B0Leff

ρ
ρ0











n
∑

n−1

bnSin[nφ] − anCos[nφ]( )

Bφ
int (ρ,φ) = B0Leff

ρ
ρ0











n
∑

n−1

bnCos[nφ] + anSin[nφ]( )

where B0 is the reference field (=Gρ0 for a quadrupole). Hence the correspondence with the harmonics defined in this report becomes

Leff b2k = R[δρ
far end,tot (0,k) + δρ

near end,tot (0,k) + δρ
body,tot (0,k)]

 Explicitly, including both ends,

seff b2k = ρ0

R






2k −2 sSin[kφs ]Cos[k(2φ1 + φs )]
Sin[φs ]Cos[2φ1 + φs ]k

+ 2
(−1)

k −1

2

Sin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −2

I(k)

b2k = ρ0

R






2k −2 s
seffSin[φs ]Cos[2φ1 + φs ]

Sin[kφs ]Cos[k(2φ1 + φs )]
k

+ 2(−1)
k −1

2

s
I(k)

















in which

I(k) = dδ
0

φs

∫ (fθ1 + δ) dα
0

π
2

∫ Sin[2kh(α,δ)]Sin[α]

Using

2Sin[kφs ]Cos[k(2φ1 + φs )] = 2Sin[k(φ2 − φ1)]Cos[k(φ2 + φ1)] = Sin[2kφ2 ] − Sin[2kφ1]
this becomes

b2k = ρ0

R






2k −2 s
seffSin[φs ]Cos[2φ1 + φs ]

Sin[2kφ2 ] − Sin[2kφ1]
2k

+ 2(−1)
k −1

2

s
I(k)

















For a single coil shell with φ2=φs, φ1=0, we get

b2k = ρ0

R






2k −2 sSin[2kφs ]
seff kSin[2φs ]

1 + 4k(−1)
k −1

2

sSin[2kφs ]
I(k)

















The effective length is determined by requiring that b2 = 1:
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1 = s
seff

1 + 4
sSin[2φs ]

I(1)








  ,   Leff = L 1 + 4

sSin[2φs ]
I(1)











Then

b2k = ρ0

R






2k −2 Sin[2kφs ]
kSin[2φs ]

1 + 4k(−1)
k −1

2

sSin[2kφs ]
I(k)

















1 + 4
sSin[2φs ]

I(1)










In terms of the simple 2D harmonic,

b2k (2D) = ρ0

R






2k −2 Sin[2kφs ]
kSin[2φs ]

we have

b2k = b2k (2D)

1 + 4k(−1)
k −1

2

sSin[2kφs ]
I(k)

















1 + 4
sSin[2φs ]

I(1)










The first term is due only to the body ;  the second term is due to the ends and scales like 1/s=R/L. The longitudinal field at the ends can also be written in terms of an "integrated harmonic"

Bz
int (ρ,φ) = B0Leff

ρ
ρ0











n
∑

n

b̂nSin[nφ]

except that the integral is only over one end of the magnet (since the contributions from both ends cancel). Note that the (n=2) (quadrupole) harmonic varies as ρ2 . Then

Leff b̂2k = R[δz
near end,tot (1,k)]

b̂2k = (−1)
k −1

2

seffSin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −1

dδ(θ1 + δ)
0

φs

∫ dα
0

π
2

∫ Cos[2kh(α,δ)]Cos[α]

= (−1)
k −1

2

seffSin[φs ]Cos[2φ1 + φs ]
ρ0

R






2k −1

Iz (k)

in which

Iz (k) = dδ(θ1 + δ)
0

φs

∫ dα
0

π
2

∫ Cos[2kh(α,δ)]Cos[α]

5. Magnetic field of a quadrupole current block

The results given in section 3 above are for the fields from the current sheet described in section 2. As noted in the introduction, for an estimate of the peak field in the magnet's coil, one must of course
calculate for a finite thickness coil block. In general, the approach is to use the results of section 3 for B as a function of the sheet radius R, and then integrate over a range of R from R1 to R2:

  

d
r
B = I

R2 − R1

r
f (R)dR,    

r̃
B = dB∫ = I

R2 − R1

r
f (R)dR

R1

R 2

∫
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in which 
  

r
f (R) =

r
B
I

, with   
r
B from section 3 above. Over the R range from R1 to R2,  we take the current in each infinitesimal shell of thickness dR to be constant:

dI = I
R2 − R1

dR

which means that the volume current density, J=dI/(RdRdφ), decreases as 1/R. This will be the case if the same number of turns are wound in each radial layer, as is the case for magnets wound with
keystoned Rutherford cable. The cross-sectional geometry , and a graph of the "near end" R-z geometry, is shown in fig. 4.

φ1

φ2

R

R

1

2

x

y
  

R
1

2
R

R

R2(θ2+(f−1)θ1)

R1(θ2+(f−1)θ1)

fR2 θ1

fR1 θ1

z

Fig. 4

The integral over R can be done analytically. The details of the calculation are given in Appendix 2. There are some complications due to the fact that the integrands of the final integrals over α and δ
(which must be done numerically) are singular when the field point is within the coil block. The integrals giving the fields are, of course, finite, but when doing these integrals numerically (see below,
section 7), care must be used in the vicinity of the singular point. The strategy for dealing with this problem is given in Appendix 2. The general form of the results are

B̃body,ρ(ρ,φ,z) = µ0I
4πφs (R2 − R1)

Ĩbody,ρ(ρ,φ,z)

B̃body,φ (ρ,φ,z) = − µ0I
4πφs (R2 − R1)

Ĩbody,φ (ρ,φ,z)

  

B̃near  end,z (
r
r) = µ0I

4πφs (R2 − R1)
Ĩ1,near (ρ,φ,z) − ρ Cos[φ − π

4
]Ĩ2,near (ρ,φ,z) − Sin[φ − π

4
]Ĩ3,near (ρ,φ,z)











B̃near  end,φ (
r
r) = µ0I

4πφs (R2 − R1)
−ρĨ6,near (ρ,φ,z) + Cos[φ − π

4
]Ĩ5,near (ρ,φ,z) − Sin[φ − π

4
]Ĩ4,near (ρ,φ,z)





B̃near  end,ρ(
r
r) = µ0I

4πφs (R2 − R1)
Cos[φ − π

4
]Ĩ4,near (ρ,φ,z) + Sin[φ − π

4
]Ĩ5,near (ρ,φ,z)
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The integrals Ĩ  in the above equations are similar to those quoted in section 3,  and are given in Appendix 2. This is still just for one-quarter of the quadrupole. We must sum over the other three
quadrants to get the total quadrupole field:

  

r
Bbody (

r
r) = (−1)j

j=0

3

∑ ˜
r
Bbody (

r
r,φ − j

π
2

)

r
Bnear  end (

r
r) = (−1)j

j=0

3

∑ ˜
r
Bnear end (

r
r,φ − j

π
2

)

The effective gradient is given by

G̃ = dG̃∫

dG̃ = 4µ0dISin[φS]Cos[2φ1 + φS]
πφSR2 = 4µ0ISin[φS]Cos[2φ1 + φS]

πφS(R2 − R1)
dR
R2

G̃ = 4µ0ISin[φS]Cos[2φ1 + φS]
πφS(R2 − R1)

dR
R2

R1

R 2

∫ = 4µ0ISin[φS]Cos[2φ1 + φS]
πφS(R2 − R1)

(R2 − R1)
R2R1

= 4µ0ISin[φS]Cos[2φ1 + φS]
πφSR2R1

6. Magnetic field of a multiple quadrupole coil

Finally, we consider the superposition of several (N) coils. Two or more coils are used to reduce the peak field in the ends by spreading out the current distribution and lowering the current
density. The use of two coils, with appropriate geometry differences, also allows the b6 end harmonic from one coil to cancel that from the other. Each coil is of the form described above, and has a
geometry described by the following parameters (for coil i):

φ1(i): initial coil azimuthal angle

φ2(i): final coil azimuthal angle

φs(i): coil shell angle=φ2(i)-φ1(i)

θ1(i)=π/4-φ2(i)
f(i): elliptical parameter for coil i

∆(i): z-offset for coil i (straight part of coil starts at z=-∆(i) for the near end)

Length of straight part of coil i=L0+2∆(i)
I(i): current in coil i

The geometry is shown (for the "near" end) in fig. 5 for N=2
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Rφ

Rφs(1)

Rφs(1)Rφs(2)

Rφs(2)

Rφ1(1)Rφ2(1)Rφ1(2)Rφ2(2)

f(2)Rθ1(2)

f(1)Rθ1(1)

Rθ1(2)

Rθ1(1)

∆(1)

∆(2)

2

1

Fig. 5

Then the total field will be of the general form

  

r̃
Btot (

r
r) = µ0

4π(R2 − R1)
I(i)

φs (i)i=1

N

∑ Ĩ(ρ,φ,z + ∆(i))
φ1 ( i ), φ2 ( i ),f ( i ),L(i)

= µ0Itot

4π(R2 − R1)φtot

Ĩ(ρ,φ,z + ∆(i))
φ1 ( i ), φ2 ( i ),f ( i ),L(i)

i=1

N

∑

if the current in each coil is taken to be in the ratio of the azimuthal width of each coil:

I(i) = Itot

φtot

φs (i),  φtot = φs (i)
i=1

N

∑ ,  Itot = I(i)
i=1

N

∑
The harmonic expansion result (for a current sheet at R) is
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r
Btot,ends (ρ,φ,z) = 4µ0Itot

πR2φtot

ρ0 Sin[φs (i)]Cos[2φ1(i) + φs (i)]
i=1

N

∑ ρ
ρ0











2k −2

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r

r =0
∑

r
δends (r,k,χ + ∆(i)

s(i)
)

φ1 ( i ), φ2 ( i ),f ( i ),s( i )

= 4µ0Itotσ
πR2φtot

ρ0

Sin[φs (i)]Cos[2φ1(i) + φs (i)]
σi=1

N

∑ ρ
ρ0











2k −2

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r

r =0
∑

r
δends (r,k,χ + ∆(i)

s(i)
)

φ1 ( i ), φ2 ( i ),f ( i ),s( i )

= Gtotρ0

ρ
ρ0











2k −2

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r

r =0
∑ Sin[φs (i)]Cos[2φ1(i) + φs (i)]

σ

r
δends (r,k,χ + ∆(i)

s(i)
)

i=1

N

∑
φ1 ( i ), φ2 ( i ),f ( i ),s( i )

  

r
Btot,body (ρ,φ,z) = Gtotρ0

ρ
ρ0











2k −2

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r

r =0
∑ Sin[φs (i)]Cos[2φ1(i) + φs (i)]

σ

r
δbody (r,k,χ + ∆(i)

s(i)
)

i=1

N

∑
φ1 ( i ), φ2 ( i ),f ( i ),s( i )

in which

σ = Sin[φs (i)]Cos[2φ1(i) + φs (i)]
i=1

N

∑

Gtot = 4µ0Itotσ
πR2φtot

The integrated fields are then

  

r
Bbody

int (ρ,φ) = dz
−∞

∞

∫
r
Bbody (ρ,φ,z) = RGtotρ0

ρ
ρ0











2k −1

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r
Sin[φs (i)]Cos[2φ1(i) + φs (i)]

σ

r
δ body (r,k)

i=1

N

∑
φ1 ( i ), φ2 ( i ),f ( i ),s( i )r =0

∑

r
Bends

int (ρ,φ) = dz
−∞

∞

∫
r
Bend (ρ,φ,z) = RGtotρ0

ρ
ρ0











2k −1

k  odd
∑

rr
Vk (φ) • ρ

ρ0











2r
Sin[φs (i)]Cos[2φ1(i) + φs (i)]

σ
(
r
δ far  end,tot (r, k) +

r
δ near  end,tot (r, k))

i=1

N

∑
φ1 ( i ), φ2 ( i ),f ( i ),s( i )r =0

∑
r
Btotal

int (ρ,φ) =
r
Bbody

int (ρ,φ) +
r
Bends

int (ρ,φ)

For example, the integrated kth-harmonic becomes

Leff b2k = R
Sin[φs (i)]Cos[2φ1(i) + φs (i)]

σi=1

N

∑ 2δρ
tot,end (0,k) + δρ

tot,body (0,k)[ ]
φ1 ( i ), φ2 ( i ),f ( i ),s( i )

b2k = ρ0

R






2k −2 1
seffσ

s(i)
Sin[2kφ2 (i)] − Sin[2kφ1(i)]

2k
+ 2(−1)

k −1

2 Ii (k)










i=1

N

∑
in which

Ii (k) = dδ
0

φs ( i )

∫ (f(i)θ1(i) + δ) dα
0

π
2

∫ Sin[2khi (α,δ)]Sin[α]

The integrated longitudinal harmonic (one end only) is

b̂2k = ρ0

R






2k −1 1
seffσ

dδ(θ1(i) + δ)
0

φs

∫ dα
0

π
2

∫ Cos[2khi (α,δ)]Cos[α]
i=1

N

∑

The effective length is
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Leff = 1
σ

L(i)
Sin[2φ2 (i)] − Sin[2φ1(i)]

2
+ 2RIi (1)



i=1

N

∑
If the coils are arranged so that φ1(i+1)=φ2 (i), then

s(i)
Sin[2kφ2 (i)] − Sin[2kφ1(i)]

k




i=1

N

∑ = s0

k
Sin[2kφ2 (i)] − Sin[2kφ1(i)][ ]

i=1

N

∑ + 2
kR

∆(i) Sin[2kφ2 (i)] − Sin[2kφ1(i)][ ]
i=1

N

∑

= s0

k
Sin[2kφ2 (N)] − Sin[2kφ1(1)][ ] + 2

kR
∆(i) Sin[2kφ2 (i)] − Sin[2kφ1(i)][ ]

i=1

N

∑

So

b2k = ρ0

R






2k −2 1
seffσ

s0

2k
Sin[2kφ2 (N)] − Sin[2kφ1(1)][ ] +

∆(i)
kR

Sin[2kφ2 (i)] − Sin[2kφ1(i)][ ] + 2(−1)
k −1

2 Ii (k)










i=1

N

∑



















For φ1(1)=0, and φ2(N)=φtot chosen so that Sin[2kφ2 (N)]=0 for k=3 (1st allowed body harmonic vanishes), then the residual end b6 harmonic

b6 = ρ0

R






4 1
seffσ

∆(i)
3R

Sin[6φ2 (i)] − Sin[6φ1(i)][ ] − 2Ii (3)



i=1

N

∑

can be arranged to vanish for a suitable coil  arrangement. The first term, which is due to the extension of the straight parts of the coils, can cancel the effect of the second term, which is the contribution
from the curved parts of the ends.

The above expression for the effective length is for a flat coil of radius R. For a thick coil which extends from R1 to R2, the harmonics and effective length should be calculated by using

R = R1 + R2

2
. This will be good to better than a few percent. A better approximation for the effective length can be obtained by multiplying the result above by 

R1R2

R2 .

7. Results for a specific coil geometry

The above expressions for the fields and the harmonics are given as closed analytical results, but involve two-dimensional integrals over the coil end geometry. In obtaining results, these
integrals have been done numerically. Two computer programs have been written to evaluate the expressions. One program, written for the program Mathematica, is useful in producing graphs of the
harmonics and in debugging the numerical integration algorithms. The other program, written in VAX FORTRAN, is necessary to evaluate the two-dimensional integrals rapidly. The existence of two
programs allows each to be checked against the other, reducing the probability of mistakes. Also, the direct method and the harmonic expansion method give expressions for the field which should agree
in regions within the coil where both methods are applicable. The coil block results and the current sheet results should agree for very thin coil blocks. Finally, the divergence of the field (computed
numerically) should be zero everywhere, and the curl of the field should equal µ0 times the volume current density. The results of these cross-checks are given in Appendix 5.

(a). "Baseline" coil geometry

After exploring the dependencies of the field and harmonics on the coil end geometry, a "baseline" coil design was established which generally meets the specified requirements for the CESR
Q1/Q2 magnets. Specifically, the requirements are (a) lower field in the coil ends than the coil body; if possible; (b) satisfactory integrated harmonic structure for the field (<5x10-4); (c) effective length
in the range 630-670 mm; (d) overall physical length of the coils <830 mm. This latter requirement is somewhat soft since it depends on the detailed design of the cold mass and cryostat. Table 1 gives
the coil geometry and electrical parameters in the terminology of this note.

Table 1-Baseline Coil Parameters
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Current (A) Number of
turns/pole

R1
(mm)

R2
(mm)

R0=1/2(
R1+R2)
(mm)

L0 (mm) Leff(mm)

1460 320 97 129 113 460 669

Coil # ∆(mm) φ1(rad) φ2(rad) φs(rad) θ1(rad) f Full
length
(mm)

1 65 0.0 .415 .415 .370 0.9 783
2 0 0.415 .524 .109 .262 0.9 548.8

The end coil layout is shown in figure 6 (at R=129 mm)

-100 -50 50 100

-200

-100

100 Coil 1

Coil 2

z (mm)

Rφ (mm)

Figure 6
Baseline end coil layout

(b). Integrated harmonics

The integrated "2D" harmonics (b2k) are given in table 2. They are calculated for a current sheet of radius R0. The effective length for the baseline coil calculates to 668.8 mm. The length of the
body plus one end is 621.5 mm.
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Harmonic number (k) 1 3 5 7
b2k 10000 -.33 -2.9 0.05

b̂2k
374 .0001 -.02 .0004

Table 2: Baseline coil integrated harmonics (in units; 1 unit=10-4 )

The small value of the b6 harmonic has been achieved by canceling the contribution from the curved parts of coil 1 and 2 with that due to the straight extension of coil 1 in the end region, as discussed
above. The tradeoff between the shape of coil 2 and coil 1 is exhibited in fig. 7, which is a plot of the contours of constant b6 vs. the coil 1 aspect ratio f(1) and the coil 2 aspect ratio f(2).

0.6 0.8 1 1.2 1.4

0.6

0.8

1

1.2

1.4

f(1)

f(2)

b6=5 units

b6=2 units

b6=1 units

Fig. 7
Contours of constant b6 vs. f(1) and f(2)

For ∆(1)=65. mm

Fig. 7 shows that one can maintain a small b6 by simultaneously increasing f(1) and decreasing f(2).

The effect of the large longitudinal harmonic shown in table 2 needs study using beam optics. The longitudinal field only couples through the transverse momentum, so the effective value of the
harmonic given above should be multiplied by the transverse angle of the particle relative to the quad axis. For example, if we wish the effective harmonic to be less than 5 units, then table 2 requires
that the largest transverse angle be about 5/374=13 mrad (at the reference radius of 5 cm). This ignores the cancellation effects of one end on the other.

(c). Harmonic coefficients

Figures 8 through 19 show the full dependencies of the harmonic coefficients δφ,ρ,z (r, k,χ)on χ. The coefficients up to r=2 (for k=1), k=3, and k=5 are shown. The harmonic coefficients

shown in the figures must be scaled by the factors shown (104η0(2k-2+2r), where η0 = 50/R0=.4347), to convert to units (10-4). The short dash lines are the contributions from the body; the long-dash
lines, from the ends; the solid lines, the total.
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(d). Partially integrated harmonics

 We can calculate "partial integrals" of the field, which can be used to study the beam optics of the quadrupole field. We define the partial z-integrals

Bends,z (ρ,φ,z)
z1

z2

∫ dz = RGρ0 Sin(2kφ)
k  odd
∑ ρ

ρ0











2k −2
ρ
ρ0











2r

δz
ends (r,k,χ)dχ

χ1

χ2

∫
r =1
∑

= B0Leff Sin(2kφ)
k  odd
∑ ρ

ρ0











2k −2
ρ
ρ0











2r

δ̃z (r,k,χ2 ,χ1)
r =1
∑

[Bends,φ (ρ,φ,z) +
z1

z2

∫ Bbody,φ (ρ,φ,z)]dz = Gρ0 Cos(2kφ)
k  odd
∑ ρ

ρ0











2k −1
ρ
ρ0











2r

δφ
ends (r,k,χ) + δφ

body (r,k,χ)[ ]
χ1

χ2

∫ dχ
r =0
∑

= B0Leff Sin(2kφ)
k  odd
∑ ρ

ρ0











2k −2
ρ
ρ0











2r

δ̃φ (r,k,χ2 ,χ1)
r =1
∑

[Bends,ρ(ρ,φ,z) +
z1

z2

∫ Bbody,ρ(ρ,φ,z)]dz = Gρ0 Cos(2kφ)
k  odd
∑ ρ

ρ0











2k −1
ρ
ρ0











2r

δρ
ends (r,k,χ) + δρ

body (r,k,χ)[ ]
χ1

χ2

∫
r =0
∑ dχ

= B0Leff Sin(2kφ)
k  odd
∑ ρ

ρ0











2k −2
ρ
ρ0











2r

δ̃ρ(r,k,χ2 ,χ1)
r =1
∑

in which

δ̃z (r,k,χ2 ,χ1) = 1
seff

δz
ends (r,k,χ)dχ;

χ1

χ2

∫  δ̃φ (r,k,χ2 ,χ1) = 1
seff

δφ
ends (r,k,χ) + δφ

body (r,k,χ)[ ]
χ1

χ2

∫ dχ;  δ̃ρ(r,k,χ2 ,χ1) = 1
seff

δρ
ends (r,k,χ) + δρ

body (r,k,χ)[ ]
χ1

χ2

∫ dχ
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Using the expressions found in Appendix 3(b), we can do the χ integrals analytically. We divide the region from the z=0 end of the magnet to the center of the magnet at z=L0/2, and calculate the field

harmonic integrals over segments of this region. The integrated field for each segment is then given by scaling the integrated harmonic with the ρ and φ dependence shown above, and multiplying by an

overall factor 10-4B0Leff =10-4Gρ0Leff (= 1.62x10-4 T-m for the baseline design).  Table 3 gives the definition of the regions of χ=z/R0; the integrated field for each region is effectively  located in z at

the value of χavg as given in table 3. The values of the integrated harmonics for each region, and their sum over half the magnet, are shown in table 4.

Region
number

χ1 χ2 χavg=1/2(χ2+χ1)

1 2 2.0354 2.0177
2 1 2 1.5
3 .5 1 .75
4 0. .5 .25
5 -.5 0 -.25
6 -1 -.5 -.75
7 -1.5 -1 -1.25
8 -2 -1.5 -1.75
9 -3 -2 -2.5

Table 3: definitions of regions of z for partially integrated
harmonics

Region
Harmonic:
(component,k,r)

1 2 3 4 5 6 7 8 9 Sum

φ, 1 ,0 60 1692 849 837 765 560 222 26 -13 4999

φ, 1 ,1 0 1 3 20 42 61 -62 -56 -8 0

φ, 1 ,2 0 -1 -2 0 -5 31 -29 0 6 0

φ, 3 ,0 0 0 0 0 3 0 -3 0 0 0

φ, 5 ,0 0 -.4 -.2 -.2 -.2 -.2 0 0 0 -1.3

ρ , 1 , 0 60 1692 849 837 765 560 222 26 -13 4999

ρ , 1 , 1 0 0 7 41 84 121 -125 -112 -16 0

ρ , 1 , 2 0 -1 -6 1 -15 92 -87 -1 18 0

ρ , 3 , 0 0 0 0 0 3 0 -3 0 0 0

ρ , 5 , 0 0 -.4 -.2 -.2 -.2 -.2 0 0 0 -1.3

z , 1 , 1 0 -2 0 14 54 129 135 38 1 370
z , 1 , 2 0 0 -4 -10 -13 21 46 -30 -10 0
z , 1 , 3 0 0 1 -3 1 -6 20 -17 4 0

Table 4: Partially integrated harmonics (units)
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End peak field, coil 1 End peak field, coil 2 Body peak field, coil 2
Magnitude 5.49 T 5.53 T 5.73 T

ρ 105.2 mm 103.2 mm 104.8 mm

φ 44.2o 43.5o 30.0o

z -100.07 mm -24.2 mm 229.4 mm

f (1) f (2) φ2(1) ∆ (1)
(mm)

b6 (units) Leff (mm) Coil length
(mm)

Bpeak
(end-coil 2) (T)

Bpeak
(end-coil 1) (T)

Bpeak
(body) (T)

.9 .9 .415 65 -.33 669 783 5.53 5.49 5.73

.9 .9 .435 65 -3.2 673 784 5.38 5.71 5.73

.9 .9 .395 65 2.3 664 783 5.66 5.25 5.73

.9 .9 .415 60 -1.7 660 773 5.55 5.48 5.73

.9 .9 .415 70 1.0 677 793 5.51 5.49 5.73

.8 .9 .415 65 0.7 663 773 5.54 5.47 5.73
1.0 .9 .415 65 -1.5 676 794 5.52 5.51 5.73
.9 .8 .415 65 0.4 668 783 5.50 5.49 5.73
.9 1.0 .415 65 -1.1 669 783 5.55 5.49 5.73

(e) Peak field

The coil block model was used to calculate the peak field in the body and ends of the magnet. The peak fields in the ends tend to occur at φ=45o , at the center of the coil block radially, and at the
inner (smallest absolute value) of z for each coil. One can optimize the coil block arrangement by adjusting the azimuthal extent of each of the coil blocks so that the peak fields in each block at the ends
are roughly equal. The baseline coil arrangement resulted from such an optimization. The peak fields are given in table 5.

Table 5: Peak fields in the body and ends

Finally, in table 6 we show the variations in effective length, 12-pole, peak field, and coil length for small changes from the "baseline" (first line of table 6).

Table 6: Variations of the coil geometry about the baseline

8. Conclusion

Expressions have been developed for the three-dimensional magnetic fields of a quadrupole coil, with an end geometry similar to that used in superconducting accelerator magnets. The
expressions may be used to calculate either the harmonics of the quadrupole field in the aperture, or the maximum value of the fields within the coils. The approach taken here leads to closed analytical
results for the fields, which may be particularly useful in gaining some intuition about the harmonic effects in the ends. In practice, a two-dimensional numerical integration must be performed to obtain
results, which, however, may be done relatively rapidly. Numerical calculations using these formulae have been carried out using two computer programs, for the specific case of an example design for
the CESR Phase III IR quads. In the example design, good harmonic dependence has been obtained for the integrated fields, and the peak fields in the coil ends have been reduced to less than the peak
body field. Estimates of the longitudinal fields in the aperture have been made.

9. Appendices

These are too long to be included here. Copies are available from the author on request.


